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Magnetic properties with multiwavelets and DFT:
the complete basis set limit achieved

Stig Rune Jensen,*a Tor Flå,ab Dan Jonsson,c Rune Sørland Monstad,a

Kenneth Ruud*a and Luca Frediania

Multiwavelets are emerging as an attractive alternative to traditional basis sets such as Gaussian-type

orbitals and plane waves. One of their distinctive properties is the ability to reach the basis set limit

(often a chimera for traditional approaches) reliably and consistently by fixing the desired precision e. We

present our multiwavelet implementation of the linear response formalism, applied to static magnetic

properties, at the self-consistent field level of theory (both for Hartree–Fock and density functional

theories). We demonstrate that the multiwavelets consistently improve the accuracy of the results when

increasing the desired precision, yielding results that have four to five digits precision, thus providing a

very useful benchmark which could otherwise only be estimated by extrapolation methods. Our results

show that magnetizabilities obtained with the augmented quadruple-z basis (aug-cc-pCVQZ) are

practically at the basis set limit, whereas absolute nuclear magnetic resonance shielding tensors are

more challenging: even by making use of a standard extrapolation method, the accuracy is not

substantially improved. In contrast, our results provide a benchmark that: (1) confirms the validity of the

extrapolation ansatz; (2) can be used as a reference to achieve a property-specific extrapolation

scheme, thus providing a means to obtain much better extrapolated results; (3) allows us to separate

functional-specific errors from basis-set ones and thus to assess the level of cancellation between basis

set and functional errors often exploited in density functional theory.

1 Introduction

Density functional theory (DFT) is nowadays the de facto
standard for quantum chemistry applications.1,2 There are
several reasons for the success of DFT: it is conceptually simple,
focussing directly on the observable three-dimensional electron
density; its Kohn–Sham formulation3 allows the problem to be
recast as the optimization of a single-determinant wavefunction
for the fictitious Kohn–Sham system of independent particles,
allowing the tools quantum chemists have employed for decades
in connection with Hartree–Fock (HF) theory to be straight-
forwardly applied in the optimization of the Kohn–Sham state.
However, the apparent simplicity also comes with a significant
challenge: the definition of the (unknown) exchange–correlation
(XC) functional.4 To address this shortcoming, a large library of
functionals has over the years been developed,5,6 allowing an XC
functional to be chosen which is best suited for the problem

at hand. This last argument is nevertheless unsatisfactory. Despite
attempts at creating hierarchies of XC functionals which could be
expected to perform better as the complexity or information
content of the functional is increased,7,8 such a universal hier-
archy remains elusive: on the one hand improving functionals to
yield better results is legitimate and necessary; on the other
hand, such a wide choice of XC functionals makes it often
possible to achieve the desired result for a specific problem or
substrate, though with little to no predictive power when experi-
mental reference data are not available. Avoiding pitfalls arising
from spurious error cancellations is not easy, also because
scientific literature is often biased towards positive outcomes.†

An important way of assessing and improving the quality
of currently available XC functionals is to benchmark their
performance for different applications.9,10 The development of
most current functionals has focused on energetic aspects through
thermochemical data.10–13 The molecular energy is by far the most
important quantity, superseding molecular structure, vibrational
properties, reactivity, and dynamics. Nevertheless, the interesta Centre for Theoretical and Computational Chemistry, Department of Chemistry,
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in molecular properties other than the energy has been steadily
growing, both in connection with spectroscopic investigations14–16

and with the development of materials with specific properties.17,18

DFT is for instance often used in connection with response
theory to obtain a wide range of molecular properties.19 This
asymmetry (functionals optimized/benchmarked with respect
to their energetic performance and employed for property
calculations) mandates a thorough assessment of the quality
of such functionals for molecular properties, and several such
studies have already been presented in the literature, see for
instance the review by Laurent and Jacquemin of benchmark
studies of XC functionals used in time-dependent DFT studies
and references therein.20

Another important aspect to be considered is the choice of
basis set. For molecular calculations with DFT, a linear combi-
nation of atomic orbitals approach have almost exclusively
been used. When a given basis is employed, the error on the
final result is invariably a combination of a direct basis set error
and a functional error, that is, difference between the value
obtained with the given functional and the ideal exact one in
the limit of a complete basis set. To complicate matters further,
most functionals are parametrized against thermochemical
data by making use of a given basis set,9,12,13 thus introducing
an ‘‘indirect’’ basis set error. As a consequence, the definition and
quality of a basis set limit for molecular properties within DFT is
still an open question. In particular, in two recent studies, Lutnæs
et al.21 and Teale et al.22 have extensively addressed such issues
for magnetizabilities and nuclear magnetic resonance (NMR)
shielding constants of a set of 28 small, closed-shell molecules.

Low-scaling DFT methods23 combined with modern high-
performance computer clusters allow substrates with several
thousand atoms to be modelled: ideally, a large basis set should
be employed to guarantee convergence in the property value;
however, using large basis sets for large systems is challenging
due to numerical problems caused by near linear dependencies
that will arise in the basis set.24

Another potential problem is given by the integration grids
employed in DFT: they are optimized to achieve the best
compromise between accuracy and efficiency for energy calcu-
lations, but there is no guarantee that such grids will work
equally well for the functional derivatives required for the
evaluation of molecular properties.

In recent years, real-space numerical methods have emerged
as an alternative to atom-centered basis functions,25,26 such
as finite difference methods,27,28 finite element methods,29,30

wavelet31 and multiwavelet methods.32–41 The first three groups
have been successfully applied in materials modeling, especially
in combination with periodic boundary conditions and pseudo-
potentials. However, for molecular all-electron calculations, the
most promising approach so far seems to be the one using
multiwavelets, pioneered originally by Harrison and coworkers.32

Several properties make multiwavelets attractive compared to
atom-centered bases: they are by construction orthonormal,
avoiding linear dependencies; completeness in the basis is
achieved by refinement, with a rigorous, predefined error
control; function representations can be refined adaptively,

limiting the memory footprint; a separated tensorial representation
of integral convolution operators is employed,42 coupled with
the non-standard form of operators,43 achieving narrow-banded,
diagonally dominant matrices that preserve the adaptive refinement.

The multiwavelet formalism provides therefore a reliable route
to compute molecular properties with guaranteed precision with
respect to the complete basis set (CBS) limit. This has already
been illustrated for excitation energies35 and for electric polariz-
abilities.36,37 In this work, we consider magnetic properties,44 and
in particular magnetizabilities and NMR shielding constants.

The rest of this paper is organized as follows: in Section 2 we
briefly summarize the theoretical foundation for the calculation of
molecular energies and magnetic response properties in a multi-
wavelet basis. In Section 3 we present the evaluation of second-order
molecular magnetic response properties, with special attention to
the molecular magnetizability and nuclear magnetic shielding
tensor. Section 4 details the computational protocol of our calcula-
tions. In Section 5 our results are presented and discussed. We
end the paper with a brief summary and outlook.

2 Static linear response equations

The MW formalism has been applied to the ground-state energy32,33

and geometry,34 as well as dynamic polarizabilities36,37 and excita-
tion energies35,38,39 in a linear response formalism. In the present
work, we further extend the MW toolbox to include two important
second-order magnetic properties: the magnetizability and NMR
shielding tensors.44,45 In the following we present the static linear
response equations, as our derivation differs slightly from the
dynamic equations presented previously in the literature.

In order to solve the SCF problem, the action of the MW
representation is required for only two operators, which are of
the same form:

Ĝ½ f � ¼ r2 � k2
� ��1

f ¼
ð
e�k r�r0j j

4p r� r0j j f ðr
0Þdr0; (1)

where k2 = 0 corresponds to the Poisson operator (used for
electrostatic potentials), and k2 4 0 is the bound-state Helmholtz
(BSH) operator (used in the iterations of the SCF equations).
Our MW implementation for functions and operators has been
described previously,40,41 where the parallel performance as
well as the inherent linear scaling of the algorithms have been
demonstrated in the case of electrostatic Coulomb potentials.
A derivative operator is also required for the kinetic energy
operator, density gradients for GGA functionals, and angular
momentum operators. We have implemented a derivative
operator following the work of Alpert et al.46

2.1 Unperturbed system

The ground-state SCF problem can be written in a general,
non-canonical form to allow for localized molecular orbitals
(MOs)47,48

F̂ jij i ¼
X
j

Fij jj

�� E
; (2)
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where

Fij = hji|F̂|jji, (3)

is the Fock matrix, and F̂ = T̂ + V̂ the Fock operator. The
potential operator in Kohn–Sham DFT and HF theory can be
written in a general form as

V̂ = V̂nuc + Ĵ � lK̂ + V̂XC, (4)

where 0 r l r 1 gives the amount of exact exchange. The
electron interaction operators

Ĵ jp

�� E
¼
ð
rðr0; r0ÞjpðrÞ

r� r0j j dr0; (5)

K̂ jp

�� E
¼
ð
rðr; r0Þjpðr0Þ

r� r0j j dr0; (6)

V̂XC jp

�� E
¼ dEXC

dr
rðr; rÞ½ �

� �
jpðrÞ; (7)

are expressed in terms of the one-particle density matrix r(r,r0)
which is constructed from the occupied MO

rðr; r0Þ ¼
Xocc
i

jiðrÞj
y
i ðr0Þ: (8)

The solution of the unperturbed self-consistent field (SCF) problem
follows closely the work of Harrison, Yanai and coworkers,32,33

where the SCF equations are rewritten in integral form49

jij i ¼ �2Ĝi V̂ jij i �
X
jai

Fij jj

�� E" #
; (9)

and iterated until convergence, including a Krylov subspace
accelerated inexact Newton (KAIN) iterative accelerator.50 The
BSH operator Ĝ (eqn (1)) is the inverse of the kinetic energy
operator, shifted by the diagonal element of the Fock matrix
2Ĝi = (T̂ � Fii)

�1. The second term in the operator argument in
eqn (9) corrects for the use of non-canonical (localized) orbitals,
and vanishes if the Fock matrix is diagonalized.

2.2 Perturbed system

Adding a small static perturbation ĥ(1) to the unperturbed
Hamiltonian ĥ(0)

ĥ = ĥ(0) + ĥ(1), (10)

will lead to small changes in the orbitals, and the perturbation
in the density can be expressed in terms of the unperturbed
{j(0)} and first-order perturbed {j(1)} orbitals. Introducing the
density operator (the projector onto the occupied orbital space)

r̂ ¼
Xocc

i

jij i jih j; (11)

and retaining terms up to first order, we get

r̂ ¼ r̂ð0Þ þ r̂ð1Þ ¼
Xocc
i

jð0Þi

��� E
jð0Þi

D ���
þ
Xocc

i

jð0Þi

��� E
jð1Þi

D ���þ jð1Þi

��� E
jð0Þi

D ���� �
;

(12)

where r̂(0) is the ground-state density operator and r̂(1) the
first-order perturbed density. This change in electron density in
turn changes the potential operators in eqn (5–7), and to first
order we get

Ĵð1Þ jp

�� E
¼
ð
rð1Þðr0; r0ÞjpðrÞ

r� r0j j dr0; (13)

K̂ ð1Þ jp

�� E
¼
ð
rð1Þðr; r0Þjpðr0Þ

r� r0j j dr0; (14)

V̂
ð1Þ
XC jp

�� E
¼ d2EXC

dr2
rð0Þðr; rÞ
h i

� rð1Þðr; rÞ
� �

jpðrÞ: (15)

Setting up the SCF problem for the perturbed system to first
order leads to the modified Sternheimer equation51

F̂ ð0Þ jð1Þi

��� E
þ F̂ ð1Þ jð0Þi

��� E
¼
X
j

F
ð0Þ
ij jð1Þj

��� E
þ
X
j

F
ð1Þ
ij jð0Þj

��� E
; (16)

where the perturbed Fock operator contains both the explicit
perturbation and the induced perturbations in the potential
operator (F̂ (1) = ĥ(1) + V̂ (1)). The perturbed Fock matrix elements
are obtained by expanding eqn (3) and collecting all the first-
order terms:

F (1)
ij = hj(1)

i |F̂ (0)|j(0)
j i + hj(0)

i |F̂ (1)|j(0)
j i + hj(0)

i |F̂ (0)|j(1)
j i. (17)

The orbitals satisfy the following weak orthogonality condition

hj(0)
i |j(1)

j i + hj(1)
i |j(0)

j i = 0, (18)

which is equivalent to the idempotency condition on the
density operator r̂2 = r̂ to first order. However, in the diagonal
terms the orbital phase factors can be chosen arbitrarily, and
the off-diagonal terms do not contribute to the density to first-
order. Therefore one can in both cases impose the stronger
orthogonality condition:

hj(0)
i |j(1)

j i = hj(1)
i |j(0)

j i = 0, (19)

which has been proposed as a way to speed up convergence.52

On the other hand, for larger systems, the orthogonalization
procedure becomes prohibitively expensive, and it would be
more efficient to ignore these redundant projections.53 Using
the strong orthogonality condition, the first and third terms in
eqn (17) will vanish, and we get

F̂ ð1Þ jð0Þi

��� E
�
X
j

F
ð1Þ
ij jð0Þj

��� E
¼ 1� r̂ð0Þ
� �

F̂ ð1Þ jð0Þi

��� E
: (20)

The Sternheimer equation (eqn (16)) can now be written in
integral form, in the same way as the unperturbed SCF
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equation (eqn (9)):

jð1Þi

��� E
¼�2Ĝi

"
V̂ ð0Þ jð1Þi

��� E
�
X
jai

F
ð0Þ
ij jð1Þj

��� E
þ 1� r̂ð0Þ
� �

F̂ ð1Þ jð0Þi

��� E#
:

(21)

The diagonal element of the unperturbed Fock matrix appears
in the BSH operator as 2Ĝi = (T̂ � F (0)

ii )�1. We remark that
eqn (21) defines a set of coupled equations which corresponds
to the static limit of the response equations of Sekino et al.36,37

and closely resembles the working equations of Yanai et al.35,38

for excitation energies in time-dependent HF/DFT. Kottmann
et al.39 recently used the same equations to compute excita-
tion energies in the configuration interaction singles (CIS)
approximation.

3 Magnetic properties

A general second-order magnetic property M can be expressed as
an energy derivative with respect to two parameters a and b44,45

M ¼ d2E

dbda

����
a;b¼0

: (22)

The property will have two contributions, one from a second-
order interaction operator ĥ(a,b), and one from a pair of first-
order interaction operators ĥ(a) and ĥ(b). The former is known as
the diamagnetic contribution, and is computed as an expecta-
tion value of the second-order operator and the zeroth-order
(unperturbed) density (r = r0 denotes the trace of the density
matrix, and will always be assumed in the following)

Mdia ¼
ð
r¼r0

r̂ð0Þĥða;bÞdr ¼
X
i

jð0Þi

D ���ĥða;bÞ jð0Þi

��� E
: (23)

The latter is known as the paramagnetic contribution and is
computed by perturbing the system (i.e. solving the response
equations) using one of the operators ĥ(a) to get the corres-
ponding perturbed orbitals j(a) and density r̂(a), and computing
the expectation value (tracing the density matrix) of the second
operator ĥ(b)

Mpara ¼
ð
r¼r0

r̂ðaÞĥðbÞdr ¼
X
i

jð0Þi

D ���ĥðbÞ jðaÞi

��� E
þ jðaÞi

D ���ĥðbÞ jð0Þi

��� E
:

(24)

3.1 Magnetizability and NMR shielding

The magnetizability tensor n and NMR shielding tensor s are
second-order magnetic properties that can be identified as
energy derivatives with respect to the external magnetic field B
and the nuclear magnetic moment MK associated with nucleus K

x ¼ �d
2E

dB2

����
B¼0

; sK ¼
d2E

dMKdB

����
B;MK¼0

; (25)

and are thus computed from the following expressions

xmn ¼
ð
r̂ð0Þĥ

ðB;BÞ
mn drþ

ð
r̂ðBÞm ĥ

ðBÞ
n dr; (26)

sK½ �mn¼
ð
r̂ð0Þĥ

B;MKð Þ
mn drþ

ð
r̂ Bð Þ
m ĥ

MKð Þ
n dr; (27)

where m, n = x, y, z are the components of the perturbing fields
and r̂(B)

m denotes the density perturbed by the m component
of the ĥ(B) operator. The interaction operators are obtained by
differentiating the Hamiltonian with respect to B and/or MK

and evaluating at zero perturbational strength. For closed-shell
systems we get‡44,45

ĥðBÞ ¼ 1

2

Xel
j

l̂jO; ĥ MKð Þ ¼ a2
Xel
j

l̂jK

rjK3
; (28)

ĥðB;BÞ ¼
Xel

j

rjO � rjO
� �

1� rjOr
T
jO; (29)

ĥ B;MKð Þ ¼ a2

2

Xel
j

rjO � rjK
� �

1� rjOr
T
jK

rjK3
; (30)

where l̂jO =�irjO�rj is the angular momentum operator, rjO is the
position of electron j relative to the gauge origin O, rK is the
position of nucleus K, and aE 1/137 is the fine-structure constant.
The perturbed orbitals j(B) are obtained by solving the Sternheimer
equations (eqn (21)) with the following perturbed Fock operator
(there is one for each component m of the perturbing field)

F̂ (1) = ĥ(B) + Ĵ (1) � lK̂ (1) + V̂ (1)
XC. (31)

Notice that the perturbed density (in real space) vanishes for
pure imaginary perturbations, so Ĵ (1) and V̂ (1)

XC (if there is no
explicit current dependence in the functional) can be omitted
from this Fock operator. This means that for non-hybrid DFT
(l = 0), we do not get any two-electron contribution in the
perturbed Fock operator, which leads to decoupled response
equations (at least in the canonical case) that can be solved non-
iteratively in a fixed basis of virtual orbitals.54–56 In our case,
however, we only have the occupied orbitals, and the equations
must still be solved iteratively to sample the (complete) virtual
space by application of the BSH Green’s function. Notice also
that even if the perturbed density vanishes, the paramagnetic
expectation value (e.g. with ĥ(MK)) does not

rðBÞm ðr; rÞ � 0;

ð
r¼r0

r̂ðBÞm ĥ
MKð Þ
n dra0: (32)

The above expressions can be directly related to others, such as
Ramsey’s57 original sum-over-states expression for the shielding
tensor

sK½ �mn¼ 0 ĥ
B;MKð Þ
mn

��� ���0D E
� 2

X
nSa0

0 ĥ
ðBÞ
m

��� ���nSD E
nS ĥ

MKð Þ
n

��� ���0D E
EnS � E0

; (33)

where j0i denotes the ground state and jnSi a singlet-excited
state. Whereas such expressions are usually not very useful
as they require explicit representations of the excited states of
the molecule, some applications have been reported in the

‡ ĥ(MK) also contain triplet operators, but they do not contribute to these proper-
ties for closed-shell systems.
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literature, in particular in the case of uncoupled density
functional theory.54,55 More commonly though, the molecular
properties are expressed in terms of the density matrix D in
an AO basis

xmn ¼ Tr DhðB;BÞmn þDðBÞm hðBÞn

h i
; (34)

sK½ �mn¼ Tr Dh B;MKð Þ
mn þDðBÞm h MKð Þ

n

h i
; (35)

where h(B), h(MK), h(B,B) and h(B,MK) now denote the corresponding
matrix representations in the chosen AO basis.

As a side note, we note that in the present formulation, due
to the interchange theorem,58,59 the order of the perturbations
can be swapped, so that in the case of NMR shielding constants,
the response equations are solved using ĥ(MK) as perturbation
operator instead of ĥ(B), i.e.ð

r̂ðBÞm ĥ
MKð Þ
n dr ¼

ð
r̂ MKð Þ
n ĥ

ðBÞ
m dr: (36)

A situation where such a swapping of operators is useful is
when computing shielding tensors of selected nuclei in large
molecules. Whereas ĥ(B) is a global operator affecting the entire
molecule (plus any explicit solvent molecules), the operator
ĥ(MK) is localized around nucleus K (decays as r�2 following
Biot–Savart’s law for induced magnetic fields), leading to localized
perturbations that can be treated much more efficiently than
the global perturbations arising from ĥ(B). This approach
can also be used in AO-based formulations in combination
with gauge-including atomic orbitals (GIAOs), however, when
the swap is employed to achieve linear scaling,60 it requires
the implementation of a number of new contributions. By
combining this with other linear-scaling techniques for the
Coulomb and exchange computations, Ochsenfeld and coworkers
have been able to compute NMR shieldings of impressively
large molecules.60–62 However, one has to keep in mind that the
number of response equations to be solved increases with the
number of selected nuclei, and it eventually becomes beneficial
to instead perturb the system with the global ĥ(B) operator,
which requires the solution of only three response equations
for all nuclei.

4 Computational details

All Gaussian-type orbital (GTO) calculations were performed with
the Dalton program,63 using Dunning’s correlation-consistent
(cc-pVXZ64) and Jensen’s polarization-consistent (pcS-n65) basis
sets. The latter was specifically optimized for computing NMR
shielding constants using DFT. The calculations were performed
using GIAOs unless otherwise specified.

The MW calculations were performed with a development
version of the MRChem program package.66 The exchange–
correlation functionals and their derivatives to arbitrary order
are provided by the XCFun library.67 In the results presented,
k denotes the polynomial order of the basis, e is the overall
numerical accuracy used in the calculation (the internal thresh-
old used for truncating the MW representations of all functions

and operators) and Df is the convergence threshold in the
orbital residuals (both ground-state and response). As starting
guess for the ground-state calculations we used converged wave
functions in small GTO basis sets (e.g. cc-pVDZ). A zero initial
guess was used for the response functions, and the convergence
was a bit slower than the corresponding ground-state calcula-
tion (for the ground state, typically 2–4 iterations are needed to
gain one order of magnitude in accuracy, for the response
equations one or two iterations more, but with a larger KAIN
iterative history).

5 Results

This section is divided in two parts. In the first we calibrate and
benchmark MRChem both for the convergence towards the
CBS limit and the origin dependence, through some test
calculations of magnetizabilities and NMR shielding constants
of the second-row hydrides (geometries given in Table 1). Then
we show the MRChem performance on the challenging case of
magnesium oxide, which has been shown to ‘‘display pathol-
ogical behaviors with respect to basis set convergence’’.65 In the
second part, we perform a statistical analysis of a larger set of
molecules, originally considered by Lutnæs et al.21 for magne-
tizabilities and later by Teale et al.22 for shieldings. We will here
assess the quality of the density functionals and basis sets that
are typically being used for such calculations.

5.1 Basis set convergence and parametrization

5.1.1 Magnetizabilities. Table 2 shows the Hartree–Fock
magnetizability of the water molecule computed at two differ-
ent gauge origins using MW and GTO basis sets of different
quality. The MW calculations are grouped in three different
overall numerical accuracies with a factor of 100 between them
(e = 10�3, 10�5, 10�7), and for each of these we look at the
convergence of the property with respect to the norm of the
orbital residuals (Df). The overall precision e should give
the maximum relative accuracy that we are able to obtain as

Table 1 Geometries (Bohr) of the second-row hydrides used in the
benchmark calculations

Atom x y z

C 0.000000 0.000000 0.000000
H 1.184860 �1.184860 �1.184860
H �1.184860 1.184860 �1.184860
H �1.184860 �1.184860 1.184860
H 1.184860 1.184860 1.184860

N 0.000000 �0.125000 0.000000
H 1.771618 0.594986 0.000000
H �0.885809 0.594986 1.534269
H �0.885809 0.594986 �1.534269

O 0.000000 0.000000 �0.125000
H 1.437500 0.000000 1.025000
H �1.437500 0.000000 1.025000

F 0.000000 0.000000 0.087300
H 0.000000 0.000000 �1.645500
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the orbitals converge, which is reflected in the total energies when
we compare with the reference value of Yanai et al.33 Even though
the convergence of the energy is quadratic in the convergence
of the orbitals, the final error in the converged energy will be
given by the overall accuracy of the MW calculation.

For magnetizability calculations with a gauge origin within
the molecular geometry (rO = (0, 0, 0), close to the center of
mass), the error in the diamagnetic contribution is expected to
be linear in the error of the ground-state orbitals (Df) and
limited by the overall accuracy (e) of the calculation. This can be
seen from the numbers in Table 2, and the error in the last
(most accurate) MW value is expected to be around 10�6 atomic
units. The paramagnetic contribution depends on both the
ground-state and perturbed orbitals, and the absolute error is
similar to the error in the corresponding diamagnetic contribu-
tion, which means that we get a consistent accuracy in the total
magnetizability of the molecule (that is, around 10�6 a.u.). For
comparison we see that the cc-pV6Z basis set (including GIAOs)
only yields 10�2 a.u. precision for the water magnetizability,
while augmenting the basis set with extra diffuse functions
increases the accuracy by two orders of magnitude.

5.1.2 Gauge origin dependence. It is well known that the
(arbitrary) placement of the gauge origin will affect the quality
of the result whenever an incomplete basis set is used in the
calculation of magnetic properties. Several solutions to the problem
have been proposed. Nowadays, the most common approach is to
use GIAOs, first introduced by London in 1937.68 The method
was further developed by Ditchfield in the 1970s,69 but was not
made efficiently applicable until 1990, with the work of Wolinski,
Hinton and Pulay.70 In the London orbital approach, each AO is
made explicitly dependent on the external magnetic field, and a

local gauge origin is defined at the center of each AO. In
this way, the magnetic properties become gauge-origin inde-
pendent by construction, though not gauge invariant and
current conserving.71,72

The MW basis is in principle complete up to the predefined
truncation threshold. Therefore, we expect a much less severe
gauge dependence in the computed magnetic properties (effective
gauge origin independence as well as gauge invariance to
within the accuracy threshold), and very high accuracy is
attainable for small molecules by choosing a common gauge
origin within the molecular geometry (e.g. center of mass).
However, as the accuracy in the response property is relative
to the absolute value of the paramagnetic contribution (the
diamagnetic contribution is more accurate because it only depends
on the unperturbed system), we also expect that it becomes
progressively more difficult to attain the same accuracy when
the origin is moved out of the molecular framework, as both the
diamagnetic and paramagnetic contributions to the magnetiz-
ability will increase in magnitude.

Table 2 shows also the same magnetizability computed
with a displaced gauge origin (rO = (5, 5, 5)). For the MW
calculations, we see that the diamagnetic part is computed
with the same absolute accuracy as before (comparing e = 10�5,
Df = 10�5 results with e = 10�7, Df = 10�7, the variations are on
the sixth decimal place in both cases), but for the paramagnetic
part, only the relative accuracy is maintained (variations in the
fourth digit after the comma). This means that two digits are
lost in the total magnetizability in this case, as the magnitude
of the paramagnetic part is increased from B1 to B100. The
MW basis still provides reliable and systematically improvable
results, but this shows that the origin should not be chosen

Table 2 Hartree–Fock magnetizability (a.u.) of water computed using two different gauge origins rO, relative to the molecular geometry given in Table 1.
GTO: (0, 0, 0) computed using GIAOs, (5, 5, 5) computed without GIAOs, number of contracted functions in parenthesis. See Section 4 for computational
details

k e Df Etot

rO = (0, 0, 0) rO = (5, 5, 5)

xdia xpara xtot xdia xpara xtot

5 10�3 10�1 �76.058602 �3.260207 0.218164 �3.042043 �127.820595 124.974478 �2.846118
10�2 �76.058116 �3.269608 0.325099 �2.944509 �127.840649 124.906519 �2.934131
10�3 �76.058113 �3.269318 0.320564 �2.948754 �127.849347 124.896921 �2.952425

7 10�5 10�3 �76.065610 �3.269279 0.323568 �2.945712 �127.844963 124.889299 �2.955665
10�4 �76.065610 �3.269110 0.322356 �2.946754 �127.846582 124.900435 �2.946147
10�5 �76.065609 �3.269109 0.322365 �2.946744 �127.846562 124.900189 �2.946373

9 10�7 10�5 �76.065595 �3.269109 0.322362 �2.946747 �127.846571 124.899875 �2.946696
10�6 �76.065595 �3.269110 0.322364 �2.946746 �127.846564 124.899854 �2.946710
10�7 �76.065595 �3.269110 0.322364 �2.946746 �127.846564 124.899855 �2.946709

MADNESSa �76.065595

aug-cc-pV6Z (443) �76.065569 �3.2691 0.3224 �2.9468 �127.8466 123.7548 �4.0918
aug-cc-pVQZ (172) �76.064122 �3.2701 0.3223 �2.9479 �127.8476 120.5026 �7.3450
aug-cc-pVDZ (41) �76.039804 �3.2824 0.3251 �2.9573 �127.8713 98.7552 �29.1161

cc-pV6Z (322) �76.065513 �3.2659 0.3230 �2.9429 �127.8505 123.0783 �4.7722
cc-pVQZ (115) �76.062951 �3.2353 0.3267 �2.9087 �127.8299 118.0656 �9.7643
cc-pVDZ (24) �76.025444 �3.1473 0.3571 �2.7902 �127.7744 79.4328 �48.3416

a Reference energy from Yanai et al.33.
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arbitrarily (and preferably somewhere within the framework of
the molecular structure).

For comparison, traditional GTOs are dependent on the
GIAO parametrization to yield reasonable results. Whereas
the GIAO results would be independent of the choice of gauge
origin up to the same numerical issues as observed for the
multiwavelet basis,73 without GIAOs, if the gauge origin is
moved away from the center of the Gaussians, even the largest
basis sets are unable to yield a correct result. This is clearly
shown in Table 2, where the magnetizability value for water is
correct to B10�4 a.u. for the aug-cc-pV6Z basis when London
orbitals are employed, but becomes 30% larger with a displaced
gauge origin (rO = (5, 5, 5)) without London orbitals.

5.1.3 NMR shielding constants. Table 3 shows the NMR
shielding constants of the second-row hydrides computed
using the B3LYP74 functional and MW and GTO basis sets of
different quality. As for the magnetizability, the MW calculations
are grouped in three different overall accuracies (e) and we present
the convergence of the total NMR shielding constant with respect
to the orbital residuals (Df). The gauge origin is chosen close to
the center of mass of each molecule (rO = (0, 0, 0) relative to the
geometries given in Table 1), whereas the GTO calculations are
performed using GIAOs. The final MW shielding constants are
expected to be accurate to at least 10�3 ppm for the second row
elements, and 10�4 ppm for the hydrogen atoms. For comparison,
shielding constants computed with the largest non-augmented
Gaussian basis set (pcS-4) are correct to B0.1 and B0.01 ppm,
respectively, and augmenting with extra diffuse functions does not
significantly improve the results. The performance of the pcS-n
basis sets are thus, as expected, quite good, because they are
specifically optimized for NMR shielding calculations.

5.1.4 Magnesium oxide. A molecule which has proven
difficult to handle with traditional basis sets is magnesium

oxide. In the calibration of the pcS-n basis sets, Jensen decided
to remove a handful of molecules from the original test set, as
their errors were so large that they would have ruined the
statistics.65 The worst of these systems was MgO, and Table 4
shows the shielding constants of this molecule computed with
three different functionals (B3LYP, Becke’s half-and-half75

functional and Hartree–Fock), using both MW and GTO bases.
Whereas B3LYP starts out with a massive overestimation of the
shielding constant for the smallest pcS-0 basis set, we do observe
a systematic improvement and monotonic convergence for this
functional when we increase the cardinal number of the basis.
This was also observed and analyzed by Jensen.65 For the
BHandH functional, however, the convergence is less systematic
and we have to go to the pcS-2 basis and beyond in order to get
qualitative agreement between the numbers, and the situation
gets even worse for Hartree–Fock, where anything less than pcS-3
gives completely erratic results, and even the biggest basis is only
converged to one digit. Again, the augmented basis sets show
only slight improvements over the standard pcS-n.

In the MW basis, on the other hand, we see a systematic
convergence for all functionals, although a bit slower than
for the second-row hydrides presented above. The final MW
shielding constants should be accurate to within 1 ppm, except
for the Hartree–Fock oxygen value, where the error is on the
order of 10 ppm.

5.2 Benchmarking HF and DFT with CBS results

In two recent works, Lutnæs et al.21 and Teale et al.22 investi-
gated the performance of a number of density functionals
to assess their ability to reproduce magnetizabilities and
shieldings, respectively. In these studies, 28 molecules were
considered, comparing the DFT results with coupled cluster
results and with experimental data.

Table 3 B3LYP nuclear shielding constants (ppm) of second-row hydrides. Geometries given in Table 1. See Section 4 for computational details

k e Df

CH4 NH3 H2O HF

s(C) s(H) s(N) s(H) s(O) s(H) s(F) s(H)

5 10�3 10�1 249.8536 31.2215 321.4904 31.4804 398.8322 29.0981 478.5381 25.9203
10�2 189.3407 31.3926 258.5232 31.8928 328.1023 30.8344 415.1414 30.2118
10�3 186.9510 31.3978 256.0271 31.8912 314.9383 30.8911 413.8677 30.1005

7 10�5 10�3 188.2145 31.4860 259.0541 31.6347 318.9669 30.4986 411.1672 29.3182
10�4 188.1449 31.4863 259.1961 31.6325 317.4436 30.4973 411.1805 29.3043
10�5 188.0891 31.4869 259.1520 31.6326 317.4374 30.4959 411.1565 29.3057

9 10�7 10�5 188.0877 31.4879 259.1620 31.6317 317.4556 30.4962 411.1777 29.3053
10�6 188.0862 31.4879 259.1618 31.6317 317.4707 30.4959 411.1836 29.3053
10�7 188.0852 31.4879 259.1619 31.6317 317.4710 30.4959 411.1835 29.3052

aug-pcS-4 188.0912 31.4891 259.1699 31.6337 317.4761 30.4994 411.1899 29.3113
aug-pcS-3 188.0779 31.4901 259.1504 31.6359 317.4721 30.5032 411.1675 29.3169
aug-pcS-2 188.1631 31.5072 260.0631 31.6842 319.1405 30.5832 413.0720 29.4299
aug-pcS-1 189.8481 31.4323 259.1238 31.6023 316.7613 30.5556 412.8214 29.4505
aug-pcS-0 195.0982 32.3357 259.4777 32.7576 307.5149 31.7324 403.2127 30.7204

pcS-4 188.0906 31.4891 259.1780 31.6344 317.4558 30.4995 411.1456 29.3125
pcS-3 188.0804 31.4916 259.1914 31.6426 317.3621 30.5060 410.9353 29.3237
pcS-2 188.8855 31.5061 261.0480 31.7470 319.4452 30.5726 412.1234 29.3614
pcS-1 188.9008 31.4148 268.5308 31.9186 329.2888 30.6828 412.1724 29.4284
pcS-0 192.7857 32.4843 269.1474 33.4027 332.1143 31.9300 407.2365 30.6812
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In order to minimize basis set errors, they used large basis
sets (the largest basis set used was the correlation-consistent,
core-valence aug-cc-pCVQZ basis set of Woon and Dunning.76)
They also made use of an extrapolation method with a two-point
exponential parametrization for HF and a polynomial extrapola-
tion for the correlation part. We report here the extrapolation
formula for the HF part:

PðHFÞ
1 ¼ P

ðHFÞ
X eaX � P

ðHFÞ
Y eaY

eaX � eaY
: (37)

In particular, for the exponential extrapolation of the HF values,
they used the same parametrization (a = 1.63) that is employed
for the molecular energy.77 This choice was justified by the fact
that second-order molecular properties are energy derivatives.

With a MW approach, it is possible to provide very accurate
benchmark results that can be employed to check the quality of
the GTO results, both for HF and for the available density
functionals. Additionally, we can determine whether the expo-
nential extrapolation procedure leads to an improvement in the
results, as well as investigate to what extent it predicts the
correct basis-set limit.

We have therefore considered the same set of molecules and
performed calculations at increasing precision (e = 10�Z, Z = 3,
4, 5, 6), to compare our MW results with the results obtained
using GTOs. We will here summarize our main findings.

Based on the initial test calculations on the first-row hydrides,
we will in all the following MW calculations converge the
orbitals (both ground-state and perturbed) to 10e. The reason
for this is twofold: firstly, the property is usually converged
within the expected error bars at this point, and secondly
the convergence might be affected by numerical noise when
we approach the limit of the guaranteed accuracy of the
computation.

5.2.1 Magnetizabilities. The HF magnetizabilities computed
with MRChem are reported in Table 5, together with the
reference values of Lutnæs et al.21 The progression of the MW

results clearly show how the results gain consistently in accu-
racy when Z is increased, and our most accurate results are
converged to the fifth digit. In more detail, the MW3 results
have 1–2 correct digits, MW4 have about three and MW5 four
correct digits. The only notable exception is ozone for MW3,
which is also qualitatively wrong.

The comparison with the best GTO results shows a very good
agreement with differences of about 0.1–0.2 � 10�30 J T�2.

Table 5 Hartree–Fock magnetizabilities (10�30 J T�2) computed with
GTO basis sets (aug-cc-pCVXZ, X = T, Q) and MW methods at increasing
precision (e = 10�Z, Z = 3, 4, 5, 6). All GTO calculations are taken from the
ESI of ref. 21

T Q MW3 MW4 MW5 MW6

HF �172.9 �172.7 �171.63 �172.61 �172.61 �172.62
CO �204.9 �204.5 �200.26 �204.61 �204.45 �204.44
N2 �203.3 �202.8 �196.06 �202.56 �202.73 �202.74
H2O �231.4 �231.3 �231.08 �231.27 �231.30 �231.30
HCN �280.5 �280.1 �251.60 �280.04 �280.09 �280.08
HOF �244.9 �244.6 �246.15 �244.36 �244.55 �244.50
O3 580.1 580.5 �85.51 585.06 581.98 581.94
NH3 �287.6 �287.4 �288.33 �287.42 �287.53 �287.54
CH2O �139.8 �139.5 �107.71 �139.40 �139.39 �139.37
CH4 �314.1 �313.7 �314.13 �313.77 �313.72 �313.75
C2H4 �355.1 �354.7 �348.05 �354.53 �354.74 �354.78
AlF �400.4 �399.4 �395.34 �399.16 �399.20 �399.21
CH3F �318.6 �318.0 �315.81 �317.87 �317.98 �317.97
C3H4 �478.4 �478.0 �411.91 �477.96 �478.16 �478.17
FCCH �453.0 �452.2 �449.10 �452.17 �452.23 �452.24
FCN �378.6 �378.0 �370.80 �377.93 �378.02 �378.00
H2S �454.0 �452.8 �458.85 �453.35 �452.86 �452.84
HCP �512.2 �511.5 �460.27 �511.53 �511.57 �511.57
HFCO �312.2 �311.5 �297.30 �311.31 �311.38 �311.42
H2C2O �433.1 �432.6 �435.55 �432.73 �432.45 �432.63
LiF �191.0 �190.9 �191.30 �190.80 �190.74 �190.74
LiH �125.6 �125.3 �128.08 �125.28 �125.27 �125.26
N2O �343.3 �342.8 �338.38 �342.70 �342.73 �342.73
OCS �598.4 �597.5 �657.92 �597.35 �597.47 �597.45
OF2 �272.0 �271.6 �281.22 �271.76 �271.58 �271.43
H4C2O �545.2 �544.8 �555.68 �544.90 �545.09 �545.05
PN �304.0 �303.8 �305.97 �303.00 �303.80 �303.80
SO2 �303.3 �301.8 �215.00 �301.57 �301.50 �301.50

Table 4 Nuclear shielding constants (ppm) of MgO (r = 3.2986a0) using Hartree–Fock and the B3LYP and Becke half-and-half density functionals.
Number of contracted basis functions in parenthesis. See Section 4 for computational details

k e Df

B3LYP BHandH RHF

s(Mg) s(O) s(Mg) s(O) s(Mg) s(O)

5 10�3 10�2 964.0904 �2051.0527 1116.6897 �4734.2058 1041.2017 �6738.2185
6 10�4 10�3 1002.5959 �2454.5817 1018.8386 �3545.7921 1538.9211 �16726.3490
7 10�5 10�4 1006.2229 �2484.3481 1021.8519 �3575.4505 1584.1109 �17466.4867
8 10�6 10�5 1007.0809 �2492.0231 1024.4490 �3603.0833 1578.7322 �17358.6849
9 10�7 10�6 1007.1533 �2491.8762 1024.6440 �3604.9389 1579.4610 �17375.4221

aug-pcS-4 (260) 1007.7858 �2498.9207 1026.3744 �3627.0785 1605.7661 �17904.0731
aug-pcS-3 (162) 1012.7812 �2525.8940 1035.6182 �3707.6253 1719.9701 �20055.5992
aug-pcS-2 (86) 1039.0774 �2723.3712 1088.7973 �4244.2865 4282.4997 �69183.9283
aug-pcS-1 (46) 1080.0457 �3018.9200 1185.1959 �5267.7093 �1173.7349 10814.1557
aug-pcS-0 (27) 1061.6947 �3068.0177 1302.9612 �7285.5996 254.9829 36289.8265

pcS-4 (199) 1007.6675 �2498.7484 1027.6229 �3641.5105 1617.5056 �18143.8405
pcS-3 (121) 1013.9465 �2536.7996 1039.3089 �3749.0539 1757.7204 �20822.5428
pcS-2 (61) 1047.5216 �2799.5298 1130.5457 �4694.1604 �19388.2423 386900.5044
pcS-1 (33) 1513.5862 �6292.7417 3100.8099 �24758.3030 94.4529 11293.4315
pcS-0 (19) 8890.4390 �63570.3234 3.6303 7411.0254 448.6993 4880.3077

Paper PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

1 
A

pr
il 

20
16

. D
ow

nl
oa

de
d 

on
 4

/2
8/

20
25

 4
:0

6:
45

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c6cp01294a


This journal is© the Owner Societies 2016 Phys. Chem. Chem. Phys., 2016, 18, 21145--21161 | 21153

Ozone proves to be a challenging system for GTOs with a
deviation of 1.4 � 10�30 J T�2. We can therefore conclude that
the aug-cc-pCVQZ basis is able to attain very good accuracy for
magnetizabilities, yielding results that are comparable to our
MW5 values.

A very similar picture is obtained for the density functionals
examined, with aug-cc-pCVQZ performing on par with MW5.
Our MW6 results are reported in Table 6 together with the aug-
cc-pCVQZ results from Lutnæs et al.21

A detailed error analysis, and the accuracy of the extrapola-
tion formula are not discussed because of the agreement down
to the last available digit in the GTO results, and rounding
effects would therefore play a major role.

5.2.2 NMR shielding constants. The NMR shielding constants
computed with different basis sets for Hartree–Fock and DFT
are presented in Tables 7 and 8, respectively, and the statistical
basis set errors of the different methods are reported in Table 9,
taking the MW6 values as reference. We begin by considering the
progression along the series of MW calculations for Hartree–Fock.
The MW3 results yield errors of a few tens of ppm, whereas MW4
are accurate to within 1–2 ppm and MW5 results are on average
0.1–0.2 ppm away from the MW6 values. We can therefore con-
clude that our best MW results are accurate to within 0.1 ppm or
better. It is interesting that ozone, which is completely wrong at
MW3, becomes in line with the other cases when MW5 and MW6
are compared. This is a clear indication of the systematic nature of
the MW basis, which is able to provide the flexibility required to
achieve the CBS result throughout the series.

We can now compare MW6 results to the GTO values. In
particular, the best aug-cc-pCVQZ results are accurate to within
1–2 ppm (MAE = 1.8/1.2 with/without O3), i.e. comparable to
MW4. The extrapolated values (a = 1.63) show an improvement
over the aug-cc-pCVQZ ones, and the error is reduced (MAE =
1.1/0.7), although not substantially. However, if we change the
parametrization to a = 1.05, a much closer agreement is
achieved (MAE = 0.38/0.25 with/without O3). Other measures
for the error yield a similar picture. This result suggests that the
extrapolation procedure, which is originally justified because the
shielding is a second derivative of the energy, is a reasonable way to
estimate CBS results. However, making use of the same exponent
as the molecular energy, is improving over the aug-cc-pCVQZ
values only slightly. If the exponent is set to 1.05 (larger correc-
tions than a = 1.63) the improvement is substantial. Considering
that a is the only adjustable parameter for 72 shielding values,
this result is a confirmation of the validity of the two-point
exponential parametrization.

We now turn our attention to DFT, where for clarity we
present the raw data only for quadruple-z and MW6 for the
chosen functionals in Table 8, while the statistical errors are
given for all basis sets in Table 9. The sequence of MW
calculations at increasing precision paints a similar picture to
that seen for HF: MW3 yields results that are several ppm away
from the MW6 values and also worse than triple-z quality
numbers, MW4 is a huge leap forward, outperforming the
quadruple-z results. MW5 yields results that are in most cases
0.1–0.2 ppm away from the MW6 values. This progression is

Table 6 Magnetizabilities (10�30 J T�2) computed using a range of density functionals with the aug-cc-pCVQZ basis set and the MW basis at precision
e = 10�6. All GTO calculations are taken from the ESI of ref. 21

LDA BLYP PBE B3LYP PBE0

Q MW6 Q MW6 Q MW6 Q MW6 Q MW6

HF �181.1 �181.06 �181.0 �180.99 �180.1 �180.09 �178.5 �178.48 �177.1 �177.05
CO �206.6 �206.58 �209.1 �209.11 �205.6 �205.54 �206.8 �206.75 �202.9 �202.91
N2 �201.0 �200.95 �203.6 �203.53 �199.7 �199.63 �202.1 �201.99 �198.1 �198.02
H2O �241.0 �240.99 �239.5 �239.48 �238.5 �238.52 �236.9 �236.89 �235.3 �235.29
HCN �265.1 �265.06 �268.7 �268.65 �264.4 �264.41 �269.6 �269.58 �266.0 �265.94
HOF �228.9 �228.90 �226.6 �226.60 �227.4 �227.33 �231.1 �231.08 �232.8 �232.74
O3 195.4 196.05 180.3 180.85 183.7 184.17 238.8 239.45 258.0 258.60
NH3 �298.2 �298.26 �293.4 �293.48 �293.1 �293.20 �291.5 �291.54 �290.5 �290.54
CH2O �95.8 �95.73 �109.3 �109.20 �104.9 �104.84 �114.9 �114.74 �112.8 �112.69
CH4 �329.5 �329.59 �318.2 �318.26 �320.4 �320.42 �317.4 �317.40 �318.5 �318.54
C2H4 �331.1 �331.10 �333.4 �333.45 �330.8 �330.82 �336.9 �336.95 �335.3 �335.36
AlF �396.0 �395.86 �399.4 �399.26 �397.1 �396.98 �397.0 �396.92 �394.5 �394.39
CH3F �315.4 �315.44 �309.6 �309.57 �311.3 �311.26 �312.5 �312.44 �314.4 �314.41
C3H4 �464.4 �464.53 �458.4 �458.54 �459.5 �459.65 �463.1 �463.29 �465.1 �465.20
FCCH �438.6 �438.68 �438.5 �438.58 �437.6 �437.67 �440.2 �440.30 �439.9 �439.93
FCN �365.3 �365.31 �366.4 �366.39 �365.0 �364.97 �367.6 �367.58 �366.6 �366.61
H2S �466.1 �466.22 �457.2 �457.25 �458.8 �458.84 �455.6 �455.70 �456.4 �456.43
HCP �477.5 �477.48 �485.6 �485.63 �479.2 �479.27 �487.8 �487.81 �482.7 �482.74
HFCO �296.9 �296.84 �299.4 �299.32 �296.9 �296.81 �300.7 �300.62 �298.7 �298.68
H2C2O �427.7 �427.75 �420.7 �420.73 �421.9 �421.90 �422.4 �422.39 �423.7 �423.67
LiF �196.4 �196.32 �196.4 �196.30 �196.2 �196.15 �194.9 �194.83 �194.2 �194.13
LiH �135.9 �135.91 �136.6 �136.59 �135.2 �135.15 �131.2 �131.19 �129.1 �129.08
N2O �334.5 �334.41 �332.2 �332.14 �332.0 �331.92 �334.0 �333.97 �334.3 �334.20
OCS �576.7 �576.64 �576.2 �576.14 �574.8 �574.83 �579.9 �579.89 �579.7 �579.63
OF2 �220.1 �220.01 �220.5 �220.40 �221.4 �221.30 �233.9 �233.86 �238.1 �237.97
H4C2O �529.8 �529.97 �520.4 �520.52 �523.9 �524.02 �527.0 �527.19 �531.5 �531.63
PN �284.2 �284.06 �292.1 �291.99 �283.9 �283.84 �292.2 �292.07 �284.6 �284.50
SO2 �294.6 �294.38 �298.0 �297.77 �293.3 �293.10 �295.9 �295.65 �291.0 �290.77
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Table 7 Hartree–Fock shielding constants (ppm) computed with GTO basis sets (aug-cc-pCVXZ, X = T, Q), extrapolation methods (aug-cc-pCV[TQ]Z
with a = 1.63 and a = 1.05) and MW methods at increasing precision (e = 10�Z, Z = 3, 4, 5, 6). All GTO calculations are taken from the ESI of ref. 22

T Q [TQ1.63] [TQ1.05] MW3 MW4 MW5 MW6

HF H 28.40 28.20 28.15 28.09 29.04 28.20 28.13 28.12
F 415.00 414.70 414.63 414.54 420.63 414.26 414.59 414.56

CO C �23.30 �26.60 �27.40 �28.38 �23.18 �27.59 �28.43 �28.41
O �83.50 �89.40 �90.84 �92.58 �94.40 �95.77 �92.70 �92.83

N2 N �108.30 �113.20 �114.39 �115.84 �144.94 �116.04 �116.06 �116.07
H2O O 328.80 328.10 327.93 327.72 333.39 326.59 327.83 327.78

H 30.80 30.60 30.55 30.49 31.08 30.50 30.50 30.51
HCN H 29.30 29.20 29.18 29.15 31.10 29.22 29.22 29.22

C 72.90 70.60 70.04 69.36 68.84 69.80 69.40 69.40
N �46.70 �51.10 �52.17 �53.47 �111.50 �53.47 �53.60 �53.55

HOF O �130.60 �136.00 �137.32 �138.91 �111.30 �139.71 �138.79 �139.31
H 19.30 19.10 19.05 18.99 19.87 19.01 19.01 19.00
F 291.60 288.90 288.24 287.45 288.14 285.09 287.53 287.65

O3 Omidt �2669.80 �2706.40 �2715.32 �2726.10 38.16 �2739.83 �2729.98 �2730.94
Oterm �2739.80 �2775.60 �2784.32 �2794.87 �62.57 �2808.35 �2801.00 �2800.06

NH3 N 263.40 262.60 262.41 262.17 268.20 262.02 262.23 262.23
H 31.80 31.70 31.68 31.65 31.56 31.60 31.59 31.59

H2CO O �431.50 �441.60 �444.06 �447.04 �673.90 �446.42 �447.59 �447.52
C �5.00 �7.90 �8.61 �9.46 �22.53 �8.94 �9.27 �9.34
H 22.50 22.50 22.50 22.50 21.80 22.48 22.48 22.48

CH4 C 196.10 195.00 194.73 194.41 192.60 195.02 194.61 194.61
H 31.60 31.60 31.60 31.60 31.45 31.55 31.55 31.55

C2H6 C 61.50 59.20 58.64 57.96 59.88 58.05 58.09 57.97
H 26.30 26.20 26.18 26.15 25.86 26.19 26.19 26.18

AlF Al 580.40 580.20 580.15 580.09 583.44 579.61 579.61 580.03
F 233.40 229.00 227.93 226.63 219.18 226.06 227.15 227.37

CH3F C 126.80 125.00 124.56 124.03 131.76 124.42 124.32 124.29
F 486.90 486.70 486.65 486.59 471.85 486.07 487.02 486.93
H 28.00 27.90 27.88 27.85 27.83 27.92 27.90 27.90

C3H4 C 194.40 193.30 193.03 192.71 197.60 193.25 193.03 192.97
Cdb 73.00 70.80 70.26 69.62 �21.52 69.84 69.61 69.65
Hdb 24.20 24.10 24.08 24.05 24.92 24.07 24.05 24.05
H 31.00 30.90 30.88 30.85 29.39 30.93 30.92 30.92

HCCF C(H) 177.70 176.50 176.21 175.85 183.55 175.50 175.98 175.96
C(F) 102.80 100.80 100.31 99.72 108.91 100.45 99.91 99.89
H 30.60 30.50 30.48 30.45 30.35 30.52 30.50 30.51
F 428.90 428.30 428.15 427.98 415.85 427.70 428.23 428.10

FCN F 378.70 377.70 377.46 377.16 360.67 378.00 377.18 377.19
C 77.70 75.30 74.72 74.01 81.39 74.51 74.19 74.11
N 94.70 91.80 91.09 90.24 85.39 90.29 90.45 90.32

H2S S 715.00 711.30 710.40 709.31 727.11 728.03 710.99 711.26
H 30.60 30.60 30.60 30.60 32.44 30.91 30.53 30.53

HCP H 30.10 30.10 30.10 30.10 31.30 30.13 30.08 30.11
C 15.80 13.30 12.69 11.95 �15.94 11.78 12.05 11.87
P 338.80 339.70 339.92 340.18 123.31 339.08 339.68 339.38

HFCO O �123.20 �129.50 �131.04 �132.89 �193.91 �135.04 �133.50 �133.20
C 36.10 33.40 32.74 31.95 41.58 32.31 32.13 32.09
F 191.00 187.90 187.14 186.23 146.78 188.28 186.59 186.13
H 24.50 24.40 24.38 24.35 24.89 24.39 24.38 24.38

H2C2O C(O) 190.50 189.30 189.01 188.65 193.64 188.97 188.88 188.89
C(H) �11.70 �14.90 �15.68 �16.62 �24.45 �16.47 �16.57 �16.54
O �22.30 �27.40 �28.64 �30.15 2.46 �29.86 �30.14 �30.41
H 29.50 29.40 29.38 29.35 29.49 29.34 29.33 29.33

LiF Li 90.90 90.60 90.53 90.44 90.49 90.47 90.46 90.46
F 392.10 390.80 390.48 390.10 395.36 390.28 390.16 390.17

LiH H 26.60 26.60 26.60 26.60 26.51 26.61 26.61 26.61
Li 89.80 89.50 89.43 89.34 90.64 89.51 89.50 89.50

N2O Nmidt 65.70 62.70 61.97 61.09 59.78 61.40 60.92 61.04
N �29.40 �33.40 �34.37 �35.55 �35.66 �34.15 �35.39 �35.73
O 177.30 174.80 174.19 173.45 172.73 173.76 173.50 173.41

OCS O 80.10 76.60 75.75 74.72 59.07 72.89 74.30 74.46
C 10.40 7.30 6.54 5.63 0.82 5.89 5.91 5.82
S 788.80 787.60 787.31 786.95 730.46 790.81 787.98 787.70

OF2 O �435.40 �443.80 �445.85 �448.32 �419.25 �448.90 �448.36 �449.10
F 27.80 22.40 21.08 19.49 32.32 22.88 20.07 19.38

H4C2O O 379.10 378.80 378.73 378.64 364.09 377.84 378.82 378.80
C 156.90 155.40 155.03 154.59 162.13 155.17 154.91 154.87
H 29.80 29.70 29.68 29.65 29.34 29.71 29.70 29.70
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Table 7 (continued )

T Q [TQ1.63] [TQ1.05] MW3 MW4 MW5 MW6

PN N �498.00 �506.50 �508.57 �511.08 �553.60 �514.49 �511.69 �511.80
P �110.90 �108.40 �107.79 �107.05 �167.61 �113.29 �108.04 �109.37

SO2 S �393.40 �395.20 �395.64 �396.17 �724.14 �397.98 �395.02 �396.57
O �330.50 �335.60 �336.84 �338.35 �595.92 �341.03 �340.30 �340.38

Table 8 Shielding constants (ppm) computed using a range of density functionals with the aug-cc-pCVQZ basis set and the MW basis at precision
e = 10�6. All GTO calculations are taken from the ESI of ref. 22

LDA BLYP PBE B3LYP PBE0

Q MW6 Q MW6 Q MW6 Q MW6 Q MW6

HF H 29.20 29.13 29.90 29.82 29.90 29.78 29.50 29.35 29.40 29.26
F 416.00 415.78 410.50 410.25 412.00 411.69 412.00 411.75 413.40 413.13

CO C �23.30 �25.09 �17.70 �19.51 �15.90 �17.58 �21.50 �23.27 �20.00 �21.70
O �91.70 �95.18 �81.30 �84.69 �82.40 �85.70 �85.50 �88.90 �86.80 �90.21

N2 N �94.10 �96.95 �87.20 �90.02 �85.80 �88.58 �94.40 �97.28 �94.20 �96.98
H2O O 334.30 333.95 326.10 325.70 328.80 328.45 327.10 326.74 329.50 329.16

H 30.80 30.74 31.40 31.31 31.30 31.24 31.20 31.06 31.10 30.99
HCN H 28.90 28.92 29.40 29.32 29.20 29.16 29.30 29.29 29.20 29.16

C 63.70 62.48 68.90 67.63 70.20 69.02 67.90 66.63 69.40 68.20
N �59.10 �61.65 �48.80 �51.26 �46.60 �48.97 �51.70 �54.23 �49.30 �51.75

HOF O �143.40 �146.91 �138.40 �141.89 �128.50 �131.84 �137.30 �140.66 �125.70 �129.05
H 18.40 18.32 19.40 19.25 19.30 19.21 19.30 19.21 19.30 19.26
F 160.10 157.98 145.70 143.47 150.90 148.60 175.10 173.10 185.70 183.69

O3 Omidt �920.70 �930.40 �902.50 �911.95 �884.60 �893.97 �1123.90 �1135.21 �1164.80 �1176.33
Oterm �1519.30 �1533.59 �1461.80 �1475.42 �1450.80 �1464.28 �1676.80 �1692.22 �1719.90 �1735.43

NH3 N 266.90 266.53 259.00 258.57 262.40 261.99 260.20 259.81 263.30 262.96
H 31.50 31.40 31.90 31.85 31.80 31.78 31.80 31.74 31.70 31.67

H2CO O �499.20 �505.66 �449.80 �455.91 �452.40 �458.45 �457.80 �463.93 �458.20 �464.28
C �42.10 �43.84 �29.30 �30.99 �27.90 �29.56 �26.30 �27.94 �23.30 �24.94
H 20.10 20.11 21.10 21.07 20.80 20.77 21.40 21.36 21.20 21.21

CH4 C 193.00 192.62 186.30 185.84 190.30 189.93 188.70 188.21 192.70 192.25
H 31.20 31.15 31.60 31.57 31.50 31.46 31.50 31.51 31.50 31.42

C2H6 C 40.30 38.84 44.60 43.21 47.50 46.12 46.70 45.31 50.30 49.00
H 25.10 25.04 25.90 25.89 25.60 25.60 25.90 25.88 25.70 25.65

AlF Al 532.90 532.78 540.90 540.73 542.80 542.90 550.10 549.88 554.40 554.48
F 138.40 136.16 152.70 150.60 150.50 148.34 171.90 169.89 175.60 173.63

CH3F C 103.10 102.18 100.60 99.69 105.20 104.27 106.30 105.44 111.90 111.05
F 474.10 474.33 458.20 458.26 462.10 462.23 466.50 466.62 471.00 471.10
H 26.60 26.57 27.20 27.21 27.10 27.07 27.40 27.34 27.30 27.29

C3H4 C 177.30 176.83 173.30 172.86 176.80 176.35 178.00 177.57 182.10 181.70
Cdb 56.30 55.03 58.40 57.14 62.10 60.95 60.40 59.22 64.80 63.62
Hdb 23.70 23.64 24.40 24.31 24.20 24.14 24.20 24.19 24.10 24.05
H 30.20 30.18 30.70 30.70 30.60 30.55 30.70 30.70 30.60 30.60

HCCF C(H) 165.30 164.75 169.00 168.42 170.10 169.60 169.40 168.80 170.90 170.39
C(F) 76.80 75.69 78.30 77.21 82.20 81.17 82.80 81.76 87.70 86.50
H 30.60 30.57 31.10 31.10 31.00 30.94 30.90 30.90 30.80 30.74
F 392.10 391.72 392.50 392.11 389.10 388.70 400.40 400.07 398.80 398.41

FCN F 343.50 342.86 343.00 342.39 338.70 338.09 351.10 350.53 348.60 348.01
C 63.20 61.82 64.50 63.23 68.50 67.29 65.80 64.60 70.10 68.66
N 89.60 88.04 96.70 95.20 99.40 97.89 92.40 90.78 94.70 93.20

H2S S 724.00 723.97 690.30 690.21 713.70 713.53 697.00 696.91 719.00 718.94
H 30.40 30.33 31.10 31.03 30.80 30.79 30.90 30.84 30.60 30.61

HCP H 29.40 29.39 29.80 29.81 29.60 29.60 29.90 29.87 29.70 29.71
C 4.80 3.28 10.20 8.66 13.10 11.67 8.80 7.29 11.90 10.48
P 285.90 285.56 320.20 319.94 325.60 325.34 316.80 316.45 323.80 323.52

HFCO O �143.90 �147.68 �131.00 �134.84 �127.70 �131.40 �137.00 �140.77 �133.80 �137.57
C 15.10 13.56 17.40 15.95 20.90 19.49 19.60 18.13 23.60 22.25
F 80.60 78.03 93.30 90.79 91.40 88.88 115.50 113.15 119.70 117.39
H 22.90 22.84 23.40 23.39 23.30 23.23 23.60 23.58 23.60 23.52

H2C2O C(O) 186.00 185.49 182.50 181.99 185.40 184.88 183.80 183.29 186.70 186.24
C(H) �23.30 �25.06 �24.90 �26.70 �18.70 �20.46 �24.40 �26.15 �18.20 �19.96
O �26.30 �29.35 �26.50 �29.54 �22.40 �25.35 �30.10 �33.19 �26.60 �29.59
H 28.90 28.88 29.60 29.52 29.40 29.33 29.40 29.39 29.30 29.23

LiF Li 85.30 85.19 86.50 86.33 86.60 86.46 87.50 87.41 88.00 87.84
F 340.90 340.02 336.30 335.41 343.60 342.75 351.90 351.05 362.20 361.46

LiH H 25.80 25.79 26.50 26.53 26.30 26.34 26.60 26.58 26.40 26.44
Li 86.40 86.30 88.40 88.33 88.20 88.12 88.30 88.21 88.30 88.26
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again an indication that the error in the MW6 values can be
considered well below 0.1 ppm from the CBS results, and MW6
values can in practice be taken as a reference.

The MW6 reference values enable us to apply to DFT the
same extrapolation procedure used for HF. With a = 1.63, we
observe a reduction of the errors (e.g. for B3LYP the MAE goes
from 1.59 to 0.9). With a = 1.05 the reduction is more marked
(for B3LYP MAE = 0.28/0.24 with/without O3). Slightly better
results could be achieved if the parameter a was optimized for
each functional separately, e.g. using a = 0.9 leads to a further
substantial reduction in the standard deviation in the Hartree–
Fock results, but we observe the opposite effect for all DFT
functionals. The main point is, however, that neither for HF nor
for DFT is a = 1.63 the optimal value, and our results indicate
that a lower value, yielding a larger correction, performs much
better for HF and DFT alike.

5.2.3 Computation times. In Table 9, we also report the
average timings for the GTO as well as the MW calculations. All
timings include the ground-state SCF optimization (to obtain
r̂(0)) followed by three response calculations (to obtain r̂(B)

m for
m = x, y, z). The magnetizability and NMR shielding tensors of
all nuclei in the molecule are then computed simultaneously
according to eqn (26) and (27). The timings are given in
minutes wall-time on a single compute node with 16 CPUs
(2.6 GHz Intel E5-2670) using a shared memory parallelization
strategy. For the GTO calculations, the timings are obtained
from Dalton, on the same computer architecture and also using
16 processors using the message passing interface (MPI).

Whereas the MW code is far from optimized for production
calculations, we can draw some interesting conclusions from
the numbers. First of all, there is an order of magnitude
difference in computation time between pure and hybrid density
functionals: for HF, PBE0 and B3LYP, the exact-exchange is a
clear bottleneck, especially in the magnetic response solver
because the pure functionals do not contribute to the perturbed
Fock operator (eqn (31)), but also in the ground-state calculation
as the exact exchange scales quadratically with the number of
orbitals. Although the current implementation fully supports
orbital localization, which should have an effect on the exact

exchange, no particular attempt has yet been made in exploiting
localization to achieve linear scaling algorithms. The systems
treated in the current work are anyway too small for this to have
any appreciable effect.

Along the series of MW calculations, we observe that the
computational costs roughly doubles at each ten-fold increase
of the requested precision.

Concerning the comparison between MW and GTO, and
limiting the comparison to pure functionals (hybrid functionals
and HF are affected by the exchange bottleneck), we notice how
TZ-quality results are quite cheap to achieve, being ten times
faster than MW3 results. However MW4 results, which are
comparable to the extrapolated [TQ]Z values, are only three
times more expensive than QZ values: along the GTO series,
the computational cost increases ten times at each step (aug-cc-
pCV5Z confirmed the trend, for the 24 molecules where this
basis set is available).

In conclusion, GTOs come from decades of developments,
where a large effort has been poured into improving the under-
lying algorithms and fine-tuning the basis set compositions.
This explains why a moderate basis set, such as TZ, is able to
give reasonable results with good performance. But when the
precision requirements are increased, a MW basis becomes
eventually superior.

5.2.4 Comparison with coupled cluster and experiment.
With the proper CBS limits established for the different DFT
functionals, we can assess their ability to reproduce the theo-
retical limit: full configuration interaction (FCI) in a CBS. In
practice coupled cluster singles and doubles with perturbative
triples corrections (CCSD(T)) including basis set extrapolation
has been taken as a reference.22 Additionally, experimental
data including zero-point vibrational corrections (ZPVCs) have
been considered. Several investigations of this type have been
conducted in the past,22,78–81 and our observations agree with
the current consensus regarding the CBS limit. It is well known
that the employed density functionals systematically under-
estimate the shielding constant: this has been attributed to a
too small HOMO–LUMO gap.78 Some attempts have also been
made to fix the problem by simple level shifting of the virtual

Table 8 (continued )

LDA BLYP PBE B3LYP PBE0

Q MW6 Q MW6 Q MW6 Q MW6 Q MW6

N2O Nmidt 86.40 84.65 86.80 85.26 90.70 89.13 80.60 79.02 83.10 81.57
N �3.80 �5.63 �5.50 �7.23 0.80 �0.85 �12.30 �14.54 �7.80 �9.92
O 178.50 177.11 173.80 172.38 175.60 174.24 172.90 171.44 174.20 172.79

OCS O 68.40 66.24 69.50 67.24 70.20 68.01 70.20 68.03 71.30 69.06
C 17.80 16.27 17.30 15.79 22.40 20.99 13.80 12.18 18.10 16.69
S 754.00 754.14 755.50 755.55 762.60 762.58 760.60 760.84 768.90 768.99

OF2 O �672.30 �679.48 �641.50 �648.23 �629.50 �636.19 �588.80 �595.24 �562.10 �568.38
F �98.50 �102.35 �102.30 �106.30 �91.40 �95.35 �73.80 �77.52 �56.60 �60.18

H4C2O O 338.00 337.73 329.80 329.40 333.30 332.96 340.00 339.70 345.10 344.82
C 136.00 135.28 133.20 132.46 137.50 136.81 138.30 137.63 143.50 142.83
H 28.60 28.57 29.20 29.20 29.10 29.05 29.30 29.28 29.20 29.20

PN N �429.30 �434.32 �421.20 �426.14 �415.00 �419.79 �443.30 �448.35 �441.60 �446.56
P �86.70 �88.28 �47.80 �49.40 �45.80 �47.05 �69.70 �71.30 �70.50 �71.87

SO2 S �300.50 �301.70 �276.30 �277.60 �259.70 �260.95 �312.20 �313.51 �303.10 �304.33
O �322.70 �327.49 �315.60 �320.33 �311.70 �316.47 �327.70 �332.57 �326.40 �331.24
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orbital energies,78,82,83 although the theoretical justification
is questionable.

We present in Table 10 the statistical errors with respect to
coupled cluster (CC) and the empirical equilibrium (experi-
mental values including ZPVC). In the comparison to CCSD(T),
O3 is omitted, because it is an extreme outlier with errors on the
order of 1000 ppm. In the comparison to experiments, around
one fourth of the data set is instead omitted because accurate
experimental data is lacking. The same data set as used by
Teale et al.22 has been used, and details about the excluded
systems can be found in their paper. All GTO calculations, as
well as all experimental numbers, are taken from the work of
Teale et al.22

Focusing first on the CBS limit, represented here by the
MW6 numbers, we observe an underestimation of 20–30 ppm,
without significant variations throughout the set of functionals
employed. The magnitude of the mean error (ME) and the
mean absolute error (MAE) is about the same, indicating that
the errors are systematic in sign. It is interesting to note that the
cancellation between functional error and basis set error is
rather systematic: a more or less uniform improvement of the
results, compared to both CCSD(T) and experiment is obtained
when a poorer basis set is employed. In particular, the aug-cc-
pCVDZ basis set displays an improvement of around 10–15 ppm
in the MAE, compared to the CBS limit, accompanied by a
significant reduction in the standard deviation (SD). This trend
has been already reported by Kupka and coworkers,79–81 and has
also been recommended to NMR spectroscopists.84

Finally, taking experimental values without ZPVC as reference
(not shown in the tables), the errors for generalized gradient
approximation (GGA) and hybrid functionals with the double-z
basis are further reduced to around 8 and 20 ppm for the MAE
and SD, respectively. The combination of several errors eventually
gives the right answer in the case of NMR shielding calculations
with DFT. This demonstrates the challenges of optimizing func-
tionals explicitly for a specific property, as for instance done for
the Keal–Tozer functionals for magnetic properties.85

6 Conclusions and outlook

We have presented a new real-space implementation of a static
linear response solver in a multiwavelet framework. We have
applied the formalism to compute magnetizabilities and NMR
shielding constants of small closed-shell molecules using HF
and Kohn–Sham DFT. We have shown that the MW basis
provides reliable numerical results for a wide range of molecular
systems, including challenging cases such as MgO and O3. The
accuracy of the MW basis depends only on a single input
parameter: the overall relative precision e. By tightening e, the
CBS values can be attained reliably and consistently. While high
accuracy is attainable also with traditional GTO bases, they rely
on a careful preoptimization of the parameters, and a wide
variety of customized basis set families are available for different
molecular properties, and it is the users responsibility to choose
a basis set that is suited for the problem at hand.

We have shown that the MW basis provides magnetic
response properties that are gauge invariant within the chosen

Table 9 Statistical basis set errors of all computed shielding constants
(including O3) for the different methods employed in the paper, MW calcula-
tions at e = 10�6 are taken as reference. For each combination of basis/
functional the following errors are reported: medium error, medium absolute
error, medium relative error, medium absolute relative error, standard devia-
tion and maximum error. Average timings in minutes on 16 CPUs

HF LDA BLYP PBE B3LYP PBE0

aug-cc-pCVTZ
ME 4.79 4.72 4.49 4.36 4.54 4.40
MAE 4.85 4.72 4.49 4.36 4.54 4.40
MRE 0.57 0.51 �0.72 �9.24 0.00 �1.03
MARE 6.10 8.12 6.40 13.91 5.93 5.69
SD 11.21 8.01 7.50 7.28 7.97 7.84
MaxE 61.14 38.89 35.82 34.88 40.12 40.13
Time 0.69 0.76 0.74 0.71 0.83 0.87

aug-cc-pCVQZ
ME 1.79 1.57 1.55 1.51 1.58 1.56
MAE 1.80 1.58 1.55 1.51 1.59 1.57
MRE 0.11 0.14 �0.28 �2.86 �0.07 �0.43
MARE 2.12 2.63 2.15 4.41 2.04 1.98
SD 4.46 2.84 2.75 2.71 2.96 2.96
MaxE 24.54 14.29 13.62 13.48 15.42 15.53
Time 8.0 6.6 6.8 6.9 7.9 7.8

aug-cc-pCV[TQ]Z
a = 1.63 ME 1.06 0.80 0.83 0.81 0.86 0.86

MAE 1.11 0.87 0.88 0.87 0.92 0.92
MRE 0.00 0.05 �0.17 �1.30 �0.09 �0.29
MARE 1.18 1.31 1.14 2.10 1.11 1.10
SD 2.83 1.61 1.62 1.62 1.77 1.79
MaxE 15.73 8.29 8.22 8.26 9.41 9.54

aug-cc-pCV[TQ]Z
a = 1.05 ME 0.18 �0.13 �0.04 �0.03 �0.01 0.03

MAE 0.38 0.27 0.27 0.27 0.28 0.28
MRE �0.13 �0.06 �0.04 0.58 �0.10 �0.11
MARE 0.26 0.42 0.31 0.86 0.23 0.21
SD 0.97 0.52 0.51 0.52 0.54 0.54
MaxE 5.19 2.40 1.96 2.14 2.13 2.29

MW3
ME 57.17 �15.99 �8.04 �10.13 �24.63 28.41
MAE 101.93 25.02 22.51 24.48 32.52 59.18
MRE �1.87 �11.19 4.01 �6.74 �4.62 1.38
MARE 24.68 33.50 18.98 27.53 21.31 20.75
SD 463.45 57.43 43.87 48.69 91.44 245.76
MaxE 2769.10 270.47 164.35 198.66 562.56 1697.14
Time 92.8 6.0 6.0 6.0 87.2 86.7

MW4
ME �0.08 �0.14 �0.41 �0.25 �0.02 0.14
MAE 1.08 0.68 0.85 0.85 0.79 0.98
MRE 0.27 0.03 0.21 �0.32 �0.21 �0.63
MARE 0.83 0.80 0.80 1.23 1.03 1.22
SD 2.67 1.14 1.64 1.65 1.39 1.98
MaxE 16.77 3.87 10.08 9.36 5.76 9.76
Time 215.8 14.5 14.6 15.7 221.5 248.2

MW5
ME 0.09 0.07 0.05 0.06 0.07 0.06
MAE 0.17 0.15 0.14 0.14 0.16 0.16
MRE 0.04 �0.08 �0.07 �0.53 �0.07 �0.08
MARE 0.20 0.30 0.20 0.61 0.22 0.22
SD 0.34 0.35 0.33 0.32 0.36 0.33
MaxE 1.55 2.10 2.01 2.00 1.72 1.53
Time 301.5 24.6 24.4 26.4 383.3 307.3
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relative precision, which means that the method does not rely
on a GIAO parametrization using field-dependent phase factors
for each AO (which complicates the implementation enormously)
in order to provide high-accuracy results for small molecules. For
larger systems, however, we expect a reduction of the overall
accuracy, as the size of both the paramagnetic and diamagnetic
contribution will grow faster than the total property, affecting the
relative precision that can be achieved. In order to treat larger
systems in the future, we plan to implement a local-origin
method, such as the individual gauge for localized orbitals (IGLO)
method of Kutzelnigg86 or the localized orbital/local origins
(LORG) method of Hansen and Bouman.87 As in the London
orbital approach, these methods also use different origins for
different orbitals, but at the MO rather than AO level, placing
the origin at the centroid of charge of each (localized) orbital.

While these methods also lead to gauge-origin independent
results, they rely on orbital localization, and in a GTO calculation
also on the use of resolution-of-the-identity to simplify certain
complicated integrals. The GIAO approach has therefore domi-
nated the calculation of magnetic properties during the past two
decades. However, some of these problems should not be present
in the MW framework because the exact placement of the origin
does not affect the quality of the results, as long as it keeps the size
of the paramagnetic contribution as low as possible, and the MW
basis satisfies the resolution-of-the-identity condition to within
the selected precision. By employing local origin methods, the
paramagnetic part can be decomposed into orbital contributions
of much smaller magnitude (as the origin is chosen individually
for each localized orbital), leading to good accuracy also for larger
molecules.

Table 10 Statistical errors of shielding constants with respect to extrapolated CCSD(T) and empirical equilibrium (experiment minus zero-point
vibrational corrections) results for the different methods employed in the paper. We report the basis set convergence of aug-cc-pCVXZ (X = D, T, Q) as
well as MW6, which can be considered converged to the CBS limit. For the CCSD(T) comparison O3 is omitted, while only the molecules where good
experimental values are available were included in the comparison with empirical equilibrium (see text for details). All GTO calculations, as well as all
experimental numbers, are taken from ref. 22. For each combination of basis/functional the following errors are reported: medium error, medium
absolute error, medium relative error, medium absolute relative error, standard deviation and maximum error

Extrapolated CCSD(T) Empirical equilibrium

D T Q MW6 D T Q MW6

RHF ME �6.83 �13.68 �15.73 �16.87 �1.96 �9.13 �10.87 �11.85
MAE 20.30 22.93 23.97 24.68 17.55 20.28 20.86 21.27
MRE �13.50 �26.74 �29.62 �31.01 �16.10 �24.30 �26.23 �27.28
MARE 40.31 59.74 68.18 72.84 36.61 56.06 62.64 66.25
SD 42.75 43.74 44.95 45.94 36.62 40.16 40.86 41.58
MaxE 211.40 190.00 191.80 193.17 161.30 170.80 168.30 169.27

LDA ME �16.76 �27.39 �30.04 �31.31 �13.56 �23.34 �25.62 �26.74
MAE 19.21 28.72 31.36 32.62 14.39 23.45 25.70 26.82
MRE �33.50 �49.04 �52.92 �54.49 �19.88 �29.72 �32.25 �33.33
MARE 51.45 90.37 102.03 107.61 35.90 71.58 80.88 85.31
SD 36.09 46.61 49.82 51.53 34.37 44.44 47.21 48.75
MaxE 180.50 212.70 225.20 232.38 178.40 210.60 223.10 230.28

BLYP ME �14.34 �24.53 �27.01 �28.27 �11.83 �21.32 �23.48 �24.60
MAE 16.53 26.02 28.48 29.72 12.96 21.60 23.73 24.83
MRE �18.25 �33.53 �36.84 �38.37 �10.35 �19.89 �22.07 �23.13
MARE 33.18 72.29 83.02 88.54 23.94 59.09 67.66 72.02
SD 29.36 39.23 42.27 43.93 27.50 37.41 40.19 41.74
MaxE 149.10 182.30 194.40 201.13 147.00 180.20 192.30 199.03

PBE ME �12.81 �21.87 �24.27 �26.71 �10.52 �18.98 �21.09 �22.32
MAE 15.23 23.30 25.69 28.12 12.00 19.21 21.29 22.53
MRE �18.92 �33.04 �36.23 �38.58 �10.99 �19.83 �22.01 �25.57
MARE 33.69 64.54 74.82 88.57 24.43 51.92 60.12 72.52
SD 28.22 36.23 39.15 41.75 26.58 34.65 37.36 37.66
MaxE 145.10 170.60 182.40 148.14 143.00 168.50 180.30 146.04

B3LYP ME �13.40 �23.04 �25.46 �25.50 �9.99 �19.12 �21.22 �22.17
MAE 15.02 24.49 26.89 26.90 10.98 19.39 21.45 22.36
MRE �18.74 �33.68 �37.07 �37.66 �12.88 �22.26 �24.48 �22.96
MARE 30.84 72.33 83.10 80.14 24.51 59.58 68.17 64.33
SD 27.99 37.23 40.12 40.78 23.71 33.67 36.18 38.86
MaxE 101.10 130.40 141.70 189.09 106.80 128.80 139.60 186.99

PBE0 ME �11.43 �19.85 �22.15 �23.37 �8.09 �16.17 �18.17 �19.23
MAE 13.64 21.26 23.54 24.74 9.72 16.60 18.40 19.44
MRE �18.48 �32.24 �35.37 �36.84 �13.38 �22.05 �24.20 �25.21
MARE 29.51 63.29 73.37 78.74 23.17 51.82 59.76 64.00
SD 26.58 33.76 36.43 38.00 22.47 30.42 32.71 34.09
MaxE 103.60 119.70 121.10 122.47 112.90 129.00 130.40 131.77
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We have employed our method to probe the CBS limit of HF
and DFT for a large test set of small molecules, initially proposed
by Lutnæs et al.21 for magnetizabilities and later Teale et al.22 for
NMR shielding constants. We found that the aug-cc-pCVXZ basis
sets performed very well for magnetizabilities, yielding typical
errors of B0.1% for quadruple-z compared to the MW basis-set
limit results. As expected, the NMR shielding constants were
more challenging for GTOs, with an average error of 1–2 ppm
(around 2–3%) for the largest aug-cc-pCVQZ basis. In order to
improve on these numbers, a two-point exponential basis set
extrapolation formula was employed. We found that the para-
metrization that is commonly used for total energies does not
transfer directly to properties, and a significantly lower exponent
(close to 1.0 rather than 1.63) should be used for the estimation
of the basis-set limit for the shielding constants. Although
the optimal value might differ somewhat between different
functionals, a common exponent of 1.05 was able to reduce
the errors by almost an order of magnitude for all functionals
that were considered, compared to the quadruple-z value.

Finally, we performed a comparison between the CBS limit for
HF and DFT and accurate CC and experimental values for the
shielding constants. We found that the original study by Teale et al.22

using GTO basis sets were close enough to the CBS limit for their
conclusions with respect to CC and experiment to hold. We found,
however, that there is a significant systematic – yet fortuitous –
cancellation of errors between the functionals and the basis set: with
respect to raw experimental values (not zero-point vibrational energy
corrected), surprisingly accurate shielding constants can be achieved
with a moderate aug-cc-pCVDZ basis set.

The current implementation is limited to SCF levels of theory,
and since correlated wave function methods rely on at least six-
dimensional numerical representations, they are extremely
expensive in a MW framework. However, developments in these
directions have been presented by Bischoff and Valeev.88–90

The performance of our MW approach, compared to GTO
calculations, gives a mixed picture. At moderate accuracy, GTOs
deliver reasonable values with limited effort (aug-cc-pCVTZ),
whereas our MW3 values are not as accurate and computation-
ally more expensive. The picture changes dramatically if higher
accuracy is demanded: increasing the accuracy with GTOs
implies a 10-fold increase in the computational cost, whereas
MW calculations are only twice as expensive at each step along
the MWX (X = 3, 4, 5, 6) series. As a result, aug-cc-pCVQZ
calculations are only 2–3 times faster but less accurate than
MW4. Some preliminary tests show that MW5 is indeed less
expensive than the aug-cc-pCV5Z basis. The main performance
bottleneck in the current MW implementation is clearly the exact
HF exchange, which yields a 10-fold increase in the timings
compared to pure functionals.
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