Issue 1, 2015

Heterogeneous biomimetic aerobic synthesis of 3-iodoimidazo[1,2-a]pyridines via CuOx/OMS-2-catalyzed tandem cyclization/iodination and their late-stage functionalization

Abstract

In the presence of copper supported on manganese oxide-based octahedral molecular sieves OMS-2 (CuOx/OMS-2), the heterogeneously catalytic, aerobic synthesis of 3-iodoimidazo[1,2-a]pyridines from acetophenones, 2-aminopyridines and I2via tandem cyclization/iodination in a one-pot manner is achieved. As a heterogeneous catalyst, OMS-2 acts not only as a support for catalytic Cu species but also as an electron-transfer mediator (ETM), which combines with Cu to generate a low-energy pathway for rapid electron transfer. In this way, the biomimetic, catalytic oxidation could directly employ air as a green terminal oxidant under mild conditions, and provide corresponding products with broad substrates in moderate to excellent yields using very low catalyst loading (0.2 mol% Cu). In this process, I2 not only plays the role of catalyst for the initial cyclization, with assistance from CuOx/OMS-2, but also acts as a reactant for the next electrophilic oxidative iodination, which makes the reaction highly atom economic. Besides, the late-stage functionalization of the I-substituted imidazo[1,2-a]pyridines is also demonstrated by various coupling reactions, which show its potential applications in synthetic and pharmaceutical chemistry. Moreover, the catalyst is truly heterogeneous and reusable.

Graphical abstract: Heterogeneous biomimetic aerobic synthesis of 3-iodoimidazo[1,2-a]pyridines via CuOx/OMS-2-catalyzed tandem cyclization/iodination and their late-stage functionalization

Supplementary files

Article information

Article type
Paper
Submitted
14 Jul 2014
Accepted
18 Aug 2014
First published
20 Aug 2014

Catal. Sci. Technol., 2015,5, 372-379

Author version available

Heterogeneous biomimetic aerobic synthesis of 3-iodoimidazo[1,2-a]pyridines via CuOx/OMS-2-catalyzed tandem cyclization/iodination and their late-stage functionalization

X. Meng, C. Yu, G. Chen and P. Zhao, Catal. Sci. Technol., 2015, 5, 372 DOI: 10.1039/C4CY00919C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements