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Graphene quantum dots (GQDs) are shown to serve as phase transfer agents to transfer various types of

nanoparticles (NPs) from non-polar to polar solvents. Thorough characterization of the NPs proves

complete native ligand exchange. Pellets of this GQD–NP composite show that the GQDs limit the

crystal size during spark plasma sintering, yielding enhanced thermoelectric performance compared with

NPs exchanged with inorganic ions. A photoluminescence study of the GQD–NP composite also

suggests energy transfer from GQDs to NPs.
Introduction

Inorganic nanoparticles (NPs) have many unique properties
that have attracted much attention since their introduction.1

However, the most versatile wet-chemistry synthetic methods
for producing NPs inevitably coat them with long chain organic
ligands, which insulate the NPs from each other and their
environment. Removal of such organic coatings thus becomes a
key challenge for incorporating NPs into devices as functional
parts. Many agents have been proposed to replace the native
ligands, including inorganic anions,2–4 chalcogenide
complexes,5,6 NOBF4,7 Meerwein’s salt,8 formic acid,9,10 thiolate
ligands,11–14 and polymers.15,16 These agents effectively strip the
NPs of their native ligands and bring them closer together,
improving electrical conductivity and energy transfer. However,
these native ligand exchangers, except for metal chalcogenide
complexes and polymers, are mostly small chemical species and
serve as stabilizing agents only.

Recent advances in nanocomposite materials allow for a
scalable methodology to generate multifunctional materials
with properties stemming from both their individual compo-
nents and, more interestingly, their synergistic interactions.17–22

When incorporating NPs in such nanocomposites, for the sake
of property versatility one would desire a ligand with
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capabilities beyond just colloidal stabilization, i.e. a ligand with
functionalities. Herein, we present the use of graphene
quantum dots (GQDs) as ligands to stabilize nanoparticles.

GQDs can be viewed as a derivative of the extensively studied
two-dimensional material graphene.23–27 They are a class of
nanometer-sized graphitic sheets with abundant edge func-
tional groups.28,29 Their size-related band gap and photo-
luminescence (PL) properties have permitted their application
in bio-labeling.29,30

Recent incorporation of GQDs into nanocomposite materials
also offers the opportunity to take advantage of their unique
charge carrier extraction capability for better solar cell effi-
ciency.31,32 In this communication, we demonstrate that GQDs
can be used directly as a native ligand exchanger and to also
Fig. 1 (a) Schematic drawing of how GQDs may be used as capping
ligands to replace native oleic acid ligands. (b) UV-vis and photo-
luminescence spectra of GQDs. (c) TEM image of GQDs; the inset
presents the histogram of the size distribution of GQDs.
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stabilize NPs in polar solvents (Fig. 1a).33 We further show that,
when the composite is made into a pellet by spark plasma
sintering (SPS), the fusing of NPs is lessened and signicantly
enhanced thermoelectric performance is achieved, most likely
due to the preservation of quantum connement and carrier
energy ltering.34,35 This novel type of GQD ligand is thus
advantageous over conventional molecular ligands when high
temperature ligand stability is needed.
Results and discussion

Inorganic NPs were made following well-developed wet-chem-
istry methods.36–39 For GQDs synthesis, graphene oxide (GO)
from natural graphite powder was rst prepared by a modied
Hummer's method,40 and a hydrothermal method was then
adopted to cut the GO into small pieces of GQDs41,42 (details in
the ESI†). The as-synthesized GQDs are highly luminescent with
a PL peak at 440 nm (Fig. 1b), while transmission electron
microscopy (TEM) imaging shows the GQDs have a uniform size
of around 2.5 nm (Fig. 1c), proving them to be of high quality.
The ligand exchange processes were carried out in a nitrogen-
lled glovebox. For a typical ligand exchange, 3 mL of NPs in
toluene solution was added to 3 mL of GQDs in formamide and
vigorously stirred for several hours. Aer complete phase
transfer, the toluene phase was discarded, and the formamide
phase was washed three times with fresh toluene. The resulting
GQD–NPs were precipitated by acetone and nally redispersed
in DMF or DMSO.

The insets in Fig. 2 and S1† present photographs of the NPs
transferring from the non-polar phase (top phase) into the polar
Fig. 2 TEM images of Pb-based NPs before (a and c) and after (b and
d) GQD ligand exchange. (a and b) PbTe, 30 nm; (c and d) PbSe, 10 nm.
The scale bars are 50 nm. Insets are photos of NPs dispersed in the
(top) non-polar phase, toluene, and (bottom) the polar phase, form-
amide, with GQDs.

4104 | Chem. Sci., 2015, 6, 4103–4108
phase (bottom phase) with aid of the GQDs. The transfer starts
upon contact of the GQD-containing polar phase with the NPs
in toluene. Pb-based NPs are readily transferred within hours,
while Cd-based NPs require a slightly longer time to accomplish
the transfer, demonstrating the universality of GQDs as a phase
transfer agent. This difference could be attributed to the
different affinities of the surface cations (Pb vs. Cd) with GQDs.
The TEM images before and aer phase transfer indicate that
the NPs’ shape and size are preserved (Fig. 2). A thermogravi-
metric analysis shows that, as for 18 nm PbTe NPs, weight loss
is 17% before GQD exchange and 8% aer GQD exchange
(Fig. S2†). By comparing the nal residue weight of GQD–PbTe
nanocomposites and that of pure GQDs, we estimate that the
weight percentage of GQDs in this composite is about 14%.

The Fourier transform infrared spectroscopy (FTIR) spec-
trum of the NP dispersion aer phase transfer shows a greatly
reduced peak for the C–H stretching mode at �2900 cm�1

(Fig. 3a and S3†), conrming the removal of alkyl chains on the
surface of the NPs. The peaks at 1670 cm�1 and 1590 cm�1 are
assigned to the stretching modes of C]O and C]C, respec-
tively, indicating the presence of GQDs aer ligand exchange.
Furthermore, 1H nuclear magnetic resonance (NMR) spectros-
copy clearly proves the exclusive removal of alkyl H atoms in the
range of 0.8–2.5 ppm and alkene H atoms at 5.3 ppm (Fig. 3b
and S4†); the chemical shis at 3.6 ppm and 3.7 ppm of the
GQD–NPs are assigned to the two types of H atoms on GQDs
(Fig. S4†). This spectroscopic evidence is consistent with the
proposed scheme (Fig. 1a) in which the native ligands of NPs are
totally exchanged by GQDs aer phase transfer.
Fig. 3 (a) FTIR spectra and (b) 1H NMR spectra of PbTe NPs before and
after ligand exchange; (c) UV-vis spectra of CdSe NPs before and after
ligand exchange. The first exciton peak of the NPs is preserved, while
the GQD absorption feature near 287 nm is additionally observed. This
indicates that the NP core structures are preserved during ligand
exchange. (d) Size distribution of PbS NPs before (red) and after (blue)
GQD ligand exchange; the inset shows the z-potential after GQD
ligand exchange.

This journal is © The Royal Society of Chemistry 2015
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X-ray diffraction (XRD) patterns for PbTe NPs before and
aer GQD ligand exchange are shown in Fig. S5a.† Evidently,
there is no observable change in the structural integrity for NPs
during the phase transfer process. UV-vis spectroscopy of CdSe
NPs before and aer GQD ligand exchange further reveals no
obvious shiing in the rst exciton peak (Fig. 3c), and HRTEM
imaging (Fig. S6†) also suggests no modication of the NP cores
occurs upon GQD-coating.

It would be interesting to learn how the GQDs assemble near
the surface of the NPs to form a stable dispersion in a polar
solvent. We therefore performed a dynamic light scattering
(DLS) study to reveal this behaviour in situ. Fig. 3d shows that
the GQD–PbS NP complexes are dispersed in DMSO with a
uniform hydrodynamic diameter slightly larger than that of the
original NPs with organic ligands. This could be explained by
the larger size of the solvation shells containing GQDs and polar
solvent molecules compared to those containing the native oleic
acid ligands. It should be noted that such shells collapse due to
loss of solvent in the TEM chamber, resulting in the closer inter-
NP distance shown in Fig. 2. All these complexes formed stable
colloidal solutions and were stored at ambient conditions for
more than 3months without noticeable changes. The negatively
charged surfaces (the negative z-potential in the insets of Fig. 3d
and S5b†) suggest that the GQDs are graed onto NP surfaces
with some of their carboxylic groups, while the remaining
carboxylic groups facing the polar solvent are deprotonated
thus stabilizing the solvated NPs via increasing their energy of
solvation. The proposed scenario is presented in Fig. 1a. It
should be noted that the small size of GQDs limits us from
obtaining more in situ details of their status in the GQD–NP
complexes, which still remains a major challenge for almost all
types of ligands on NP surfaces.

To further prove the binding of GQDs to NPs, we studied the
PL of GQD-capped CdSe NPs dispersed in solution (Fig. 4).43,44

CdSe NPs were selected because their emission is located in the
visible range and easily measured. The PL intensity of GQDs
aer binding with the NPs is decreased by �90% (Fig. 4a), and
the lifetimes for the twomajor decay branches are reduced from
s1 ¼ 1.34 ns and s2 ¼ 6.77 ns to s1 ¼ 0.98 ns and s2 ¼ 6.56 ns,
respectively (Fig. 4b), which suggests the occurrence of short
Fig. 4 (a) PL of GQDs alone (blue), CdSe NPs alone (red), and GQDs
capping CdSe NPs (black), showing dramatically quenched emission
for both CdSe NPs and GQDs in the composite. (b) Transient spec-
troscopy of GQD PL emission. For the two major decay branches, the
lifetimes of GQDs alone are s1 ¼ 1.34 ns and s2 ¼ 6.77 ns, while the
lifetimes of CdSe NPs with GQDs ligands are s1 ¼ 0.98 ns and s1 ¼
6.56 ns.

This journal is © The Royal Society of Chemistry 2015
distance energy transfer from GQDs to CdSe NP cores. Mean-
while, the emission from CdSe NPs is almost completely
quenched. We compared high resolution TEM images (Fig. S6†)
for CdSe NPs before and aer GQD ligand exchange and found
no obvious change in their crystallinity, which indicates that the
PL quenching of CdSe NPs is caused by poor surface trap
passivation instead of core structural change. We suppose that
passivation of CdSe NP surface traps with wide-band-gap shells
such as ZnS would preserve the PL characteristics of CdSe NPs
and allow us to better elucidate the energy transfer between
GQDs and CdSe NPs. Such a detailed study is underway in our
group to gain a deeper understanding of the energy ow in this
composite material. The spectroscopy results indicate that
GQDs are bound to the surface of the NPs and serve as ligands
instead of free oating in the solution. Such interaction and
energy transfer between GQD ligands and NP cores might also
permit engineering of versatile properties into this type of
composite, enabling progress toward functional materials.

Composites made from NPs are promising materials for
thermoelectric applications, because of their inherent low
thermal conductivity and enhanced Seebeck coefficients that
result from quantum connement and energy ltering effects.35

However, NPs generally suffer from alloying and fusing at
elevated temperatures, which weakens these effects and leads to
an irreversibly decreased Seebeck coefficient.45,46 By capping the
PbTe NPs with GQDs, we demonstrate that thermally stable
GQDs effectively lessen sintering of NPs in the composite. We
made pellets (Fig. S7†) of GQD-capped (GQDs from coal oxida-
tion, see ESI†) PbTe NPs by SPS for thermoelectric measure-
ments. For comparison, control pellets were also prepared
using PbTe NPs capped by the most common ligands, SCN
anions, which decompose into gaseous species at the SPS
temperature of 450 �C (ref. 3 and 47). Scanning electron
microscopy (SEM) images of the cross sections of these two
pellets reveal that much ner nanostructures exist in the pellets
of GQD-capped NPs than those in SCN-capped NPs (Fig. 5a and
b). The X-ray diffraction pattern also conrms that the PbTe
crystalline domain size is smaller in the former composite
(Fig. S8 and Table S1†). The presence of GQDs aer SPS was
conrmed by Raman spectroscopy (spectrum shown in
Fig. S7b†), indicating its thermal stability. The above observa-
tions suggest that GQD-capping around PbTe NPs lessens their
propensity to fuse together and maintains smaller crystalline
domains. Such an effect leads to benecial thermoelectric
properties with enhanced Seebeck coefficients resulting from
nanostructuring.

The thermoelectric measurements highlight the advantages
of using GQDs over SCNs as capping agents for both electrical
conductivity and Seebeck coefficient (Fig. 5c–f). The nal
calculated gure of merit (ZT) shows a peak value of 0.46 at
650 K for the GQD–PbTe NP complex, which is among the best
for solution processed pure PbTe thermoelectric materials.48–50

Numerically, the main reason for the good ZT is attributed to
the enhanced n-type Seebeck coefficient at 650 K. The switching
of conduction type from p to n for both pellets can be under-
stood as the excitation of electrons in the composite at elevated
temperature. Interestingly, the GQD-capped NP complex shows
Chem. Sci., 2015, 6, 4103–4108 | 4105
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Fig. 5 The cross-section SEM images of pellets of SCN–PbTe NPs, (a),
and GQD–PbTe NPs, (b) by SPS. The measured electrical conductivity,
(c), thermal conductivity, (d), Seebeck coefficient, (e), and calculated
ZT values, (f), are presented as functions of temperature.
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a much quicker conduction-type switch and has a higher See-
beck coefficient value when a plateau is reached (Fig. 5e). The
mechanisms to account for such enhanced Seebeck coefficient
may be complicated. Besides the aforementioned quantum
connement effect, both electron doping and the carrier
ltering effect of GQDs may also play a role, since a hetero-
junction is formed between the GQDs and the PbTe matrix.
More detailed studies, therefore, are needed to understand the
thermoelectric behaviour of the GQD–PbTe composite. Never-
theless, the GQD-capped NP complex shows a considerable ZT
value even without tuning of composition and doping of the
NPs,51 which suggests the composite is a good candidate
material for thermoelectric device fabrication. Given the
thermal stability of GQDs, it is also advantageous over molec-
ular capping ligands for controlling crystal size for optimized
thermoelectric properties.

The prepared GQD–NP composite may also be applied when
the collective properties of different components are desired.
We have demonstrated the effect of GQDs in lessening the
sintering of PbTe NPs for enhanced thermoelectric perfor-
mance. Another application is likely to be photovoltaic mate-
rials. There are reports of mixing GQDs with TiO2 NPs44,52 or
ZnO nanowires53 to improve solar cell performance by taking
advantage of energy transfer between the GQDs and other
nanomaterials. The tunable band structure of GQDs, together
with their good interfacing with NPs, allows one to ne tune
such energy transfer between GQDs and NPs in the hope of
yielding a composite with novel properties, again superior to
molecular ligands. Recent progress on large scale GQD
production26,54,55 will permit mass production of these GQD–NP
composites for industrial applications.
4106 | Chem. Sci., 2015, 6, 4103–4108
Conclusions

In conclusion, for the rst time, we reported the general capa-
bility of GQDs to serve as capping ligands exchanging native
organic stabilizers for various types of semiconductor NPs. The
FTIR, NMR, TEM and XRD characterization results proved that
the ligand exchange is complete and that the integrity of the
NPs is preserved. Thermoelectric measurement of GQD–PbTe
composites revealed that the GQDs play a crucial role in
limiting crystal size leading to an enhanced Seebeck coefficient,
and thus a considerable ZT value of 0.46, without tuning the
composition or doping level of the NPs. The PL lifetime of the
GQD–NPs indicated efficient energy transfer between the GQD
ligands and the NP cores. Given the many and yet tunable
properties of GQDs, we anticipate that versatile properties could
be engineered from this novel type of GQD–NP composite and
to benet various applications, including photovoltaic and
thermoelectric devices, and catalysis.
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