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herent dynamical tendencies of
the bisabolyl cation via preorganization in epi-
isozizaene synthase†

Ryan P. Pemberton, Krystina C. Ho and Dean J. Tantillo*

The relative importance of preorganization, selective transition state stabilization and inherent reactivity are

assessed through quantum chemical and docking calculations for a sesquiterpene synthase (epi-isozizaene

synthase, EIZS). Inherent reactivity of the bisabolyl cation, both static and dynamic, appears to determine the

pathway to product, although preorganization and selective binding of the final transition state structure in

the multi-step carbocation cascade that forms epi-isozizaene appear to play important roles.
Introduction

Many factors have been proposed as contributors to selectivity
control in terpene synthases, e.g., reactant preorganization,1–9

geometric constraints imposed by the enzyme active site (not
only on the reactant but on reactive species generated from
it),3,10–15 selective oriented intermolecular interactions
(primarily p/p, C–H/p and C–H/lone pair) with
pi-isozizane formation:9 (I) pyro-
ate addition, (III) conformational
l, (V) p-cation cyclization, (VI) 1,2-
on, (VIII) p-cation cyclization, (IX)
) 1,2-methyl shift,26 (XI) deproto-

fornia, Davis, One Shields Avenue, Davis,

.edu

ESI) available: Movies of representative
nary points, table of electronic and free
scores, and frequency information for
39/c4sc03782k

hemistry 2015
intermediates and transition state structures (TSSs),16,17 and
inherent reactivity of carbocations generated from the reac-
tant—both in terms of underlying potential energy surfaces
(PESs) for carbocation rearrangements and inherent dynamical
tendencies.18–23 Herein we describe computations that bear
directly on the relative importance of all of these factors for a
sesquiterpene synthase—epi-isozizaene (7; Fig. 1) synthase
(EIZS)—that has received considerable interest from organic
chemists and mechanistic enzymologists over the past
decade.9,24–28 To our knowledge, this is the rst report that
parses out the relative contributions of these factors for any
enzyme (note that inherent dynamical tendencies of a substrate
is by far the least studied factor of those described).

EIZS catalyzes the polycyclization of an acyclic substrate
(farnesyl diphosphate, FPP), into a complex polycycle possess-
ing three stereogenic centers via the 11 steps shown in Fig. 1.
These reaction steps are proposed on the basis of previous
quantum chemical calculations on reactions of the bisabolyl
cation (1).3 Note that step VII is predicted to have a low barrier
or no barrier, depending on the conformation of homobisabolyl
cation 2, and step IX involves the merging, asynchronously, of
two 1,2-alkyl shis into a concerted process.29–31 While several
conformations of species involved in this pathway were exam-
ined previously,3 we have now performed an exhaustive
conformational search on the TSS for step VI with an eye toward
elucidating the consequences of conformational preorganiza-
tion on mechanism and selectivity. Relevant conformations
were then docked into EIZS to assess the importance of
enzyme–substrate interactions.
Results and discussion
Conformational concerns

First, the conformational landscape associated with step VI—
the step aer initial formation of the 6-membered ring that is
the hallmark of this branch of sesquiterpene structural space—
Chem. Sci., 2015, 6, 2347–2353 | 2347
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was examined. The previously reported global minimum of the
bisabolyl cation (1)3 was used as a starting point for confor-
mational searching. Using Spartan10,32 the Merck Molecular
Force Field (MMFF94)33 was employed for a systematic search in
which torsions about all rotatable bonds were sampled, yielding
86 conformers of 1. These conformers were then optimized in
the gas phase at the mPW1PW91/6-31+G(d,p)23a,34,35 level of
theory using the Gaussian09 soware suite,36 and the lowest
energy minimum was designated 1a. Manual inspection of
geometries and free energies led to the removal of duplicate
structures, leaving 67 unique conformations. Next, scans of
forming and breaking C–H bond distances were performed for
each minimum to obtain approximate geometries for the 1/ 2
1,2-hydride shi TSS. These structures were then fully opti-
mized with mPW1PW91/6-31+G(d,p). This procedure led to 67
unique TSSs covering a range of barriers of 5.6 to 12.9 kcal
mol�1 (full details in ESI†). These results reveal the magnitude
of the conformational problem faced by EIZS, a scenario not
unique to this terpene synthase.37

Each of the 67 TSSs was then docked into EIZS (PDB ID 3KB9)
using the Fast Rigid Exhaustive Docking (FRED) program in the
Openeye soware suite.38–41 The pyrophosphate group lost in
step IV was considered to be part of the enzyme active site and
was held xed in these docking simulations. Rankings and
docking scores (here, reecting primarily shape
Fig. 2 Docked structures (bottom) of 1 / 2 TSS conformations (top) wi
conformation (TS1e). Relative energies and docking scores are shown in
reaction (C6 and C10) are labeled in each TSS. In docked structures, the
red/orange and Mg ions are purple.

Table 1 Docking score (unitless) and free energy rankings of selected co
are also shown in kcal mol�1 relative to the computed global minimum o
compared to the 415 Å3 volume of the active site

Conformer Docking score Docking score ranking

TS1a �81.5 1
TS1b �79.7 2
TS1c �78.2 3
TS1d �77.3 4
TS1e �64.3 48

2348 | Chem. Sci., 2015, 6, 2347–2353
complementarity)38–40 for all TSSs can be found in the ESI,† but
results for the TSSs that lead to the relative stereochemistry in
epi-isozizaene if the reaction proceeds without signicant post-
step VI conformational changes (TS1b–TS1d, Fig. 2), along with
several other representative structures, are shown in Table 1.
TS1b–TS1d have some of the best docking scores (ranking 2nd–
4th), despite not having the lowest free energies of the 67 TSSs;
they rank 62nd, 32nd, and 65th, respectively. Note, however, that
their predicted free energies are within 6 kcal mol�1 of that of
the lowest energy TSS, TS1e. TS1e is not predicted to be among
the best suited for docking to the EIZS active site, suggesting
that the shape of the active site plays a role in selecting the TSSs
for 1,2-hydride shi that have conformations productive for
subsequent reactions in the epi-isozizaene-forming pathway.
Product selectivity

Each carbocation (1–6) in Fig. 1, if encountered as an interme-
diate with a signicant lifetime, represents a potential source of
byproducts for EIZS. epi-Isozizaene is the predominant natural
product produced by EIZS from Streptomyces coelicolor;9,24,27 at
20 �C, a product ratio of 93 : 5 : 1 : 1 is reported for 7 : 8 : 9 : 10
(Fig. 3; Table 2; this table also shows product distributions at
other temperatures). Although EIZS does not produce a sole
product, its selectivity is impressive given the number of
th the best docking scores (TS1a–d) and the lowest energy 1 / 2 TSS
Table 1. The carbons between which a bond will form in the 2 / 3

substrate is blue, protein sidechains are grey, the diphosphate group is

nformers for the 67 TSSs that afford the 1,2-hydride shift. Free energies
f the bisabolyl cation, 1a. The volumes listed in the final column can be

Free energy (rel. to 1a) Free energy ranking Volume (Å3)

7.1 10 334
9.0 62 315

10.9 32 373
11.3 65 327
5.6 1 278

This journal is © The Royal Society of Chemistry 2015
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Fig. 3 Natural products produced by EIZS.27

Table 2 First three rows: product distributions (%) for EIZS reported in
2010 9 and 2014.27 Remaining rows: product distributions (%) from
dynamics calculations. For EIZS, products correspond to species
shown in Fig. 1 and 3 or species derived from deprotonation of indi-
cated carbocations (1, 4, 11). For dynamics calculations (rows with bold
TSS labels in first column), products correspond to carbocations or
carbocation precursors to neutral species (7–10) and are listed as a
percent to allow a direct comparison to experiment; 50 trajectories
were generated for each transition state

Experiment 1 2 3 4 7 8 9 10 11 12 13

EIZS 2010 (30 �C) 1 2 79 9 5 2
EIZS 2014 (20 �C) 93 5 1 1
EIZS 2014 (4 �C) 99
TS1a 16 84
TS1b 20 80
TS1c 4 66 2 28
TS1d 6 24 20 38 10 2
TS1e 20 80
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potential exit channels from the epi-isozizaene-forming
pathway and the inherent conformational exibility of the
species encountered en route to epi-isozizaene.

Dynamical tendencies. To explore whether or not the
observed EIZS product distribution corresponded to the
inherent dynamical preferences (here not necessarily implying
non-transition state theory behavior) of the substrate, direct
dynamics simulations18–20,42–60 were performed, using Progdyn,48

on the ve TSS conformations shown in Fig. 2. TS1b, TS1c and
TS1d correspond to productive conformations of the TSS with
respect to subsequent events en route to epi-isozizaene. TS1a is
a non-productive conformation, despite having the best dock-
ing score. TS1e is inherently the lowest energy TSS but was not
predicted to dock well (vide supra). Classical trajectories were
allowed to propagate using the Verlet algorithm for 2500 fs at
298.15 K with 1 fs time steps. Starting points for dynamics
trajectories were generated from a Boltzmann sampling of
vibrations.58,59 Fiy trajectories were generated for each TSS and
the resulting product distributions aer 2500 fs are given in
Fig. 4 Carbocations produced during dynamics trajectories.

This journal is © The Royal Society of Chemistry 2015
Table 2. Only trajectories evolving in the epi-isozizaene (7)
direction were considered and only a small amount of recross-
ing was observed. Fig. 4 shows structures of resulting carboca-
tions not covered in Fig. 1.

The product distributions from our dynamics calculations
reveal: (1) TSS conformations TS1a, TS1b, and TS1e are not
predisposed to proceed along the reaction coordinate towards 7,
since trajectories for none passed the homobisabolyl cation (2)
or its non-productive cyclization product 11. The inability of
TS1a and TS1e to proceed toward product was expected on
conformational grounds, while the inability of TS1b to do so
was not so certain at the outset. The position of the “free” iso-
prenyl group in TS1b is apparently far enough away from the 6-
membered ring (Fig. 2; note relative position of C6 and C10)
that bringing these two groups close enough together for reac-
tion requires intervention. (2) TSS conformations TS1c and
TS1d, which differ from each other in the puckering of their
cyclohexenyl rings and which display a more productive orien-
tation of their isoprenyl groups than does TS1b (Fig. 2), pro-
ceeded readily to the acorenyl cation (3) region and some
trajectories made it to the cedryl cation (4) region (a greater
number for the more compact TS1e; molecular volumes in
Table 1). (3) Dynamics trajectories for no TSSs examined
reached the prezizyl (5) or zizyl (6) cation regions.

These results suggest that conformationally preorganized (in
this case, compact) TSSs can proceed directly along the pathway
to the cedryl cation (4) region without spending any signicant
amount of time near cations 2 or 3, consistent with the absence
of byproducts expected to be derived from these two cations in
the experimental product distributions. The fact that cations 4
and 11 are observed in our dynamics simulations is consistent
with the observation of sesquiterpenes derived from them in the
2010 report on EIZS.9 Minor products 9 and 10 would not show
up in our dynamics studies, since these would be formed from
deprotonation of species preceding the bisabolyl cation on the
epi-isozizaene-forming reaction coordinate. The observation of
cations 12 and 13 for TS1d is consistent with: (a) products of
their deprotonation be formed in very small amounts, (b) their
conversion, given more time and/or direct enzymatic interven-
tion, to experimentally detected products, or (c) prevention of
their formation by EIZS.

The remainder of our discussion is focused on TS1d, since
this TSS appears to best suited for epi-isozizaene formation,
being the TSS that produced the most trajectories that passed
the cation 3 region. For TS1d, approximately half of the trajec-
tories exited the cation 2 region within 500 fs (some proceeding
towards 3, others towards 11). Approximately 80% of the
trajectories that ultimately reached cation 4 exited the cation 2
region within this rst 500 fs, proceeding directly to the cation 4
region.

The free energy surface for conversion of bisabolyl cation 1 to
zizyl cation 6 via TS1d (Fig. 5, solid lines) is consistent with
dynamics trajectories not passing cedryl cation 4. The following
three factors are expected to correlate with whether or not a
barrier will “block” a direct trajectory:43,52 (1) the height of the
barrier, (2) the height of the downslope preceding the barrier,
and (3) whether or not the vibrations occurring along the
Chem. Sci., 2015, 6, 2347–2353 | 2349
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downslope are coupled to those needed to surpass the barrier.
Intrinsic reaction coordinate (IRC) calculations61,62 connect
TS1d (called TS1-3 in Fig. 5) to the acorenyl cation (3), with the
homobisabolyl geometry existing on the downslope rather than
as a discrete minimum. The subsequent barrier of only 2.2 kcal
mol�1, approached from a height of 12.8 kcal mol�1, does not
provide a signicant impediment to formation of 4. No trajec-
tories surpassed the next free energy barrier, however, which is
larger—6.2 kcal mol�1—and approached from a lesser height—
7.4 kcal mol�1. Although rm guidelines as to the magnitudes
of the downslope height and forward barrier necessary for
preventing passage are not yet available, previous work by
Carpenter and co-workers showed that a change in downslope
height/barrier size from 7.5/3.6 kcal mol�1 to 5.1/2.2 kcal mol�1

(the result of calculations with two different levels of theory on
the same reaction) increased the percentage of direct trajecto-
ries.43 With regard to factor 3, Carpenter and co-workers
showed, for ring-opening/1,5-hydride shi of [2.1.0]bicyclo-
pentene, that kinetic energy associated with traversing an initial
Fig. 5 ComputedmPW1PW91/6-31+G(d,p) free energy profile for forma
of intermediates (energies are relative to the global minimum of 1; note
productive docking poses (substrate is blue, protein sidechains are gre
involved in bondmaking/breaking are highlighted in transition state struct
to EIZS, estimated based on computed docking scores for productive p

2350 | Chem. Sci., 2015, 6, 2347–2353
barrier was only directly accessible to vibrations of the same
symmetry in subsequent steps.52 It is difficult to determine how
much dynamic matching of vibrational modes contributes to
the viability of the 4 to 5 reaction (a dyotropic or “double-shi”
reaction).3,21,63,64 While formation of both involves stretching/
compressing of the same bond (the C2–C11 bond that is made
in forming 4 breaks in forming 5), the imaginary frequency for
TS3-4 corresponds primarily to a twisting of the molecule
around the C6–C10 bond while that for TS4-5 corresponds
primarily to formation of the C3–C11 bond (Fig. 1).

Active site restrictions. To assess the effects of shape selection
in enzyme–substrate binding on the energetics of epi-isozizaene
formation, we performed automated docking for intermediates
and TSSs from Fig. 5 using FRED.38–40Docking scores for stationary
points involved in zizyl cation (6) formation via TS1d (TS1-3) are
shown in Table 3. Two poses were considered for each stationary
point: (1) the pose that yielded the best docking score and (2) the
best pose that was productive for subsequent reaction without
tion of 6 via TS1d (here, labeled TS1-3) without conformational changes
that for this series of conformations, 2 is not a minimum), along with
y, the diphosphate group is red/orange, Mg ions are purple, groups
ures). Dotted lines and arrows indicate the qualitative effects of binding
oses.

This journal is © The Royal Society of Chemistry 2015
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Table 3 Docking scores (unitless) for the stationary points described
in Fig. 5. Included are the best docking score for each stationary point
(column 2) and the docking scores of the poses shown in Fig. 5
(column 3)

Stationary
point

Pose with best
docking score

Productive
pose

Volume
(Å3)

1 �79.1 Same 377
TS1-3 �77.3 Same 327
3 �77.8 �65.9 315
TS3-4 �72.3 �68.2 313
4 �76.8 �75.9 279
TS4-5 �79.4 Same 273
5 �80.0 Same 270
TS5-6 �84.9 Same 295
6 �78.6 �74.9 303
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signicant “tumbling” in the active site. The latter was chosen on
the basis of similarity to the best pose of TS5-6 (Fig. 5).

Although FRED docking scores are not predicted binding
energies,38–40 if one assumes that they correlate qualitatively with
binding energies then effects on the energetics of epi-isozizaene
formation can be assessed. As shown in Fig. 5 (dotted lines; only
effects corresponding to differences in docking scores of >0.5 are
shown), the rst two TSSs following the bisabolyl cation, along
with the minima directly following them, are selectively destabi-
lized relative to the bisabolyl cation when considering the best
productive pose (also true for the best docked pose). Conversely,
the nal TSS, leading to the zizyl cation, is selectively stabilized.
The net effect of this modulation in relative energies is to promote
passage from 4 to 5 to 6. Both the 4/ 5 and 5/ 6 barriers would
be lowered by selective complexation, and the height of the
downslope leading to 4 would be increased, thereby reducing the
lifetime of 4 and perhaps allowing for the direct passage to 5 not
observed in our dynamics calculations in the absence of EIZS. The
docking approach used scores primarily on the basis of the
complementarity of cation and active site shape,38–40 consistent
with the idea that terpene synthase active sites resemble structures
occurring later along carbocation cyclization/rearrangement reac-
tion coordinates.65 Note also that the substrate volume decreases
monotonically from 1 to 5, but then increases for the nal two
stationary points (Table 3). Although one can identify specic C–H/
H–C, C–H/p and C–H/O contacts in docked structures (see
ESI†), quantication of their effects on the reaction pathway will
require more advanced methods (vide infra).

Conclusions

On the basis of our results, avoidance of the previously postu-
lated secondary carbocation between 4 and 5 can be ascribed to
the nature of the PES in the absence of the enzyme,3,24,66 and
avoidance of byproducts derived from putative intermediates
between 1 and 4 can be ascribed to inherent dynamical
tendencies.67 Enzyme-enforced conformational restriction (of
reactant and subsequent species) clearly also plays a role in
directing the reactant toward TSSs that are productive for epi-
isozizaene formation and appears also to play a role in
This journal is © The Royal Society of Chemistry 2015
promoting the conversion of 4 to 5 to 6. That leaves only ne-
tuning to be ascribed to specic intermolecular electrostatic
interactions (with OPP and/or active site aromatics) and/or
effects of enzyme dynamics (rather than inherent substrate
dynamics; tunneling may also play a role37); these issues will be
addressed in future quantummechanical molecular mechanics
(QM/MM)68–70 and theozyme18,71–73 studies on EIZS. Note how
little is le to explain; while EIZS clearly plays keys roles in
promoting pyrophosphate dissociation and preventing prema-
ture quenching of carbocations, we show here that its product
distribution can be rationalized in large part on the basis of
inherent carbocation reactivity and shape selection.74
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