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Statistics, damned statistics and
nanoscience – using data science to meet
the challenge of nanomaterial complexity

Baichuan Sun, Michael Fernandez and Amanda S. Barnard*

For many years dealing with the complexity of nanoscale materials, the polydispersivity of individual

samples, and the persistent imperfection of individual nanostructures has been secondary to our search

for novel properties and promising applications. For our science to translate into technology, however,

we will inevitably need to deal with the issue of structural diversity and integrate this feature into the

next generation of more realistic structure/property predictions. This is challenging in the field of

nanoscience where atomic level precision is typically inaccessible (experimentally), but properties can

depend on structural variations at the atomic scale. Fortunately there exists a range of reliable statistical

methods that are entirely applicable to nanoscale materials; ideal for navigating and analysing enormous

amount of information required to accurately describe realistic samples. Combined with advances in

automation and information technology the field of data science can assist us in dealing with our big

data, characterising our uncertainties, and more rapidly identifying useful structure/property

relationships. Taking greater advantage of data-driven methods involves thinking differently about our

research, but applied appropriately these methods can accelerate the discovery of nanomaterials that

are optimised to make the transition from science to technology.

Scientists have been generating big data for decades; in many
cases without even realising it. Unfortunately, in our search for
the ‘‘one perfect result’’, much of our data has not been fully
utilised. Once the ‘‘one perfect result’’ has been published, the
remaining data is subsequently undervalued; archived and
ignored. Nanoscience, emerging around the time when synthesis
and characterization methods simultaneously improved in
terms of the selectivity and specificity, is a perfect example.
Over the past two decades it has been well established that
many fundamental thermochemical, mechanical, electronic,
optical and magnetic properties of nanomaterials have a strong
dependence on size,1–7 shape,8–12 the solid phase,13–15 and the
surface chemistry.16 These dependencies are referred to as
structure/property relationships,17,18 and they underpin the design,
development and performance of almost all new emerging
technologies. This includes new medical platforms,19 electronic
devices,20 fuel cells,21–23 and coatings.24 Tuning the properties to
improve performance,25,26 is what nanotechnology is all about,
but this can only be achieved by controlling the structure
of the nanomaterial, typically by employing variations in the
temperature,27–31 chemical environment,32–34 exposure to external

electromagnetic fields,35,36 substrates,37,38 the density of defects39

and growth kinetics (time).40–44

Although experimental studies aim to identify and quantify
structure/property relationships with specific applications in mind,
many of the challenges are independent of the final objectives and
are shared by all. The inability to control one structural or processing
parameter independently often masks the particular physico-
chemical features that are most important, and makes the
connection from properties to performance difficult to address.
Experimental methods cannot, at this stage, access atomic level
precision, and struggle to make definitive associations between a
desirable functional property and a realistically controllable
structural feature. This is undoubtedly why they are called
structure/property relationships, and not structure/property
rules, but should not been viewed as a significant impediment.
One area in which imperfection has not hindered the transition
from nanoscience to nanotechnology is in the field of electronics.
For many applications it is not essential to exercise precise control,
provided the impact of a given imperfection is small, as their
combined effect is usually additive not a multiplier, and the
imperfections of individual structural elements contribute to a
narrow distribution.45 The key is to design with some uncertainty
in the structure/property relationships from the outset.

Theoretical and computational methods have also been used to
investigate the structure/property relationships of nanomaterials by
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many groups around the world. In general, this problem is ideally
suited to theory and simulation, since it is possible to control the
structure with atomic level precision. It is also possible to generate
structure/property relationships specific to particular thermo-
chemical environments, which is invaluable in assessing the
meta-stability of equilibrium or kinetically grown nanoparticles
transplanted into highly non-equilibrium storage, operational or
natural environments. However, the vast majority of structure/
property predictions in materials and nanoscience involve
simulations of single, individual (isolated) nanostructures.
Knowledge of single-particle properties is very important, as they
provide insights into the stability of each structure (subject to a
set of conditions), as well as helping to identify novel structures
to target for particular applications. However, the reason for this
single-particle approach is usually pragmatic, not scientific.
Modelling in nanoscience was born of more mature areas such
as solid state physics, where materials are continuous, and
therefore well described by irreducible subunits; or chemistry,
where samples can be purified and all subunits (molecules) are
the same. Unfortunately, neither of these assumptions holds for
nanomaterials.

By virtue of the finite size and low dimensionality, nanoparticles
have no translational symmetry, and so cannot be described by a
standard irreducible (periodic) subunit; we need to model the
whole nanostructure to understand its properties. Nanomaterials
cannot be purified, and polydispersivity persists at the atomic
level irrespective of how carefully they are grown, fabricated or
processed. Idealised samples with perfect monodispersivity are
commercially unrealistic. It will simply be too expensive to
ensure all structures are atomically identical. However, when
we calculate the properties of a single ‘‘representative’’ structure,
the (computational) measurement uncertainty may be vanishingly
small, but the statistical uncertainty goes to infinity. This effectively
makes the prediction technologically obsolete.

It is possible to restrict the dispersivity of samples on a
commercially relevant scale, but this comes with an additional
cost to the manufacturing process every time another restriction
is introduced. To predict which restrictions will be worthwhile
we need to model entire ensembles of structures, accounting for
a much larger amount of the structural configuration space.
Structure/property relationships should not be a series of delta
functions; they are distributions, just as the structure of experi-
mental samples of nanoparticles is made up of mixtures and
distributions of sizes, shapes and defects.

What is data science?

Undoubtedly one of the biggest things to happen in the
physical sciences in recent years is the recognition that the
quantity and complexity of materials data is accelerating, and
we need new ways of analysing, visualising, and interrogating
this deluge of information. The emergence of materials infor-
matics to answer this call (following the famous announcement
of the US Materials Genome Initiative (MGI) by US President
Barak Obama in June 201146) heralds a new era in research.

The MGI was born of the desire to overcome trial-and-error and
the lack of systematic data in materials research, by leveraging
large-scale collaborations between statisticians, materials and
computer scientists, and spearheading the development of
novel scalable approaches to discover, manufacture, and deploy
advanced materials more rapidly, and at a lower cost.47

The MGI is not the only initiative of this type, as it is
essentially a large scale exercise in data science. As indicated
above, the success of this (and similar) venture(s) is contingent
on collaborations between three bastions of science: Computer
Science to develop the communication and visualisation
technologies; Mathematics and Statistics to interrogate and
interpret the information; and Scientific Domains such as
physics and chemistry to provide the context, insights and
explanations.

Each of these disciplines add unique value, and at the
interface between them different types of research is con-
ducted, as illustrated in Fig. 1. At the interface between the
physical science domains and mathematical modelling we have
the traditional ‘‘normal science’’ undertaken using theoretical,
computational or experimental methods. The combination of
science domain knowledge and computer science has given us
high-throughput methods, using automated (robotic) systems.
And finally, collaborations between mathematical and computer
sciences developed informatics, which can be applied auto-
nomously to any domain.

At the nexus we have data science, where the combination of
knowledge and experience is greater than the sum of the parts.
Beyond the challenges associated with generating, hosting,
standardizing and interpreting results, data science is essentially
a new field research. It is the rightful home of our scientific ‘‘big
data’’, as expertise from each discipline is needed to effectively
generate, analyse and utilise it.

Fig. 1 The convergence of traditional scientific and technical disciplines,
and the relationship to data science.
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Big data challenges for the science of
small things

Nanomaterials, in particular, represent the greatest challenge
for data science, since characterising the structural configuration
space alone involves ‘‘big data’’, even before we include the
impact of the synthesis, processing or storage environment,
and the rich variety of functional properties. We can meet this
challenge, but in so doing we must be ready to change the way
we think about research in the field.

‘‘Some’’ vs. ‘‘All’’

For most of history, scientists have worked with relatively small
data sets, because the tools for collecting, organising, storing,
and analysing information were poor. An enormous amount of
time was taken in planning research and, based on intuition
and assumptions, working out what information could be
omitted from the outset. This was achieved through sampling,
so that (within a certain margin of error) we could infer the
properties of a total sample of material or nanoparticles based on a
small sub-set of ‘‘representative’’ structures. When pre-selecting
these ‘‘representative’’ sub-sets it was also necessary to know how it
would be used in the future (so that data that we did not plan to use
could be ignored), so the data that was collected was often useless
in other contexts. Winnowing the required information down to
the barest minimum made science practical, but one wonders
how many discoveries were never made because we judged the
outcomes before doing the work.

Fortunately the technological environment has changed,
and dealing with massive amounts of data is now far less
limiting. If we collect all the data (‘‘N = all’’, to use the
terminology of statistics) many of our technical and scientific
problems disappear. We do not need to know beforehand what
we plan to use it for. We do not need to know which structures
are ‘‘representative’’ from the outset. If some of the structures
are chemically unrealistic or physically unstable, they will
naturally be identified as statistical outliers in the data set. In
some cases ‘‘N = all’’ may still be infeasible, but with the advent
of high-throughput simulation of nanomaterials (expedited by
the perpetual investment in high performance computing that
we have enjoyed in recent years, and are likely to continue to
enjoy for years to come) it is feasible to capture vastly more of a
phenomenon than a simple sub-set. In particular, the ability to
couple this with electronic structure methods provide an
unprecedented capability to identify and characterise structure/
property relationships with a level of accuracy that is essential
for making reliable predictions (and explanations) for the vast
majority of high performance applications.

‘‘Clean’’ vs. ‘‘Messy’’

However, if we are to circumvent the careful planning of small
curated sub-sets of data there is a trade-off to be made. When
we increase the scale by orders of magnitude, we will have to
tolerate some messiness. Size-dependent trends, for example,
will no longer be smooth linear (or non-linear) relations. There
will be noise, and there will be uncertainty. The obsession with

accuracy and precision is in some ways an artefact of an
information-constrained environment, and while the value of
accuracy and precision should not be understated, tapping
vastly more data means that we can now allow some inaccuracies
to slip in (provided the data set is not completely incorrect).

In return we benefit from the insights that a massive body of
data provides. By reproducing the polydispersivity and structural
complexity characteristic of experimental samples we gain the
ability to quantify our uncertainties with statistical significance.
We gain error bars, which are traditionally omitted from computa-
tional studies (much to the chagrin of experimentalists), and we
gain insights into the variance in structure/property relationships,
which is essential for the design of future products. We can predict
quality factors, and therefore classify our materials.

‘‘Causation’’ vs. ‘‘Correlation’’

The final challenge to our way of thinking, is the move away
from always trying to understand the deeper reasons behind
how the world works, and focus on extracting knowledge from
the correspondence of phenomena. ‘‘Normal science’’, based
exclusively on domain knowledge (articulated by mathematical
and statistical models, as highlighted in Fig. 1), seeks the
underlying causes that govern structure/property relationships:
why does a specific structure give rise to a particular property.
Data science seeks the overarching associations that manifest
as structure/property relationships: how does a specific structure
give rise to a particular property. The difference is subtle, but
overarching associations can be identified much more quickly
than underlying reasons, and finding one does not prohibit us
from seeking the other.

This distinction, and the positive impact correlations can
have in driving research is evidenced by the success of the field
of bioinformatics. Bioinformatics has become an important
part of many areas of biology, facilitating the extraction of
useful results in big data sets and elucidating evolutionary
aspects of molecular biology. In the field of genomics, it aids
in sequencing and annotating of genomes, and the development
of ontologies to interrogate biological data. Most importantly, it
enables us to more rapidly make reliable decisions in bio-medical
research, and more accurately quantify the probable risks.
Bioinformatics has not replaced biology or medicine, but
provides another useful tool in their kit – just as nanoinformatics
will provide a new tool in ours.

Statistical nanoscience
The power of probability distributions

One of the most simple things we can do when confronted with
a large, messy data set of nanostructures is to take an average.
We feel justified in doing this because this is effectively what is
measured in conventional laboratory experiments; an average
over all of the structures present in the sample, and an error bar
accounting for the statistical and measurement uncertainty.48

However, taking averages can be more useful than merely
condensing a messy list of results to a single convenient value.
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Firstly, the simple numerical average (dividing the sum of the
results by the number of results) is only truly applicable when
each and every structure contributes the same amount to the
ensemble average (has an equal weighting). This corresponds
to a frequency distribution, which is entirely valid if we have on
the order of Avogadro’s number of structures in the data set or
legitimately have gathered N = all in each case. However, if we
are using a smaller, more manageable data set (N o all) it is
entirely likely that some structures will be more important than
others, and a different distribution will be more suitable.

In many cases the structure and properties of nanoparticles
exhibit a normal distribution (or some variant there of) and,
provided the data set spans the range of the configuration
space, it is a simple matter to weight each individual data point
accordingly and divide by the canonical partition function.49

The properties of structures with a higher probability of observation
will contribute more to the expectation value of the sample, and the
properties of outliers will hardly contribute at all. Alternatively,
there are cases where a thermodynamic (Boltzmann) distribution is
more appropriate, so that the properties of structures that are more
thermodynamically stable contribute more to the average, and the
properties of unstable or meta-stable structures are suppressed.50,51

Different statistical distributions can be applied as needed, easily
compared, rapidly explored and conveniently chosen to correspond
with the outcomes of specific experimental conditions or industrial
processes.49 This includes applications in more mature areas in the
nanoelectronics industry.

Another advantage of paying mind to how we average over
our large, messy sets of results is that we can use the distributions
to define the variance and ultimately the scattering (or bandwidth)
of the properties. In addition to understanding how different
synthesis techniques or purification processes may tune the (peak
value of) specific properties, we can also begin to predict how the
same techniques or processes impact the property dispersion. The
expectation value and the variance (the property, and the property
dispersion) can be combined to deliver a type of quality factor
(Q-factor) that facilitates the classification of nanomaterials
and informs materials design by predicting how different
experimental strategies can impact performance.52,53 Carefully
tuning a property to a specific peak value (improved selectivity)
is useless if the dispersion increases and a range of alternative
values are equally likely (loss of sensitivity).

Structure searching, sampling and reduction methods

Averaging is a convenient way to avoid dealing with the complexity
of large data sets, but statistics also offer some powerful ways to
characterise the polydispersivity and heterogeneity of nanoparticle
ensembles, and to identify the truly relevant structures among the
billions of possibilities. Different dimension reduction techniques
are routinely applied to find patterns in high complexity data
sets across different research fields from pharmaceutical to earth
sciences.54,55 For example, k-means clustering and principal
component analysis (PCA) are techniques for unsupervised
pattern recognition commonly used to identify intrinsic patterns
in material science data.56 Clustering methods assign materials
that share similar features to individual groups, while PCA

transforms the data into a new coordinate system (the so called
principal components, PCs) using an orthogonal linear transfor-
mation where the axes are oriented to account for maximal
variation in the data set.

Alternatively, archetypal analysis (AA)57 is a relatively new
matrix factorisation method that results in easy interpretable
components similar to PCs but with added flexibility over
clustering.58 Cutler and Breiman first introduced archetypal
analysis in 1994 to study air pollution and the shape of human
heads, but it can be used to identify any individual structure
with a convex combinations of features that optimally approximate
the features of the entire data set, yielding a set of archetypes or
‘‘pure materials’’ on the convex hull.59 AA has been applied in the
identification of extreme practices in bench-marking and market
research; signal enhancement and feature extraction of IR image
sequences;60,61 extracting features from different high-dimensional
data sets; identifying extreme and representative human genotypes
within the population;62 analysis of gene expression data63 and
most recently to the identification of archetypal nanoparticles.64

Data mining and analytics

The unprecedent speed and volume at which nanomaterials are
being currently investigated, both experimentally and in silico,
clearly outpaces our existing capacity to store, analyse, visualise
and ultimately interpret results; a problem that is discussed
further in the next section. In this ‘‘big data’’ scenario, ‘‘normal
science’’ (defined above) is unequipped to manage the diversity
of large and complex datasets, which are better handled by
modern data mining and informatics techniques. Combining
virtual high-throughput data and ‘‘big data’’ analytics sheds
new insights on the structure/property relationships of more
experimentally realistic samples of nanomaterials, and can
accelerate ground-breaking innovations.

Data mining techniques are based on structural similarity,
which in the case of nanoparticles can be detected by different
types of structural descriptors from simple geometrical features
to more sophisticate topological, electronic, and quantum
chemical features. Once a large set of structures are collected
these descriptors can be used to investigate structure/property
relationships in quantitative terms. Data mining methods can
extract useful information using abstract structural representations
from graph information theory, or computational predictive
tools can be developed such as quantitative structure/property
relationships (QSPR) models.65

In particular, structure/property relationships that are
impacted by variability in particle size, shape, surface structure
and chemistry (etc.) can be computed using machine learning
techniques such as linear multiple regression (MLR),66 decision
tree (DTree)67 and k-nearest-neighbour (kNN),68 as well as more
sophisticated nonlinear techniques such as artificial neural
networks (ANNs)69 and support vector machines (SVM).70

Models are trained using structural features from a sub-set of
the data, while the remaining fraction of the data set is used to
test the predictability of the models. Powerful machine learning
algorithms, such as ANNs69 and SVMs,70 can produce accurate
QSPR predictive tools,72 whilst simpler QSPR models implementing
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MLR and DTree can reveal simple correlations and ‘‘rules-of-
thumbs’’ that can guide rational nanomaterials design.65

In addition to this, genetic algorithms (GAs) are a different
type of stochastic optimisation method inspired by evolutionary
principles.71 Each GA solution explores different regions in
parameter space, in such a way that many possible solutions
are investigated simultaneously. When our nanostructures are
too complicated, and functional properties could depend on too
many structural features, GAs reduce the complexity of the QSPR
models by identifying which features are the most influential,
and which are contributing to the noise.65

High-throughput automation

So how do we gather our big data in the first place? Traditional
experimental testing and validation of nanomaterials can be
time-consuming and plagued with inaccuracy due to human
errors, and so considerable effort is being directed toward the
development of high-throughput screening (HTS) methods,73

consisting of robotics, mechanical controllers, sensitive detectors
and data processing software (among other things). Robotic
systems, once restricted to pharmaceutical companies, are now
being used to simultaneously synthesise and characterised large
arrays of hundreds to thousands of subtlety unique samples.
These systems offer advantages in terms of increased speed and
accuracy, reduced sample volumes, and an increase in the sheer
number of samples that can be tested, in addition to working
around the clock without human intervention. Automation is
essential to the collection of big experimental data sets, but these
systems can be expensive.

Large-scale computational screening nanostructures is also
gaining momentum, as evidenced by recent work on metal–
organic frameworks (MOFs);74 a promising nanoporous material for
natural gas storage usage. From 102 metal and organic molecule
‘‘building blocks’’ Wilmer, et al.75 generated 137 953 hypothetical
MOFs, with constraints of single type metal atom and functional
group, and no more than two kinds of organic links within each
MOF unit cell. Each structure can be defined by the characteristic
volumetric/gravimetric surface area, pore volume, void fraction,
dominant pore diameter, and functional group types, and were
correlated with the functional properties such as methane uptake.75

This study provided valuable guidance for MOFs development for
natural gas storage, and could be rapidly expanded if more metallic
centres or organic linkers were included. Much like automated
experiments, mathematical algorithms can systematically generate
even more unique, hypothetical structures suitable for computa-
tional structure/property predictions.

Technical limitations

However, regardless of the source, as big data is generated the
physical hardware limitations inevitably become a bottleneck
for high performance data analysis. Co-location of big data sets
is the first technical challenge, and in many cases large data
sets must be split up and distributed among different storage
spaces (in clusters). Transfer of data back and forth to facilitate

unified analyses is inconvenient, and frequently limited by
input/output (I/O) performance. These issues first arise in the
early stages of data collection, when (typically) unstructured
data must be curated to populate a relational database; organised
into tables which can be analysed using standardised methods
such as the Structured Query Language (SQL) or a suitable
alternative.

Currently this issue is circumvented by sending processing
and analysis programs to each data storage node to work
independently on a portion of the whole data, rather than
sending all of the data to a single computational node. Upon
completion the computational results are collected, co-located
and summarised on the master node, and the big data remains
distributed. MapReduce, inspired by functional programming,
is a popular example, and is well supported by the open-source
framework Apache Hadoop. Though Hadoop itself is written in
Java, complementary mapper and reducer programs can be
developed in other languages including C++ or Python. A package
is also available for Mathematica to interface with Hadoop
Distributed File System (HDFS).76 However, the MapReduce
programming model is designed for batch processing and
can hold back the response to analytical questions. Some of
these limitations are overcame by in-memory processing in
Spark, the open-source cluster computing framework from the
Apache Software Foundation, that allows real-time, responsive
applications. Even if the challenge of nanomaterial complexity
increases faster than the physical limits of data storage media,
the development of new algorithms can help to overcome any
technical barriers to innovation.

Open access; open minds

One persistent challenge, however, is ensuring the longevity of
data sets and data storage. To enhance global collaboration,
avoid unnecessary repetition of work, and enable open-access
to publicly funded research results, there is increasing demand
for long-term storage of scientific data. Some cloud-based
scientific data storage facilities are already available, such as
the CSIRO Data Access Portal,77 the NoMaD Repository,78 and
the Materials Project.79 Taking greater advantage of cloud-based
computing resources provided, for example, by Amazon EC2/
RDS/EMR, is one strategy that could also free researchers (or any
people who are interested in the data) from the limitations of
their local computer’s capacity. In addition to this, more data
would be generated and accumulated using the cloud-based
computing environments, and reduce the carbon footprint of
computational research.

Concluding remarks

The application of data-driven science in the fields of nanoscience
and nanotechnology represents a new research direction that is at
the heart of the innovation ecosystem of the future. Data science
does not replace ‘‘normal science’’; it complements it. It is not a
competitive approach; it is a collaborative one. Big data is not just a
matter of creating somewhat larger samples; it is about harnessing

Nanoscale Horizons Focus

Pu
bl

is
he

d 
on

 0
2 

Fe
br

ua
ry

 2
01

6.
 D

ow
nl

oa
de

d 
by

 F
ai

l O
pe

n 
on

 5
/7

/2
02

5 
8:

13
:4

3 
A

M
. 

View Article Online

https://doi.org/10.1039/c5nh00126a


94 | Nanoscale Horiz., 2016, 1, 89--95 This journal is©The Royal Society of Chemistry 2016

as much of the existing data as possible about what is being studied.
It is about identifying and understanding correlations that are
impossible to discern from a limited set of pre-determined (often
idealised) structures; about dealing with complexity and extracting
more value from the research we have already invested in. This is
ideal for cases where structure/property relationships are unknown,
or poorly understood, as data science does not require a deep
understanding of the structure or properties at the outset. By adding
data science to our scientific toolkit, we will be able to more rapidly
identify areas where deep understanding (the realm of normal
science) can have real impact; but we will be able to go even further.
We will be able to predict the quality of properties, in addition
to quantity; the sensitivity (bandwidth) in addition to the
selectivity (peak position). Perhaps most importantly, we will
regain opportunities for serendipitous discovery, as we do not
need to restrict our science before we even begin.
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S. Cassaignon and Th. Pauporté, J. Photochem. Photobiol., A,
2012, 232, 22–31.

15 P. O. Andersson, C. Lejon, B. Ekstrand-Hammarström,
C. Akfur, L. Ahlinder, A. Bucht and L. Österlund, Small,
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