Issue 6, 2012

Autothermal reforming of isobutanol

Abstract

Catalytic partial oxidation (CPO) of isobutanol to produce synthesis gas with varying H2/CO ratios has been performed autothermally in a staged millisecond-contact-time reactor. A 1 wt% Rh-1 wt% Ce/α-alumina catalyst was used to carry out CPO of isobutanol over a range of fuel to oxygen ratios (C/O) in ∼20 ms residence times. Steam was added (S/C = 0 to S/C = 3) to promote the water gas shift (WGS) reaction and increase hydrogen production. Without steam addition, the maximum CO and H2 selectivities obtained were greater than 70%. Steam addition increased the maximum hydrogen selectivity to 103%, at C/O = 1 and S/C = 2. Conversion of isobutanol and oxygen was always > 99% at all C/O and S/C ratios after CPO where the autothermal temperatures were typically between 600 and 1000 °C . A 1 wt% Pt–1 wt% Ce catalyst was added downstream of the CPO stage to further reduce the CO and increase the H2 concentrations by the WGS reaction. Addition of the WGS stage resulted in a product stream containing 1.7 to 3 mol% CO at S/C of 2 and 3 which is comparable to the exit stream CO concentration of an industrial high temperature shift catalyst. With steam addition, selectivities to hydrogen greater than 100% were obtained at all C/O ratios, with a maximum of 122% at C/O = 0.9 and S/C = 3. At S/C = 3, the H2/CO ratio increased from ∼3 after the CPO stage to ∼12 after the WGS stage. Also, the WGS catalyst reduced the selectivities of non-equilibrium products like isobutylene and isobutyraldehyde by almost half compared to that after the CPO stage, which can reduce syngas cleanup costs after a reformer. Since the total residence time in the reactor is ∼100 ms and the product distribution can be tuned by addition of steam, this represents a compact and simple system for producing renewable syngas or hydrogen.

Graphical abstract: Autothermal reforming of isobutanol

Article information

Article type
Paper
Submitted
22 Dec 2011
Accepted
23 Dec 2011
First published
07 Feb 2012

RSC Adv., 2012,2, 2527-2533

Autothermal reforming of isobutanol

R. Chakrabarti, J. S. Kruger, R. J. Hermann and L. D. Schmidt, RSC Adv., 2012, 2, 2527 DOI: 10.1039/C2RA01348G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements