Issue 27, 2016

A miniaturized chemiluminescence detection system for a microfluidic paper-based analytical device and its application to the determination of chromium(iii)

Abstract

A miniaturized detection system for chemiluminescence that is generated on a microfluidic paper-based analytical device (μPAD) was developed using optical fibers and was applied to the determination of Cr(III). The μPAD was fabricated by wax printing and consisted of 6 separate channels in a parallel alignment. Each channel was composed of an injection zone for a reagent solution, a reaction zone, and a waste zone. The μPAD was placed on a plastic holder equipped with 6 optical fibers to collect chemiluminescence (CL). The other ends of the optical fibers were bundled and introduced into a small photomultiplier tube module to obtain the CL signals. The CL reaction was based on luminol oxidation by hydrogen peroxide in the presence of Cr(III), which catalyzed the reaction in an alkaline medium. The reaction conditions, including the use of an enhancer and a masking agent, were optimized to obtain high sensitivity and selectivity. Under the optimal conditions, a linear range was obtained at 0.05 to 1.00 ppm with a detection limit of 0.02 ppm. The analysis time was less than 1 min per one μPAD in order to obtain 6 measurements of differing concentrations with a precision of <6.5%. This method was successfully applied to the determination of Cr(III) spiked into natural water samples at the sub-ppm range.

Graphical abstract: A miniaturized chemiluminescence detection system for a microfluidic paper-based analytical device and its application to the determination of chromium(iii)

Supplementary files

Article information

Article type
Paper
Submitted
01 Apr 2016
Accepted
31 May 2016
First published
01 Jun 2016

Anal. Methods, 2016,8, 5414-5420

A miniaturized chemiluminescence detection system for a microfluidic paper-based analytical device and its application to the determination of chromium(III)

W. Alahmad, K. Uraisin, D. Nacapricha and T. Kaneta, Anal. Methods, 2016, 8, 5414 DOI: 10.1039/C6AY00954A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements