Issue 48, 2014

Structure and magnetic properties of (Fe2O3)n clusters (n = 1–5)

Abstract

Global minimum structures of neutral (Fe2O3)n clusters with n = 1–5 were determined employing the genetic algorithm in combination with ab initio parameterized interatomic potentials and subsequent refinement at the density functional theory level. Systematic investigations of magnetic configurations of the clusters using a broken symmetry approach reveal antiferromagnetic and ferrimagnetic ground states. Whereas (Fe2O3)n clusters with n = 2–5 contain exclusively Fe3+, Fe2O3 was found to be a special case formally containing both Fe2+ and Fe3+. Calculated magnetic coupling constants revealed predominantly strong antiferromagnetic interactions, which exceed bulk values found in hematite. The precise magnetization (spin) state of the clusters has only small influence on their geometric structure. Starting from n = 4 also the relative energies of different cluster isomers are only weakly influenced by their magnetic configuration. These findings are important for simulations of larger (Fe2O3)n clusters and nanoparticles.

Graphical abstract: Structure and magnetic properties of (Fe2O3)n clusters (n = 1–5)

Supplementary files

Article information

Article type
Communication
Submitted
14 May 2014
Accepted
21 Jun 2014
First published
23 Jun 2014

Phys. Chem. Chem. Phys., 2014,16, 26421-26426

Author version available

Structure and magnetic properties of (Fe2O3)n clusters (n = 1–5)

A. Erlebach, C. Hühn, R. Jana and M. Sierka, Phys. Chem. Chem. Phys., 2014, 16, 26421 DOI: 10.1039/C4CP02099E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements