Issue 13, 2014

Microfluidic-SERS devices for one shot limit-of-detection

Abstract

Microfluidic sensing platforms facilitate parallel, low sample volume detection using various optical signal transduction mechanisms. Herein, we introduce a simple mixing microfluidic device, enabling serial dilution of introduced analyte solution that terminates in five discrete sensing elements. We demonstrate the utility of this device with on-chip fluorescence and surface-enhanced Raman scattering (SERS) detection of analytes, and we demonstrate device use both when combined with a traditional inflexible SERS substrate and with SERS-active nanoparticles that are directly incorporated into microfluidic channels to create a flexible SERS platform. The results indicate, with varying sensitivities, that either flexible or inflexible devices can be easily used to create a calibration curve and perform a limit of detection study with a single experiment.

Graphical abstract: Microfluidic-SERS devices for one shot limit-of-detection

Supplementary files

Article information

Article type
Paper
Submitted
20 Feb 2014
Accepted
05 Apr 2014
First published
07 Apr 2014

Analyst, 2014,139, 3227-3234

Microfluidic-SERS devices for one shot limit-of-detection

D. Kim, A. R. Campos, A. Datt, Z. Gao, M. Rycenga, N. D. Burrows, N. G. Greeneltch, C. A. Mirkin, C. J. Murphy, R. P. Van Duyne and C. L. Haynes, Analyst, 2014, 139, 3227 DOI: 10.1039/C4AN00357H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements