In the present study, the effects of particle size (20 nm or 70 nm) and surface charge (negative or positive) on the pharmacokinetics, tissue distributions, and excretion of ZnO nanoparticles were examined following the administration of a single oral dose to rats. Pharmacokinetic profiles and biodistributions were not affected by particle size or gender. However, ZnO (−) particles were markedly more absorbed by the systemic circulation than ZnO (+) particles. Furthermore, the kinetic behaviors of ZnO nanoparticles differed from those of zinc ions, as evidenced by the low dissolution (13–14%) of ZnO nanoparticles under gastric conditions. The kidneys, liver, and lungs were found to be target organs. However, the major biological fate of ZnO nanoparticles in tissues was the ionic form, not the particulate form, and this was independent of exposure routes (oral and intravenous). Particle size was only found to affect excretion kinetics, and 20 nm particles were more rapidly eliminated. Most nanoparticles were excreted via the biliary and fecal routes, but a small amount of the nanoparticles was excreted via urine. The study shows that surface charge, rather than particle size or gender, is the critical modulator of the pharmacokinetic behavior of ZnO nanoparticles.
You have access to this article
Please wait while we load your content...
Something went wrong. Try again?