
Chemical
Science

EDGE ARTICLE

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

1 
D

ec
em

be
r 

20
15

. D
ow

nl
oa

de
d 

on
 9

/2
2/

20
24

 8
:3

3:
29

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue
Dichotomous me
School of Chemistry, University of Bristol, B

bris.ac.uk; Fax: +44 (0)117 925 1295

† Electronic supplementary information (
and characterisation data for all compoun
and crystallographic data in CIF or
10.1039/c5sc04037j

Cite this: Chem. Sci., 2016, 7, 1508

Received 23rd October 2015
Accepted 17th November 2015

DOI: 10.1039/c5sc04037j

www.rsc.org/chemicalscience

1508 | Chem. Sci., 2016, 7, 1508–1513
chanistic behavior in Narasaka–
Heck cyclizations: electron rich Pd-catalysts
generate iminyl radicals†

Nicholas J. Race, Adele Faulkner, Megan H. Shaw and John F. Bower*

Pd-catalyzed cyclizations of oxime esters with pendant alkenes are subject to an unusual ligand controlled

mechanistic divergence. Pd-systems modified with electron deficient phosphines (e.g. P(3,5-(CF3)2C6H3)3)

promote efficient aza-Heck cyclization, wherein C–N bond formation occurs via alkene imino-palladation.

Conversely, electron rich ligands, such as P(t-Bu)3, cause deviation to a SET pathway and, in these cases,

C–N bond formation occurs via cyclization of an iminyl radical. A series of mechanistic experiments

differentiate the two pathways and the scope of the hybrid organometallic radical cyclization is outlined.

This study represents a rare example in Pd-catalysis where selection between dichotomous mechanistic

manifolds is facilitated solely by choice of phosphine ligand.
Introduction

Palladium-catalyzed processes are fundamental to organic
synthesis, and it is estimated that one in ve C–C bond
formations employed in commercial syntheses of new drugs are
reliant on this technology.1 Signicant and continuing efforts
are focused on the development of diverse phosphine ligands to
enhance key mechanistic steps, such as oxidative addition.2

Consequently, the overall efficiency of a given process is
strongly dependent on the exact choice of P-based ligand.
However, cases where this choice causes deviation from
common two electron redox processes to one electron, radical-
based pathways are rare.3 This is despite the well documented,
but underappreciated propensity of Pd(0)-systems to undergo
single electron transfer (SET) oxidative addition in certain
contexts,4 and the emergence of a series of hybrid organome-
tallic-radical methodologies that invoke the intermediacy of
Pd(I)-complexes (Scheme 1A).5

We have reported a range of aza-Heck methodologies that
involve oxidative addition of Pd(0)-catalysts into the N–O bond
of O-pentauorobenzoyl oxime esters 1 (Scheme 1B, two elec-
tron pathway).6–8 Addition of the resulting imino-Pd interme-
diate 2a across a pendant alkene leads to aza-Heck (3)6,7 or
cascade products.8 For these processes, electron decient
ligand systems, especially P(3,5-(CF3)2C6H3)3, are most effective,
as they enhance migratory insertion and suppress
ristol, BS8 1TS, UK. E-mail: john.bower@

ESI) available: Experimental procedures
ds are provided. CCDC 1429194. For ESI
other electronic format see DOI:
protodepalladation of 2a/b; this latter pathway leads to the
corresponding ketone 4 and predominates with electron neutral
ligand systems, such as PPh3.7 In this report we disclose that
Scheme 1

This journal is © The Royal Society of Chemistry 2016

http://crossmark.crossref.org/dialog/?doi=10.1039/c5sc04037j&domain=pdf&date_stamp=2016-01-21
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c5sc04037j
https://rsc.66557.net/en/journals/journal/SC
https://rsc.66557.net/en/journals/journal/SC?issueid=SC007002


Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

1 
D

ec
em

be
r 

20
15

. D
ow

nl
oa

de
d 

on
 9

/2
2/

20
24

 8
:3

3:
29

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
electron rich phosphines (e.g. P(t-Bu)3) do not lead to Heck type
products, but instead promote exclusive access to radical mani-
folds (Scheme 1B, single electron pathway). This has important
implications for processes reliant upon the oxidative addition of
Pd(0)-catalysts into oxime ester N–O bonds. Indeed, in addition
to aza-Heck reactions,6,7 this catalysis platform has enabled
diverse methodologies, including alkene 1,2-carboaminations,8

aryl C–H aminations,9 alkene aziridinations,10 alkene 1,2-iodoa-
minations,11 benzyne 1,2-aminofunctionalizations,12 and C–C
bond activations.13 Furthermore, this study provides convenient
and unique access to iminyl radical chemistry,14 and in broader
terms, represents a rare example in Pd-catalysis where selection
between dichotomous mechanistic manifolds is facilitated solely
by choice of phosphine ligand.3
Results and discussion

Under optimized aza-Heck conditions, which use P(3,5-
(CF3)2C6H3)3 as ligand, cyclization of O-pentauorobenzoyl
oxime ester 1a to alkene 3a occurs in 93% yield (Table 1, entry
3).7a The O-pentauorobenzoyl group is important, as, following
oxidative addition, the pentauorobenzoate leaving group
undergoes facile protodecarboxylation to C6F5H, which drives
access to cationic intermediate 2a, as required for cyclization.8

When PPh3 was used as ligand, a 30% yield of 3a was achieved
(entry 1) and the mass balance consisted predominantly of the
corresponding ketone, which likely arises via proto-
depalladation of intermediate 2b. For O-pivaloyl oxime ester 1b,
cyclization to 3a was not observed using either P(3,5-
(CF3)2C6H3)3 or PPh3, and, in both cases, the only identiable
Table 1 Ligand effects on the cyclization of oxime esters 1a/b

Entry R Pd-source/ligand

1 C6F5 Pd2(dba)3/PPh3

2 C6F5 Pd2(dba)3/P(3,5-(CF3)2C6H3)3
3 C6F5 Pd2(dba)3/P(3,5-(CF3)2C6H3)3

c

4 C6F5 (dt-bpf)PdCl2
b

5 t-Bu (dt-bpf)PdCl2
b

6 t-Bu Pd2(dba)3/S-Phos
7 t-Bu Pd2(dba)3/P(1-Ad)2n-Bu
8 t-Bu Pd2(dba)3/P(Cy)3
9 t-Bu Pd2(dba)3/P(t-Bu)3
10 t-Bu PEPPSI-IPr
11 t-Bu (dt-bpf)PdCl2

b,c

12 t-Bu (dt-bpf)PdCl2
b,c

13 t-Bu (dt-bpf)PdCl2
b,c

a 1 : 2 [Pd] : ligand for monodentate systems, 1 : 1 [Pd] : ligand for bidentat
Pd/L used. d Isolated yield.

This journal is © The Royal Society of Chemistry 2016
product was the corresponding ketone. Here, the issue is likely
that the pivalate leaving group does not dissociate readily aer
oxidative addition to provide access to key cationic intermediate
2a. Thus, effective aza-Heck cyclization requires both an O-
pentauorobenzoyl oxime ester and an electron decient
phosphine ligand, whereas protodepalladation predominates
using electron neutral phosphines and/or weakly dissociating
leaving groups. Exposure of either 1a or 1b to the electron rich
Pd-system (dt-bpf)PdCl2 did not lead to aza-Heck product 3a or
signicant quantities of ketone. Instead, adduct 5a was isolated
in 72% yield in both cases (entries 4 and 5). 5a is a formal
‘reductive’ aza-Heck product, however, as outlined later, this
likely arises via a Pd(0)-triggered radical-based cyclization. The
situation appears to be general for a range of electron rich
phosphines, including P(t-Bu)3, and PCy3, and other classes of
strong donor ligand, such as N-heterocyclic carbenes (entries 6–
10). The use of common hydride sources, such as HCO2H, in
conjunction with dt-bpf as ligand was detrimental to the yield of
5a. However, common hydrogen atom donors, such as 1,4-
cyclohexadiene (1,4-CHD) and g-terpinene enhanced cyclization
efficiency, with the latter providing 5a in 88% yield (entries 12
and 13). These observations provided early evidence for
a radical based pathway.15

Cyclization of 1b under optimized ‘reductive’ aza-Heck
conditions, but in the presence of TEMPO (150 mol%) provided
trapping adduct 6 in 80% yield and 10 : 1 d.r.; the structure of
the major diastereomer was conrmed by single crystal X-ray
diffraction (Scheme 2A).16 An analogous trapping experiment on
1a, using optimized ‘standard’ aza-Heck conditions, did not
generate 6, and ‘standard’ aza-Heck product 3a was formed in
Temp/�C Additive 3ad (%) 5ad (%)

100 None 30 <5
120 None 90 <5
60 None 93 <5

120 None <5 72
120 None <5 72
120 None <5 10
120 None <5 29
120 None <5 30
120 None <5 50
120 None <5 27
70 None <5 67
70 1,4-CHD <5 80
70 g-Terpinene <5 88

e systems. b dt-bpf¼ 1,10-bis(di-tert-butylphosphino)ferrocene. c 5mol%

Chem. Sci., 2016, 7, 1508–1513 | 1509
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Scheme 2 Preliminary mechanistic studies.

Scheme 3 Cyclopropane mechanistic experiments.

Chemical Science Edge Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

1 
D

ec
em

be
r 

20
15

. D
ow

nl
oa

de
d 

on
 9

/2
2/

20
24

 8
:3

3:
29

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
41% yield. The formation of 6 is consistent with cyclization to
generate an alkyl radical at C7 during the conversion of 1a/b to
5a, however, in the absence of exogenous hydrogen atom
donors, the source of reductant is unclear (cf. Table 1, entry 11
vs. 13). Cyclization of 1b, under the conditions outlined in Table 1,
entry 11, using DMF-d7/Et3N or DMF-d7/Et3N-d15 did not result
in appreciable levels of deuterium incorporation in adduct 5a
(Scheme 2B). However, in both cases, the yield of 5a was lower
than when solely protio-reagents were used. Overall, these obser-
vations implicate the feasibility of hydrogen atom abstraction
from either DMF, Et3N, or other components of the reaction
system (e.g. 1a/b or 5a).17

TEMPO can trigger radical based pathways when employed
as a probe in Pd-catalyzed processes.18 Consequently, the
studies outlined in Scheme 2A are not denitive proof for the
intermediacy of an alkyl radical during the cyclization of 1a/b to
5a. To provide further evidence, experiments based on New-
comb's radical probe were devised.19 Exposure of O-pivaloyl
oxime ester 7a to ‘reductive’ aza-Heck conditions resulted in the
formation of dihydropyrrole 10 in 25% yield and as the only
observable product (Scheme 3A); the regioselectivity of cyclo-
propane cleavage was determined by 2D NMR analysis (see the
ESI†). The sole formation of 10 is consistent with initial cycli-
zation to alkyl radical 8, which undergoes selective b-scission
(via bond b) to generate stabilized benzylic radical 9. Hydrogen
atom abstraction from g-terpinene then yields 10. Cyclization of
O-pentauorobenzoyl oxime ester 7b, under optimized ‘stan-
dard’ aza-Heck conditions, resulted in a 51% yield and 1 : 1
ratio of unstable dihydropyrroles 13a/b (Scheme 3B); the latter
was formed as a 5.6 : 1 mixture of alkene isomers. This result is
consistent with an imino-palladation pathway, wherein cycli-
zation generates alkyl-Pd(II) intermediate 11. This is not ex-
pected to have signicant radical (or carbocationic) character,
such that non-selective b-carbon elimination (to 12a/b) ensues
en route to 13a/b.20 Products of b-hydride elimination from
alkyl-Pd(II) intermediate 11 were not observed. The studies in
1510 | Chem. Sci., 2016, 7, 1508–1513
Scheme 3 provide strong evidence for a radical-based pathway
to 5a and an imino-palladation pathway to 3a.

The most likely pathway to alkyl radical 8 is via cyclization of
an iminyl radical. The generation of these from oxime esters is
documented widely,14 however palladium-catalyzed conditions
have not been reported. The oxidative addition of PCy3 ligated
Pd(0)-systems into oxime ester N–O bonds is known, and both
Hartwig and Stahl have characterized associated imino-Pd(II)
complexes by X-ray diffraction.9,21 However, little is known
about the exact nature of the process and further insights were
warranted given that, in the present study, PCy3 leads to radical
cyclization product 5a (Table 1, entry 8). To examine this aspect
we have employed estrone derived oxime esters 14a/
Scheme 4 Estrone mechanistic experiments.

This journal is © The Royal Society of Chemistry 2016
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Table 2 Iminyl radical cyclization scopea

a Cyclizations were run under the following conditions: (dt-bpf)PdCl2
(5 mol%), g-terpinene (400 mol%), Et3N (400 mol%), DMF (0.1 M),
70–90 �C, 16–24 h. Full details are given in the ESI.
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b (Scheme 4); Zard and co-workers have shown that iminyl
radicals derived from substrates of this type lead to inversion of
the C13 stereocenter.22 Exposure of a DMF solution of O-pivaloyl
oxime ester 14a to (dt-bpf)PdCl2 (100 mol%) and Et3N (400
mol%), in the absence of g-terpinene, resulted in complete
consumption of starting material aer 15 minutes at 90 �C.
Aer hydrolytic work-up, a 1 : 5 mixture of estrone derivatives
16a and 16b was isolated in 50% yield. The formation of 16b is
consistent with SET from Pd(0) to generate iminyl radical 15a,
which undergoes reversible b-scission (via the corresponding
nitrile) to afford thermodynamically favored diastereomer 15b.
Incomplete inversion of the methyl-substituted stereocenter
may be due to quenching of iminyl radical 15a by either
hydrogen atom abstraction (from elsewhere in the system) or
recombination with Pd(I). An analogous experiment on O-pen-
tauorobenzoyl oxime ester 14b, using stoichiometric Pd(0)/
P(3,5-(CF3)2C6H3)3, generated ketone 16a exclusively in 72%
yield. Overall, these results suggest that N–O oxidative addition
involving electron rich Pd(0)-systems has signicant SET char-
acter, whereas electron poor systems insert via a two electron
redox pathway. We note that, in certain cases, oxidative addition
of Pd(0)-catalysts into alkyl-iodide bonds has been shown to
proceed via a SET pathway;4 these observations established that
the nature of the substrate can change the mechanistic pathway
from that commonly observed for aryl halides (see Scheme 1A).
However, the results described in the present study are unique
examples where analogous mechanistic deviations are achieved
simply by altering the ancillary ligand on Pd.3,23

Based on the above results, a plausible mechanism for the
conversion of 1a/b to 5a is outlined in Scheme 5. Single electron
transfer from Pd(0) to oxime ester 1a/b results in N–O cleavage
to generate Pd(I) and iminyl radical 17. Studies by the groups of
Hartwig and Stahl9,21 suggest that, in principle, recombination
could generate imino-Pd(II) intermediate 18, however, this work
was conducted on systems without an alkene acceptor. Conse-
quently, in the present case, recombination is ‘interrupted’ by
competing and fast 5-exo cyclization to generate alkyl radical 19,
which is quenched by hydrogen atom abstraction from g-ter-
pinene to afford product 5a and bis-allylic radical 20. Hydrogen
atom transfer from 20 to Pd(I) generates p-cymene and a Pd(II)-
hydride, which undergoes base-induced reductive elimination
to Pd(0) to close the catalytic cycle. At the present stage, iminyl
radical generation via formation and subsequent N–Pd
Scheme 5 A working mechanistic hypothesis.

This journal is © The Royal Society of Chemistry 2016
homolysis of imino-Pd(II) intermediate 18 cannot be dis-
counted. The proposed hybrid organometallic radical mecha-
nism is unusual and adds to a growing body of processes that
use late transition metal catalysts to accomplish classical
radical processes.5

The ability to promote iminyl radical cyclizations using
a Pd(0)-catalyst, in combination with g-terpinene, represents
a novel and potentially useful approach to alkene hydro-
amination. Related iminyl-radical based protocols14 oen
require specialized (and costly) O-activating groups (e.g. O-
Ph)14c,f or toxic (e.g. Bu3SnH/AIBN)14d and/or operationally
challenging conditions (e.g. UV/visible light irradiation) that are
difficult to scale-up.14e,f In light of the efficiency of the conver-
sion of 1b to 5a, we have conducted a preliminary examination
of the scope using a range of pivaloyl oxime esters 21a–f
(Table 2). Aryl- and alkyl-substituted oximes esters are tolerated
and cyclization occurred in moderate to excellent yields using
a range of alkene acceptors. For 21b, cyclization of a 1 : 1
mixture of diastereomers at C2 provided product 22b in high
diastereopurity, likely as a result of post-cyclization epimeriza-
tion to the thermodynamically favored diastereomer.7a The
results outlined in Table 2 show that the present protocol
provides a useful entry to iminyl radical chemistry.14
Conclusions

In summary, we demonstrate that Pd-catalyzed cyclizations of
oxime esters can be partitioned between dichotomous mecha-
nistic manifolds solely through choice of phosphine ligand.
Electron rich phosphines promote SET-type oxidative addition,
which is ‘interrupted’ at the stage of an iminyl radical to provide
hybrid organometallic radical C–N bond forming cyclizations.
For electron poor phosphines, N–O oxidative addition proceeds
via a ‘conventional’ two electron pathway to generate directly
imino-palladium intermediates, which engage pendant alkenes
in a Heck-like manner. These mechanistic insights will guide
Chem. Sci., 2016, 7, 1508–1513 | 1511
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ongoing efforts in our laboratory aimed at providing a general
aza-Heck protocol. A wide range of processes are dependent
upon aza-Pd(II) intermediates generated by N–O oxidative
addition,6–13 and, as such, the studies outlined here are likely to
be of importance beyond the immediate area of aza-Heck
cyclizations.

Note added after first publication

This article replaces the version published on 1st December
2015, which contained errors in Scheme 2.
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