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photoactivatable probes for live-cell imaging†

Mai N. Tran,a Robert-André F. Rarigb and David M. Chenoweth*a

Fluorescent dyes have become increasingly important in cell biology since they enable high signal-to-noise

and selectivity in visualizing subcellular organelles. Photoactivatable dyes allow for tracking and monitoring

of a subset of cells or organelles. Here, we report the synthesis and application of a new class of large Stokes

shift fluorescent dyes that are water-soluble, cell permeable, non-cytotoxic, and lysosome-specific.

Additionally, we demonstrate temporally controlled sequential photoactivation of individual cells in close

spatial proximity.
Introduction

Fluorescence microscopy is a powerful tool that is universally
employed to study biological processes at the cellular level.1–3

Many uorescent dyes targeting a multitude of organelles and
subcellular targets have been developed.4,5 Photoactivatable
dyes are an important but rare class of probes allowing for
spatial and temporal control during imaging studies.6–11 Pho-
toactivatable dyes can be grouped into two broad categories, the
rst switching from a dark state to a uorescent state and the
second converting from one uorescent state to another uo-
rescent state.12–14 The later are oen referred to as photo-
convertible dyes. Each category has its own merit depending on
the experimental conditions. Photoconvertible dyes have the
added advantage of being able to track the pre-activated state,
although few examples of useful dyes in this category currently
exist.15,16 A combined Cy5-Cy3 probe was introduced by Johns-
son et al. in 2010 as a photoconvertible protein label.14 In 2013,
cell tracking experiments were performed using a commercial
membrane stain DiR.17 Herein, we report a new photo-
convertible lysosomal dye based on a diazaxanthilidene scaf-
fold. The uorescent probe is water-soluble, cell permeable, and
noncytotoxic with a large Stokes shis for both the pre- and
post-activated forms.

In previous studies, we determined that the molecular
structure of the natural product xylopypridine A was inconsis-
tent with that of diazaxanthilidene (E)-1.18 During these studies
we made several important observations about the photo-
physical and photochemical properties of (E)-1/(Z)-1.18 We also
discovered that methylation of the pyridine ring led to water-
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soluble derivatives, facilitating biological experiments. In this
report, we show that a simple switch in solvent produces two
different derivatives, both of which can be used as lysosomal
uorescent probes for live cell imaging experiments. Impor-
tantly, we show that the monomethylated derivative can be
photoactivated in cells, allowing for spatial and temporal
control during the imaging process. Additionally, these new
uorescent probes are cell permeable and non-cytotoxic with
good photostability and large Stokes shis, facilitating appli-
cations in biological imaging experiments.
Results and discussion

We developed an efficient 5 step synthesis of (E)-1/(Z)-1 result-
ing in a 41% overall yield.18 Treatment of (E)-1/(Z)-1 with an
excess of dimethyl sulfate in chloroform provided dimethylated
derivatives (E)-2/(Z)-2 in 64% yield, while one equivalent of
dimethyl sulfate in toluene gave rise to the monomethylated
derivatives (E)-3/(Z)-3 in 55% yield (Scheme 1). Both methylated
Scheme 1 Synthesis of (E)-2/(Z)-2 and (E)-3/(Z)-3.

This journal is © The Royal Society of Chemistry 2015
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forms are isolated as a mixture of dynamic equilibrating E and Z
isomers.

Similar to (E)-1/(Z)-1, the methylated products were uores-
cent with large bathochromic shis observed in both absorp-
tion (46 nm and 32 nm) and emission (83 nm and 101 nm)
spectra. Both (E)-2/(Z)-2 and (E)-3/(Z)-3 were soluble in water
and exhibited large Stokes shis of 94 nm and 126 nm,
respectively (Fig. 1).

Live cell imaging studies were performed using (E)-2/(Z)-2
and (E)-3/(Z)-3. Both compounds are water-soluble and can be
dosed in water or buffer without the addition of organic
solvents, which can be problematic for live cell imaging. Aer a
3 hour incubation in a humidied atmosphere with 5% CO2 at
37 �C, both dyes were found to be cell permeable and exhibited
punctate staining patterns in HeLa cells, consistent with lyso-
somes (Fig. 2). Unlike (E)-2/(Z)-2, (E)-3/(Z)-3 was found to be
photoconvertible, a property that allowed for sequential label-
ling of individual cells (Fig. 5 and 6).

To conrm lysosomal staining of (E)-3/(Z)-3, co-staining
experiments with LysoTracker Red DND-99 were performed and
the punctate localization patterns of (E)-3/(Z)-3 were consistent
with lysosome localization (Fig. 3A). Control experiments with
(E)-3/(Z)-3 alone and LysoTracker alone were also performed
(Fig. S3†). Images of each sample were kept at the same
brightness and contrast, with minimal bleed-through observed.
Compared to LysoTracker Red DND-99,19 (E)-3/(Z)-3 exhibited
similarly low cytotoxicity (Fig. 3C) and higher photostability.
Only a 20% decrease in intensity of (E)-3/(Z)-3 was observed
aer 30 seconds of continuous irradiation, as opposed to 40%
Fig. 1 (A) Absorption spectra of (E)-1/(Z)-1, (E)-2/(Z)-2, and (E)-3/(Z)-3
(lmax ¼ 378 nm, 424 nm, and 410 nm, respectively). (B) Emission
spectra of (E)-1/(Z)-1, (E)-2/(Z)-2, and (E)-3/(Z)-3 (lmax ¼ 435 nm, 518
nm, and 536 nm, respectively). Spectra of (E)-1/(Z)-1 were recorded in
chloroform, while spectra of (E)-2/(Z)-2, and (E)-3/(Z)-3 were recor-
ded in water.

Fig. 2 Differential interference contrast (DIC), fluorescence, and
overlay images of HeLa cells stained with (E)-2/(Z)-2 and (E)-3/(Z)-3
and Hoechst 33342. The cells were first incubated with (E)-2/(Z)-2 and
(E)-3/(Z)-3, which were observed using 405/700 channel. Hoechst
33342 was then added and imaged after 10 minutes using 405/430
channel. Scale bar ¼ 10 mm.

This journal is © The Royal Society of Chemistry 2015
in LysoTracker (Fig. 3B). Imaging and bleaching studies were
carried out using identical conditions, 405 nm excitation for
(E)-3/(Z)-3 and 594 nm excitation for LysoTracker.

To study the photoreaction, a solution of (E)-3/(Z)-3 in water
was irradiated with visible light (26 W uorescent light bulb) for
24 hours (Fig. 4A). Photoproduct 4 was isolated in 64% yield.
The photoproduct 4 showed a bathochromic shi of 89 nm and
Chem. Sci., 2015, 6, 4508–4512 | 4509
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Fig. 3 (A) DIC and fluorescence images of HeLa cells incubated with
(E)-3/(Z)-3 and LysoTracker. The 405/525 channel and 552/625
channel are used to observed (E)-3/(Z)-3 and Lysotracker, respectively.
Scale bar¼ 10 mm. (B) Normalized fluorescence intensity of (E)-3/(Z)-3
and LysoTracker over 30 seconds of irradiation (100 laser pulses of 300
ms). The 444/495 channel and 594/632 channel are used to for
(E)-3/(Z)-3 and LysoTracker, respectively. Each set of data were fitted
to a one phase exponential curve. The rate constant and half-life are
0.22 s�1 and 3.15 s for (E)-3/(Z)-3 and 0.07 s�1 and 9.75 s for Lyso-
Tracker (C) cell viability experiments of HeLa cells incubated with
(E)-3/(Z)-3 and LysoTracker over 24 and 48 hours at 37 �C in a
humidified atmosphere with 5% CO2.

Fig. 4 (A) Photoreaction of (E)-3/(Z)-3. (B) Absorption and emission
spectra (E)-3/(Z)-3 of and 4 (abs lmax ¼ 499 nm, em lmax ¼ 597 nm).

Fig. 5 (A) DIC and fluorescence images of HeLa cells stained with
(E)-3/(Z)-3 and observed at 405/525 and 488/675 over 80 alternating
2.5 second pulses in a total of 200 seconds. (B) Normalized fluores-
cence intensity of the two channels 405/525 and 488/675 over
400 seconds of irradiation. Each data set were fitted to a one phase
exponential curve. The rate constants and half-lives are 0.011 s�1 and
63.6 s for the 405/525 channel and 0.026 s�1 and 26.7 s for the
488/675 channel. The excitation and emission wavelength for imaging
are 488 nm and 675 (�25) nm, respectively. Scale bar ¼ 10 mm.
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a large Stokes shi (98 nm) (Fig. 4B). Photoactivation experi-
ments were performed in live HeLa cells incubated with (E)-3/
(Z)-3. The pre-activated (E)-3/(Z)-3 can be observed using a
405 nm excitation wavelength and a 525 (�25) nm emission
wavelength. The post-activated species can be excited at 488 nm
and observed at 675 (�25) nm emission. Alternating 2.5 second
4510 | Chem. Sci., 2015, 6, 4508–4512
pulses with 488 nm and 405 nm laser were used to investigate
the photoconversion of (E)-3/(Z)-3. The photoproduct signal
quickly increased, approaching its maximum at 180 seconds
followed by a slow decrease to 80% aer 400 seconds. The
emission signal of the pre-activated state is reduced slowly fol-
lowed by a plateau around 200 seconds at 60% of the original
brightness (Fig. 5). The sharp increase in uorescence signal of
the post-activated form but slow decrease in uorescence signal
of the pre-activated form is a result of the relative brightness of
the photoproduct compared to (E)-3/(Z)-3. Only 40% of (E)-3/(Z)-
3 was photoconverted but the increase in brightness of the
photoproduct still allows for good signal detection over back-
ground. The remaining 60% of (E)-3/(Z)-3 serves as a reference.
This allows the ability to image both pre- and post-activated
regions during imaging studies using two different uorescent
states as compared to traditional photoactivatable dyes with a
pre-activated dark state and a post-activated uorescent state.
This journal is © The Royal Society of Chemistry 2015
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Fig. 6 Sequential activation of five individual cells (cell 1, 2, 3, 4, and 5)
in a field of ten HeLa cells. Dashed lines showed the cell periphery
determined by DIC image. Each cell was activated by a 40 second
irradiation using a 405 nm laser. The excitation and emission wave-
length for imaging are 488 nm and 675 (�25) nm, respectively. Scale
bar ¼ 10 mm.
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Similar experiment using 444 nm laser instead of 405 nm laser
for (E)-3/(Z)-3 excitation also showed photoactivation (Fig. S5†).

To investigate spatial selectivity, sequential activation was
carried out with a dense population of HeLa cells. A 405 nm
laser was used for photoconversion and the 488/675 channel
was used to observe the post-activated state. Five individual
This journal is © The Royal Society of Chemistry 2015
cells (cell 1, 2, 3, 4, and 5) can be sequentially activated by 40
seconds of irradiation using a 405 nm laser (Fig. 6).
Conclusions

In conclusion, a new class of water-soluble dixanthilidene
uorescent probe has been synthesized and used for lysosomal
imaging in live cells. The monomethylated derivative can be
photoconverted to a new uorescent state, allowing precise
spatiotemporal control during imaging experiments. These new
uorescent probes are cell permeable and photostable dis-
playing large Stokes shis and low cytotoxicity. More studies are
under way in order to expand this new class of uorophores,
developing more organelle specic probes for live cell imaging
and exploring further biological applications.
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