Issue 1, 2016

Interface modification strategy based on a hybrid cathode buffer layer for promoting the performance of polymer solar cells

Abstract

An interface modification strategy based on a hybrid cathode buffer layer (HCBL) is proposed and demonstrated through blending the interface modifier (4-fluoro-1,2-phenylenediamine, FPDA) with the host material (poly[(9,9-dioctyl-2,7-fluorene)-alt-(9,9-bis(3′-(N,N-dimethylamino)propyl)-2,7-fluorene)], PFN). By introducing FPDA, the carrier generation and extraction processes are regulated through the inhibition of interface exciton quenching, enhancement of hole blocking and passivation of electron transport, which are elaborated through steady-state and transient fluorescence spectra, frequency and bias related impedance analysis, and current density–voltage response. It is found that these three factors change simultaneously with the variation of FPDA content in HCBL, and the trade-off between the first two positive factors and the last one negative factor determines the final device performance. For instance, when the FPDA : PFN weight ratio is 0.16, the power conversion efficiency of the device increases to 6.24%, which is promoted by almost 20% in comparison with 5.22% of the pristine device. Thanks to the effectiveness, controllability and processability, this interface modification strategy offers a general method to provide an electrode buffer layer with multiple functions and a device with improved performance.

Graphical abstract: Interface modification strategy based on a hybrid cathode buffer layer for promoting the performance of polymer solar cells

Supplementary files

Article information

Article type
Paper
Submitted
04 Nov 2015
Accepted
15 Dec 2015
First published
17 Dec 2015

RSC Adv., 2016,6, 692-700

Author version available

Interface modification strategy based on a hybrid cathode buffer layer for promoting the performance of polymer solar cells

F. Ye, Z. Chen, X. Zhao, Z. Li and X. Yang, RSC Adv., 2016, 6, 692 DOI: 10.1039/C5RA23163A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements