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nzymatic synthesis of an N-glycan
isomer library†
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Na Wei,a Xuan Wang,a Yuxi Guo,a Zhongying Xiao,a Jing Song,a Go Sugiarto,c

Yanhong Li,c Hai Yu,c Xi Chenc and Peng George Wang*a

Quantification, characterization and biofunctional studies of N-glycans on proteins remain challenging

tasks due to the complexity, diversity and low abundance of these glycans. The availability of structurally

defined N-glycan (especially isomer) libraries is essential to help solve these tasks. We report herein an

efficient chemoenzymatic strategy, namely Core Synthesis/Enzymatic Extension (CSEE), for rapid

production of diverse N-glycans. Starting with 5 chemically prepared building blocks, 8 N-glycan core

structures containing one or two terminal N-acetyl-D-glucosamine (GlcNAc) residue(s) were chemically

synthesized via consistent use of oligosaccharyl thioethers as glycosylation donors in a convergent

fragment coupling strategy. Each of these core structures was then extended to 5 to 15 N-glycan

sequences by enzymatic reactions catalyzed by 4 robust glycosyltransferases. Success in synthesizing

N-glycans with Neu5Gc and core-fucosylation further expanded the ability of the enzymatic extension.

Meanwhile, high performance liquid chromatography with an amide column enabled rapid and efficient

purification (>98% purity) of N-glycans in milligram scales. A total of 73 N-glycans (63 isomers) were

successfully prepared and characterized by MS2 and NMR. In summary, the CSEE strategy provides a

practical approach for “mass production” of structurally defined N-glycans, which are important

standards and probes for glycoscience.
Introduction

Glycans are ubiquitous and play diverse roles in a wide range of
biological processes, such as protein folding and degradation,
glycoproteostasis, cell adhesion and trafficking, cell signaling,
fertilization and embryogenesis, as well as pathogen recogni-
tion and immune responses.1 Abnormal cell surface glycoforms
and/or glycan-proles are usually related to diseases such as
cancer and atherosclerosis. Accordingly, glycan/glycoprotein
biomarkers have been developed.2 Thus, elucidating the struc-
tures and functions of glycans is essential for understanding
carbohydrate related biological and pathological processes, and
for developing diagnostics and therapeutics for human
diseases.
iagnostics & Therapeutics, Georgia State

303, USA. E-mail: pwang11@gsu.edu

a, GA 30303, USA
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N-glycans found in nature possess an inherited complexity
and diversity. These are mainly due to the variable and multiple
connectivity of glycan building blocks (monosaccharides) and
the processes by which they are assembled in biosystems. In
mammalian glycomes, numerous glycan structures can be
formed including branched-, regio- and stereo-isomers from
only 10 common monosaccharide building blocks.3 Unlike
precise template directed transcription/translation of nucleic
acids/proteins, glycan structures are determined by the activi-
ties of glycosyltransferases (GTs), glycosidases, and other glycan
biosynthetic enzymes, as well as the availability of donor
substrates. For example, more than 30 GTs and glycosidases in
the Golgi complexes of human cells are involved in processing
N-glycans.4 The expression, activity, substrate specicity, and
localization of each enzyme each has the potential to inuence
the assembly of N-glycans. It is thus understandable that
N-glycans are extremely micro-heterogeneous even in one
particular N-glycosylation site. For example, 58 different
complex N-glycan structures were identied at one N-glycan site
in mouse zona pellucida glycoprotein 3.4 As a result, despite
decades of effort in developing novel approaches for glycan
analysis,5 absolute quantication and characterization of
complex mixtures of N-glycans remain challenging tasks. At
present, the main approach for characterizing N-glycan isomers
is ion-trap mass spectrometry (MS) analysis of permethylated
This journal is © The Royal Society of Chemistry 2015
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glycans, which requires large quantities of samples, and is
therefore not suitable for low abundance glycans and rare bio-
logical samples. The availability of libraries of structurally
dened N-glycans (especially isomers) provides essential stan-
dards and probes for MS-based N-glycan analysis and glycan
microarray studies of carbohydrate binding proteins.

Given the difficulties in separating structurally dened
glycans from natural resources, chemical or chemoenzymatic
approaches have been developed for the synthesis of mostly
symmetric N-glycans in the last two decades.6 Among chemi-
cally synthesized N-glycans, only a few contain terminal sialic
acid (Sia) due to difficulties in sialic acid chemistry,7 which were
only lately overcome by enzymatic glycosylation using sialyl-
transferases.8 Most recently, Boons developed a strategy for
chemoenzymatic synthesis of asymmetrical N-glycans, and 14
tri-antennary complex N-glycans were obtained.9 Nevertheless,
only a few N-glycan structures were prepared in each report,
mainly due to their complexity and diversity. A simple and
robust strategy for efficient production of large numbers of
N-glycan structures is still highly desirable.

Another roadblock to the rapid access of glycans in high
purity is the purication strategy, which now largely relies on
gel ltration chromatography (usually Sephadex G-25 or Bio-gel
P2).8,9 However, even though gel ltration has been applied for
decades in purifying glycans, it is time-consuming, less effi-
cient, and may waste a signicant portion of products in
preparing small quantities of precious N-glycans. Therefore, a
more reliable and rapid N-glycan purication approach is yet to
be developed.

LewisX [LeX, Galb1,4-(Fuca1,3-)GlcNAc] and sialyl LewisX

[SLeX, Siaa2,3-Galb1,4-(Fuca1,3-)GlcNAc] are among the most
biologically signicant glycan epitopes. For example LeX, also
known as CD15 antigen or SSEA-1 trisaccharide, plays a role in
the development of the central nervous systems of vertebrates,10

and interferes with pathogen transfer in breastfed infants.11

SLeX is a specic ligand on human leukocytes for E-, L-, and
P-selectins, and has been shown to mediate leukocyte recruit-
ment.12 SLeX (on both N- and O-glycans of glycoprotein zona
pellucida) has also been shown to mediate human sperm
binding during fertilization.13 In addition, LeX and SLeX are
usually overexpressed on the surface of cancer cells.14 Despite
its high signicance, N-glycans containing these epitopes were
not synthesized until recently.9 In this study, we describe an
efficient Core Synthesis/Enzymatic Extension (CSEE) strategy
and a HPLC based purication approach for rapid preparation
of N-glycans with/without (S)LeX epitopes. In this strategy, 8
N-glycan core structures with GlcNAc residue(s) at the non-
reducing terminal were rst synthesized by convergent
assembly of 5 building blocks. A set of robust GTs were then
used to elongate these cores to yield a library of 73 N-glycans
(Fig. 1 and 3). The development of a HPLC based approach
using an amide column enabled rapid purication of milli-
grams of the chemoenzymatically synthesized N-glycans to a
minimum 98% purity. In addition, MS2 analysis of selected
N-glycans yielded unique fragmentation patterns that may be
used for distinguishing certain isomers.
This journal is © The Royal Society of Chemistry 2015
Results
Convergent core synthesis

A good amount of work had been reported in chemically
synthesizing N-glycan structures. For example, Danishefsky7a,15

constructed a core pentasaccharide by glycosylating a trisac-
charide with a monosaccharide thioether donor; Unverzagt16

synthesized multi-antennary complex type N-glycans with ace-
tated Schmidt's trichloroacetimidate donor; Wong8a used oli-
gosaccharyl uorides as donors to produce bi-, tri- and tetra-
antennary complex type N-glycans; Boons9 developed a strategy
by sequential removal of the protecting groups, and then by
chemical glycosylation using a diverse set of tri-
uoroacetimidate donors. In these cases, to prepare various
glycosyl donors, a temporary anomeric protecting group was
used prior to transformation into trichloroacetimidates, uo-
rides or triuoroacetimidates, depending on the choice of
glycosylation reaction. In this study, we developed an efficient
convergent strategy that utilized oligosaccharyl thioether as a
versatile donor for glycosylation, facilitating antennae assembly
in just one or two glycosylation step(s) with excellent yield and
good stereoselectivity.

We envisaged that trisaccharide 1 (Fig. 2) containing a
crucial b-mannoside would be a versatile precursor for the
synthesis of the core structures, as the C4,C6-hydroxyl groups
(OH) of the b-Man are protected with benzylidene and the
C3-OH is unprotected to allow further chemical glycosylation.
Installation of b-mannoside, the most challenging task in
N-glycan synthesis, was accomplished using Crich–Kahne
conditions with satisfactory yield and b-selectivity.17 The ben-
zylidene acetal ring can be selectively opened at either C6-OH9

or C4-OH18 of the b-mannoside for further chemical assembly.
In order to prepare the target N-glycans, 8 GlcNAc terminated
core structures (Fig. 2) were designed. Among these, N110 and
N210 were partially protected by peracetylation of the GlcNAc
residue on either the a1,6Man or a1,3Man branch for the
synthesis of asymmetric bi-antennary N-glycans. Aer enzy-
matic extension of the unprotected branch, the acetyl groups
can be removed easily for further elongation.

The versatile precursor trisaccharide 1 (ref. 7b) and donor
fragments 2,19 3,20 4 and 5 (ref. 21) were prepared as previously
reported (ESI†). Using these building blocks, the syntheses of
the 8 core structures were performed in a convergent strategy
(Scheme 1). For example, to synthesize core structure N010,
thioether donor 4 was rst stereoselectively installed onto
C3-hydroxyl of trisaccharide 1 in the presence of N-iodosucci-
nimide (NIS)/AgOTf with a yield of 93%. Pentasaccharide 7 was
then obtained in an excellent yield (96%) by selective opening of
the benzylidene ring at C6 using Et3SiH/PhBCl2. The octa-
saccharide 8 was assembled by stereoselective installation of 5
onto C6-hydroxyl of b-Man of acceptor 7with a yield of 85%. The
two phthalimides of 8 were then converted into acetamides,
followed by the global deprotection of Bn by catalytic hydro-
genolysis with Pd(OH)2/H2 in MeOH/H2O (10 : 1). The core
structure N010 was produced in a total yield of 63% over the
three steps.
Chem. Sci., 2015, 6, 5652–5661 | 5653
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Fig. 1 N-glycans synthesized by the Core Synthesis/Enzymatic Extension (CSEE) strategy. N-glycan core structures (boxed) were chemically
synthesized. Glycans N0xx were enzymatically synthesized from corresponding cores N0x0, whereas N1xx and N2xx were enzymatically
synthesized from N110 or N210.

Fig. 2 The versatile trisaccharide precursor 1 and four donor frag-
ments (2, 3, 4, 5) for the assembly of the 8 core structures.

5654 | Chem. Sci., 2015, 6, 5652–5661
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Similarly, cores N000, N020, N030, N050, N110, and N210
were synthesized by rst installing 2, 3 or 4 onto C3-hydroxyl of
b-man of 1, followed by installation of the corresponding
building blocks onto the a1,6Man branch. For the synthesis of
N040, simple 3-O-benzylation and controlled reductive
cleavage of the benzylidene acetal of 1 was performed to afford
acceptor 15, which was then glycosylated with 4 to yield pen-
tasaccharide 16 in 91% yield and with satisfactory stereo-
selectivity (a/b ¼ 3.5 : 1). Compound 16 was further
deprotected to yield N040 as previously described. The struc-
tures and stereochemistry of all glycosidic linkages was
conrmed by NMR (ESI†).
This journal is © The Royal Society of Chemistry 2015
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Scheme 1 Convergent synthesis of N-glycan core structures. Reagents and conditions: (a) NIS, AgOTf, Et2O, 0 �C, 6: 93%; 8: 85%; 9: 83%; 13:
90% (a/b ¼ 5 : 1); 16: 91% (a/b¼ 3.5 : 1); 17: 94%; 19: 86% (a/b¼ 4 : 1); (b) PhBCl2, Et3SiH, DCM, �78 �C, 7: 96%; 12: 92%; 15: 95%; 18: 93%; (c) (1)
ethylenediamine, n-butanol, 90 �C; (2) Ac2O, pyridine, rt; (3) Pd(OH)2, H2, MeOH/H2O (10 : 1), over three steps, N010: 63%; N020: 67%; N040:
61%; N110: 69%; N210: 65%; (d) NIS, AgOTf, DCM, 0 �C, 10: 91%; 11: 95%; (e): (1) ethylenediamine, n-butanol, 90 �C; (2) Ac2O, pyridine, rt; (3)
NaOMe, MeOH; (4) Pd(OH)2, H2, MeOH/H2O (10 : 1), over four steps, N030, 53%; N050: 55%; (f) BnBr, NaH, DMF, 90%; (g) 30% NH4OH : H2O
(1 : 10), quant.
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Enzymatic extension of N-glycans

We intended to develop an enzymatic extension strategy that
could efficiently generate 6 glycans (including LeX and SLeX)
starting with any terminal GlcNAc residue. To this end, several
robust GTs were chosen for the proof-of-concept experiment:
b1,4-galactosyltransferase from bovine milk (B4GALT1); a2,3-
sialyltransferase 1 mutant E271F/R313Y from Pasteurella mul-
tocida (PmST1m) with reduced a2,3-sialidase activity;22 a2,6-
sialyltransferase from Photobacterium damselae (Pd2,6ST);23 and
C-terminal 66 amino acids truncated a1,3-fucosyltransferase
This journal is © The Royal Society of Chemistry 2015
from Helicobacter pylori (Hpa1,3FT).24 Except for the commer-
cially available B4GALT1, all GTs were from bacteria and had
high expression levels in Escherichia coli, high activity, and
relatively relaxed substrate specicities. Using GlcNAc-OBn as a
starting material, we validated the activities of these GTs
(Scheme 2). As previously reported, the enzymes could effi-
ciently catalyze the formation of LacNAc (Galb1,4-GlcNAc)-,
SLacNAc (Siaa2,3-Galb1,4-GlcNAc)-, S6LacNAc (Siaa2,3-Galb1,4-
GlcNAc)-, LeX- and SLeX-OBn. For reactions catalyzed by
B4GALT1, Pd2,6ST and Hpa1,3FT, no product hydrolysis was
Chem. Sci., 2015, 6, 5652–5661 | 5655
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observed (analyzed byMS) even with excess enzyme and up to 24
h of incubation. However, product hydrolysis was observed for
PmST1m with an excess of enzyme and an extended reaction
time (>1 h); even the a2,3-sialidase activity has been reduced for
6333-fold by mutation of two amino acid residues.22 Therefore,
controlling the amount of PmST1m and the reaction time is still
important for the synthesis of a2,3-sialosides. The attempt to
synthesize unnatural tetrasaccharide S6LeX [Siaa2,6-Galb1,4-
(Fuca1,3-)GlcNAc] failed utilizing either Hpa1,3FT or Pd2,6ST,
with the formation of only a MS detectable product aer 24 h of
Pd2,6ST incubation (Fig. S3†). In addition, PmST1m can hardly
catalyze the sialylation of LeX to form SLeX. Such information is
important for designing sequential enzymatic N-glycan
synthesis schemes.

Utilizing the enzymatic extension strategy, N011–N015 were
prepared starting with the chemically prepared core N010
(Fig. 3A). Firstly, in a 1.5 mL reaction system, 9 mg of N010
(4 mM) was incubated with UDP-Gal (8 mM), MnCl2 (5 mM),
and B4GALT1 (20 mU per mmole acceptor). One microliter of the
reaction mixture was aliquoted every hour for analysis. MS
analysis showed a peak at m/z ¼ 719.7645, corresponding to
N011 [M + 2H]2+. Meanwhile, on the HPLC-ELSD (Evaporative
Light Scattering Detector) prole, a new peak (TR ¼ 16.79 min)
was observed, of which the area underneath grew while that of
the peak corresponding to N010 (TR ¼ 14.86 min) became
smaller. Aer 6 h of incubation, the reaction was freeze-
quenched at �80 �C for 30 min, and condensed into 300 ml for
HPLC purication using a water/acetonitrile gradient elution,
yielding 9.4 mg of N011 (94% yield). The puried N011 (99%
pure) was then utilized for the syntheses of N012, N013, and
N014 (Fig. 3A) catalyzed by PmST1m, Pd2,6ST, and Hpa1,3FT,
respectively (see ESI† for details). It is worth noting that the
Scheme 2 Proof-of-concept experiment for the proposed enzymatic
extension strategy. Reagents and conditions: (a) UDP-Gal, Mn2+ and
b1,4-galactosyltransferase from bovine milk (B4GALT1); (b) CMP-Sia
and double mutant E271F/R313Y of a2,3-sialyltransferase 1 from Pas-
teurella multocida (PmST1m); (c) CMP-Sia and a2,6-sialyltransferase
from Photobacterium damselae (Pd2,6ST); (d) GDP-Fuc, Mn2+ and
C-terminal 66 amino acids truncated a1,3-fucosyltransferase from
Helicobacter pylori (Hpa1,3FT).

5656 | Chem. Sci., 2015, 6, 5652–5661
reaction for the synthesis of N012 was only allowed to proceed
for 30 min due to the sialidase activity of PmST1m. N015 was
then synthesized from N012 using Hpa1,3FT. The reaction took
20 h to achieve complete conversion (Fig. S4†). Similarly,
starting with other chemically synthesized cores (N000, N020,
N030, N040 and N050), N-glycans N001–N005, N021–N025,
N031–N035, N041–N045 and N051–N055 were prepared in a
manner analogous to that described above. All prepared
N-glycans were analyzed by HPLC-ELSD, ESI/MALDI-MS, and
NMR to conrm their purity and structure (ESI†).

The syntheses of asymmetric bi-antennary N-glycans N1xx
and N2xx (Fig. 1) were carried out by enzymatic extension of the
unprotected antenna rst and then the other. The synthesis of
N1xx is illustrated in Fig. 3B. Firstly, Gal was added by B4GALT1
to the GlcNAc residue in the a1,3Man branch of N110 to form
N110a, galactosylation on the a1,6Man branch was avoided by
peracetylation of the corresponding GlcNAc residue. It should
be noted that partial de-acetylation was observed when the
reaction was incubated for over 12 h. Aer HPLC purication,
N110a was de-acetylated using 30% of ammonium
hydroxide : H2O (1 : 10) to afford N111, which was then used as
a substrate for synthesizing the other N1xx glycans in a strictly
controlled sequential manner. For example, to obtain N155, the
a1,3Man branch was rst extended by PmST1m (Step 1) and
Hpa1,3FT (Step 2) to yield N115, the a1,6Man branch was then
extended by B4GALT1 (Step 3) and Hpa1,3FT (Step 4) (Fig. 3B).
Such synthetic routes were designed according to the substrate
specicities of GTs to avoid undesirable glycosylation. Particu-
larly, N144 was not designed to be synthesized from N124 to
avoid potential sialylation on the a1,3Man branch by Pd2,6ST.
Instead, N-glycan N244 was synthesized from N123 catalyzed by
Hpa1,3FT (Fig. 3B). Similarly, N-glycans N2xx and N144 were
synthesized from N210 (Fig. S5†).

N-Glycolylneuraminic acid (Neu5Gc), oen found in
mammalian glycans, is another common sialic acid molecule
besides N-acetylneuraminic acid (Neu5Ac).25 Even though
human cells cannot produce Neu5Gc because of the inactiva-
tion of the gene encoding CMP-Neu5Ac hydroxylase,26 it is
frequently detected in glycans of cancer cells, probably due to
metabolic incorporation from Neu5Gc-containing structures in
the diet.25 Previously, the two sialyltransferases (PmST1,
Pd2,6ST) used in the enzymatic extension were shown to be
extremely promiscuous towards sugar donors, and were applied
in an efficient synthesis of a number of sialosides and their
derivatives.23,27 To further expand the current library, N-glycans
with the Neu5Gc residue (N012G and N013G) were synthesized
via a one-pot two-enzyme system (Fig. 3C). In detail, for the
synthesis of N012G, 3 mM of N011 was incubated with 5 mM of
Neu5Gc and cytidine 50-triphosphate (CTP), 5 mg mL�1 of
PmST1m, and excessive amounts of CMP-Sia synthetase
(NmCSS). Aer 30 min of incubation at 37 �C (94% conversion
as detected by HPLC), the reaction mixture was concentrated
and subjected to HPLC purication. The synthesis of N013G
was achieved by simply replacing PmST1m with Pd2,6ST.
Surprisingly, it was found that the incorporation of a Neu5Gc
residue resulted in a longer retention time shi (>1 min) on the
amide column compared to the Neu5Ac-counterpart (N012,
This journal is © The Royal Society of Chemistry 2015
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Fig. 3 Enzymatic extension of N-glycans. (a) B4GALT1, UDP-Gal, Mn2+; (b) PmST1m, CMP-Neu5Ac; (c) Pd2,6ST, CMP-Neu5Ac; (d) Hpa1,3FT,
GDP-Fuc, Mn2+; (e) 30% ammonium hydroxide : H2O (1 : 10), 6 h. PmST1m, Pasteurella multocida a2,3-sialyltransferase 1 mutant E271F/R313Y;
Pd2,6ST, Photobacterium damselae a2,6-sialyltransferase; NmCSS, Neisseria meningitidis CMP-sialic acid synthetase; Hpa1,3FT, c-terminal
66 amino acids truncated Helicobacter pylori a1,3-fucosyltransferase; FUT8, human a1,6-fucosyltransferase. Each N-glycan was purified to
minimum98% purity by HPLCwith a semi-preparative amide column (10� 250mm). HPLC analyses of purified N-glycans were performed using
an analytical amide column (4.6� 250mm) under a gradient condition (solution A: 100mM ammonium formate, pH 3.4; solution B: acetonitrile;
flow rate: 1 mL min�1; B%: 65–50% within 25 min) monitored by ELSD. The adjacent two peaks in the HPLC profiles correspond to a and b

anomers of N-glycans. MS data for purified N-glycans were obtained by ESI-MS.
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TR ¼ 17.93 min; N012G, TR ¼ 19.13 min; N013, TR ¼ 19.09 min;
N013G, TR ¼ 20.16 min) (ESI†). Fucosylation of N012G (to
generate N015G) was shown to be as efficient as that of N012,
indicating that Hpa1,3FT can tolerate substrates with Neu5Gc.
Theoretically, another set of 57 N-glycans can be easily synthe-
sized by simply replacing Neu5Ac of the glycans in Fig. 1 with
Neu5Gc.

Core-fucosylated N-glycans were widely found in mamma-
lian glycoproteins and are particularly abundant in brain
tissues.28 The alteration of core-fucosylation was proven to be
associated with human cancers, chronic hepatitis, etc.29 Thus,
the ability to prepare homogenous core-fucosylated N-glycans
was believed to be important. The N-glycans prepared above are
perfect substrates for specicity studies of a1,6-fucosyl-
transferase (FUT8), the sole enzyme responsible for the core-
fucosyaltion of N-glycans, and for preparing a core-fucosylated
N-glycan library. Specically, 4 N-glycans with an identical
a1,3Man branch but a different a1,6Man branch were selected
This journal is © The Royal Society of Chemistry 2015
for FUT8-catalyzed core-fucosylation (Fig. 3D). The results
showed that FUT8 was highly active in using all 4 N-glycans as
acceptors. Corresponding core-fucosylated N-glycans (N6030,
N6000, N6211, N6212) (0.5–1 mg each) were synthesized
accordingly. Further substrate specicity studies showed that
FUT8 may have stricter requirement for structures on the
a1,3Man branch than that of the a1,6Man branch (detailed
study is ongoing).
A HPLC based approach for rapid access to pure N-glycans

Gel ltration (Bio-gel P2, 1 � 110 cm) was rst applied in the
purication of synthesized N-glycans. Taking the separation of
N001 (synthesized from N000 by a B4GALT1 catalyzed reaction)
as an example, MS of the P2 puried product showed a major
peak atm/z¼ 821.2992 corresponding to N001 [M + 2H]2+, and a
minor peak at m/z ¼ 740.2735 corresponding to N001 minus a
Gal residue [M + 2H]2+, which possibly comes from incomplete
Chem. Sci., 2015, 6, 5652–5661 | 5657
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galactosylation of N000. This result again indicated that gel
ltration is inefficient for purifying N-glycans to high purity,
especially when incomplete glycosylation has occurred. As a
consequence, previously reported N-glycan syntheses have
usually employed excessive enzymes and long incubation times
to push GT-catalyzed reactions towards completion.9

Hydrophilic interaction liquid chromatography (HILIC)
provides a rapid and effective strategy for separating small polar
compounds, and has been used extensively in glycan analysis.30

In these cases, N-glycans from biological samples have usually
been uorescently labeled via reductive amination and then
detected on a picomole scale by UPLC-HILIC. However, HILIC
has not been applied to milligram scale N-glycan purication.
Using an analytical HILIC column (XBridge BEH amide column,
5 mm, 4.6 mm � 250 mm, waters) under a gradient running
condition (solvent A: 100 mM ammonium formate, pH 3.4;
solvent B: acetonitrile; ow rate: 1 mL min�1; B%: 70–50%
within 50 min), the abovementioned Bio-gel P2-puried prod-
ucts were analyzed. Four peaks were observed in the HPLC
prole using an evaporative light scattering detector (Fig. S1†).
Peaks 1 (TR ¼ 21.68 min) and 2 (TR ¼ 22.16 min) were next to
each other and partially overlapped. The same observation was
found for peaks 3 (TR ¼ 24.51 min) and 4 (TR ¼ 25.04 min).
These peaks were collected in a parallel run monitored at A210
nm and subjected to MS analysis. The same m/z values were
observed for peaks 3 (821.2997) and 4 (821.2991) (Fig. S1†),
implying that both peaks represented N-glycan N001 [M + 2H]2+,
possibly for a and b anomers, which is common for free glycans
due to the process of mutarotation in water. This was conrmed
by 1H NMR analysis that showed chemical shis of both a and b

anomer protons (ESI†). Similarly, peaks 1 and 2 represented a

and b anomers of N001 minus a Gal residue [M + 2H]2+.
These results encouraged us to purify N001 using a semi-

reparative HILIC column (10 � 250 mm). Under a similar
gradient running condition (solvent A: 100 mM ammonium
formate; solvent B: acetonitrile; ow rate: 4 mL min�1; B%: 70–
50% within 50 min; monitored at A210 nm), 10.5 mg of N001 was
separated by 3 injections (Fig. S2†) with a purity of higher than
98% as analyzed by HPLC-ELSD (ESI†). Different solvent
combinations were later tested for N-glycan purication
(Fig. S6†). The results showed that 100 mM ammonium
formate/acetonitrile gradient elution gave the best separation of
all N-glycans tested. In addition, N-glycans without Sia residues
were separated to a similar level using water/acetonitrile
gradient elution, whereas sialylated N-glycans were eluted
rapidly (TR < 3 min). Furthermore, it was found that a shorter
running time with a narrower B% gradient (65–50% in 25 min)
was able to achieve a similarly good separation level. Such
running conditions were applied to separate enzymatically
synthesized N-glycan to 98% purity (ESI†).

Under a standard running condition (solvent A: 100 mM
ammonium formate; solvent B: acetonitrile; ow rate: 1 mL
min�1; B%: 65–50% within 25 min), all puried N-glycans were
analyzed by HPLC-ELSD (ESI†). It was found that when different
sugar residues were added to N-glycans, the retention time
shis of peaks on HPLC chromatograms generally decreased in
the following order: Neu5Gca2,3 with Fuca1,3 > Neu5Gca2,6 >
5658 | Chem. Sci., 2015, 6, 5652–5661
Neu5Aca2,3 with Fuca1,3 > Neu5Gca2,3 > Neu5Aca2,6 > Galb1,4
> Fuca1,3 > Neu5Aca2,3 > Fuca1,6. For example, the retention
times of N015G, N013G, N015, N012G, N013, N014, N012 are
20.66, 20.16, 19.39, 19.13, 19.09, 18.59, and 17.93 min respec-
tively. Such regularity may be found useful in HILIC-based
proling and identication of N-glycans.
MS2 analysis of selected N-glycan isomers

The structurally well-dened N-glycans were subjected to MS2

analysis, forming a specic spectral library (see ESI† data set).
The library may be used to readily differentiate N-glycan
isomers in biological samples. For example, glycan structural
isomers of a2,3 and a2,6Neu5Ac terminated N-glycans can be
distinguished by their MS2 spectra. N235 and N245 are a pair of
isomers with only a difference on the sialyl linkage of the
terminal Neu5Ac residue on the a1,3Man branch. In the MS2

spectrum of N235, a base peak at m/z ¼ 1713.59 is gained from
losing Neu5Ac, Gal, and GlcNAc (break between GlcNAc and
Man residues of a1,3Man branch), whereas the same ion in the
MS2 spectrum of N245 is signicantly weaker (Fig. 4). It is thus
presumed that the glycosidic bond between GlcNAc and Man in
N235 is easier to break than that inN245. The same phenomena
were also observed in other Neu5Aca2,3, Neu5Aca2,6 isomer
pairs, such as N042 and N043, N212 and N213, N222 and N223.
Therefore, the signal intensity of fragmentation ions can be
reliable evidence in distinguishing linkage patterns between
Gal and Neu5Ac residues. Interestingly, this phenomenon was
only observed for the structures on the a1,3Man branch, for
example, while changing the linkage on the a1,3Man branch
(isomers N002 and N133, or N003 and N233) resulted in similar
changes in the spectra as described above, no signicant
changes were observed between N002 and N233 or N003 and
N133, which differ only on the a1,6Man branch (Fig. S8†). This
phenomenon is interesting and yet hard to comprehend.
Several other unique MS2 fragmentation patterns were also
found and may be used in distinguishing isomers in the future.
Discussion

Given the diversity and micro-heterogeneous nature of complex
glycans, as well as the signicant roles they play in biological
processes, libraries of structurally well-dened glycans are in
urgent demand for studies in glycobiology and glycomedicine.
Decades of effort has been devoted to developing chemical
methodologies and enzymatic approaches to synthesize
N-glycans, however, none were able to (cost-)efficiently generate
large numbers of N-glycans. This is mainly due to the facts that:
(1) the chemical methodologies developed so far are not cost-
effective nor rapid enough to prepare numerous complex
N-glycans. Generally, each methodology has been developed
specically for certain N-glycan structures, and is thus not
suitable for efficient synthesis of other complex N-glycans. (2)
The GTs applied in the enzymatic or chemoenzymatic synthesis
approaches were mostly from eukaryotes,8a,9,31 which are typi-
cally hard to access and exhibit narrow substrate specicity
towards glycan acceptors. Most recently, several N- and
This journal is © The Royal Society of Chemistry 2015
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Fig. 4 MS2 analysis of N-glycan isomers N235 and N245.
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N-glycans with multisialylated poly-N-acetyllactosamine exten-
sions were successfully synthesized using a single bacterial
a2,6-sialyltransferase (Pd2,6ST).8b This revealed the power of
bacterial GTs in diversifying glycans. (3) A highly efficient and
rapid N-glycan purication approach is lacking. So far the only
reported approach is gel-ltration, which takes many hours to
separate each target, and is not able to separate complex glycans
with only one monosaccharide difference.

This work found answers to the above three obstacles.
Firstly, a highly efficient strategy was developed based on the
consistent use of oligosaccharyl thioether for the convergent
installation of branched GlcNAc-terminated antennae to ach-
ieve high stereoselectivity with excellent yields. This approach
minimized synthetic steps and maximized yield, and proceeded
very efficiently with fewer glycosyl donor (1.3 equivalents) and
mild conditions (at 0 �C). Notably, when the (Ac3)GlcNAcb1,2-
Man disaccharide thioether 3 and Bn-GlcNAcb1,2-Man disac-
charide thioether 4 were used as donors, installations on 3-OH
of trisaccharide 1 were achieved with excellent yield and high
stereoselectivity. We were also able to install the Man3 thioether
donor 5 on the 6-OH of the b-Man in good yield and with high
stereoselectivity, as seen before in our previous report.18,32 Using
this strategy, 8 N-glycan core structures with 5–8 mono-
saccharide residues were convergently synthesized. We expect
this strategy would allow us to prepare more N-glycans with
various glycoforms for enzymatic extension.

Secondly, a general enzymatic extension strategy is devel-
oped that can extend any GlcNAc terminated glycans to 5 more
glycans (including LeX and SLeX) using B4GALT1 and three
robust bacterial GTs. Such a strategy enabled the generation of
5–15 more N-glycans from each chemically synthesized core
structure. During the synthesis of these N-glycans, each of the
This journal is © The Royal Society of Chemistry 2015
GTs was tested towards 10 to 21 N-glycan acceptors. For
example, PmST1m showed comparably high activities towards
N001, N011, N021, N031, N041, N051, N111, N123, N124, N125,
N211, N223, N224 and N225 (which share a common
Galb1,4-GlcNAc motif), and efficiently catalyzed the formation
of the corresponding a2,3sialylted N-glycans. In addition, the
successful synthesis of Neu5Gc terminated N-glycan N012G
indicated that PmST1m is also promiscuous towards sugar
donors. Furthermore, a substrate specicity study revealed that
Hpa1,3FT can well accept various N-glycans terminated with
LacNAc or Siaa2,3LacNAc (ESI, Table S1†). Similarly relaxed
substrate specicities were also found for B4GALT1 and
Pd2,6ST towards various N-glycan acceptors. These results
clearly indicate that: (a) the 4 robust GTs only recognize the
adjacent one or two monosaccharide residues in the glycosyla-
tion reactions, and thus have a great potential to extend various
N-glycans; (b) the promiscuity of the bacterial GTs towards the
sugar donors is not affected by acceptors, no matter if simple
oligosaccharides23,27,33 or complex N-glycans were used, and
thus have a great potential to synthesize N-glycan derivatives.

Thirdly, instead of generally used gel-ltration, each
N-glycan was puried to >98% by HPLC utilizing a HILIC
column on milligram scales (up to 4 mg per run). This HPLC-
based approach could well separate complex N-glycans with
only one monosaccharide difference, and takes only 30 min per
injection.

Among the synthesized structures, only a few (e.g. N011,
N001, N002, N003, N6000) were previously synthesized via
chemical7b,15c,34 or chemoenzymatic approaches.8b,31,35 This
library covers a number of low molecular weight N-glycans
which have or have not been identied,36 including most
common hybrid and bi-antennary complex types. More
Chem. Sci., 2015, 6, 5652–5661 | 5659
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importantly, this work represents the rst report preparing high
pure N-glycan isomers. This N-glycan library contains 21 groups
of isomers (Fig. S7†) (2 to 6 distinct structures in each group),
e.g. glycans N125, N134, N144, N225, N234 and N244 are
isomers with the same molecular weight of 2077.7455. These
groups of isomers are valuable standards that may be applied in
absolute quantication and structural identication of
N-glycans by MS.
Conclusions

We have successfully developed a Core Synthesis/Enzymatic
Extension (CSEE) strategy for efficient synthesis of structurally
dened N-glycans and a HPLC-based approach for rapid puri-
cation of these compounds. The combination of CSEE and
HPLC purication allowed rapid access to 0.5–2 mg of 73
homogenous N-glycans in high purities (>98%), including 63
isomers (21 groups). These N-glycans are valuable materials for
glycan analysis and bioactivity evaluation. In this work, oligo-
saccharyl thioether was used as a chemical glycosylation donor
for the convergent installation of branched GlcNAc-terminated
antennae, this general and efficient approach produced 8
N-glycan core structures with high stereoselectivity and excel-
lent overall yields. This work also demonstrated that any
GlcNAc terminated glycans can be enzymatically extended to 5
or more longer glycans (including LeX and SLeX) using several
robust glycosyltransferases. Moreover, this work showed that
complex N-glycans are best puried using HPLC utilizing a
HILIC column. In summary, the CSEE strategy described here
provides a practical approach for rapid production of structur-
ally dened N-glycans, and has the potential to become a
general approach to solve the complexity and diversity of gly-
comes. This may mark the beginning of “mass production” of
glycomes.
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