Issue 1, 2015

Low-temperature aqueous-phase reforming of ethanol on bimetallic PdZn catalysts

Abstract

Bimetallic PdZn catalysts supported on carbon black (CB) and carbon nanotubes (CNTs) were found to be selective for CO-free H2 production from ethanol at low temperature (250 °C). On Pd, the H2 yield was low (~0.3 mol H2/mol ethanol reacted) and the CH4/CO2 ratio was high (~1.7). Addition of Zn to Pd formed the intermetallic PdZnβ phase (atomic ratio of Zn to Pd is 1) with increased H2 yield (~1.9 mol H2/mol ethanol reacted) and CH4/CO2 ratio of <1. The higher H2 yield and low CH4 formation was related to the improved dehydrogenation activity of the L10 PdZnβ phase. The TOF increased with particle size and the CNTs provided the most active and selective catalysts, which may be ascribed to pore-confinement effects. Furthermore, no significant changes in either the supports or the PdZnβ particles was found after aqueous-phase reforming (APR) indicating that the metal nanoparticles and the carbon support are hydrothermally stable in the aqueous phase at elevated temperatures and pressures (>200 °C, 65 bar). No CO was detected for all the catalysts performed in aqueous-phase reaction, indicating that both monometallic Pd and bimetallic PdZn catalysts have high water-gas shift activity during APR. However, the yield of H2 is considerably lower than the theoretical value of 6 H2 per mole ethanol which is due to the presence of oxygenated products and methane on the PdZn catalysts.

Graphical abstract: Low-temperature aqueous-phase reforming of ethanol on bimetallic PdZn catalysts

Supplementary files

Article information

Article type
Paper
Submitted
13 Jul 2014
Accepted
28 Aug 2014
First published
28 Aug 2014

Catal. Sci. Technol., 2015,5, 254-263

Author version available

Low-temperature aqueous-phase reforming of ethanol on bimetallic PdZn catalysts

H. Xiong, A. DeLaRiva, Y. Wang and A. K. Datye, Catal. Sci. Technol., 2015, 5, 254 DOI: 10.1039/C4CY00914B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements