Issue 8, 2015

Dispersion and distribution of bimetallic oxides in SBA-15, and their enhanced activity for reverse water gas shift reaction

Abstract

We used the direct hydrothermal synthesis method to obtain various well-dispersed bimetallic oxides/SBA-15 for the first time. It is possible that well-dispersed relatively large bimetallic sulfates are formed during the hydrothermal synthesis process and then re-dispersed with difficulty during the heat treatment process resulting in the formation of well-dispersed oxide particles in SBA-15. TEM elemental maps of CuO–NiO/SBA-15 clearly illustrated that CuO and NiO particles were monodispersed in SBA-15. TEM–EDX line analysis revealed that NiO particles were well distributed on the SBA-15 surface, and then covered by CuO particles. TEM elemental maps of CuO–CeO2/SBA-15 clearly showed that CuO and CeO2 particles aggregated slightly in SBA-15. TEM–EDX line analysis showed that CeO2 particles were well distributed on the SBA-15 surface, and then covered by CuO particles. TEM elemental maps of NiO–CeO2/SBA-15 clearly illustrated that NiO and CeO2 particles aggregated slightly in SBA-15. TEM–EDX line analysis revealed that NiO particles were largely mixed with CeO2 on the SBA-15 surface. Therefore, TEM elemental maps can be used to study the dispersion of bimetallic oxides, and TEM–EDX line analysis is very effective for investigating their distribution in SBA-15. Compared with monometallic oxides/SBA-15, the obtained bimetallic oxides/SBA-15 catalysts exhibited excellent efficiency as regards reducing CO2 to CO by the reverse water–gas shift (RWGS) reaction. In particular, the bimetallic oxides/SBA-15 catalysts could result in the high CO2 conversion to CO at low temperature.

Graphical abstract: Dispersion and distribution of bimetallic oxides in SBA-15, and their enhanced activity for reverse water gas shift reaction

Article information

Article type
Research Article
Submitted
23 Apr 2015
Accepted
16 Jun 2015
First published
18 Jun 2015

Inorg. Chem. Front., 2015,2, 741-748

Author version available

Dispersion and distribution of bimetallic oxides in SBA-15, and their enhanced activity for reverse water gas shift reaction

B. Lu, Y. Ju, T. Abe and K. Kawamoto, Inorg. Chem. Front., 2015, 2, 741 DOI: 10.1039/C5QI00062A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements