Chemical Science

EDGE ARTICLE

Cite this: Chem. Sci., 2016, 7, 2804

Palladium-catalyzed ligand-promoted siteselective cyanomethylation of unactivated $C(sp³)$ -H bonds with acetonitrile†

Yongbing Liu,^a Ke Yang^{ab} and Haibo Ge^{*a}

broad application in chemical research.

Received 26th October 2015 Accepted 6th January 2016

DOI: 10.1039/c5sc04066c

www.rsc.org/chemicalscience

Introduction

The cyanomethylation of organic molecules is of great research interest to organic and medicinal chemists due to the wide presence of the cyano group in biologically active molecules and the facile conversion of the cyano group into many other functional groups, such as amides, esters, aldehydes, and primary amines.¹ A variety of different synthetic strategies have been developed for the selective introduction of the cyanomethyl group.² Among these methods, transition metal-catalyzed cross-couplings with acetonitrile as the coupling partner³ have attracted considerable attention in recent years due to the avoidance of prefunctionalized substrates such as haloacetonitrile,⁴ trimethylsilylacetonitrile,⁵ cyanoacetate salts⁶ and cyanomethyltributyltin.⁷ In 2002, Culkin and Hartwig reported the first cross-coupling reaction of acetonitrile and aryl bromides via palladium catalysis.⁸ In another study by You and Verkade, aryl chlorides were also demonstrated as effective substrates for this transformation.⁹ Furthermore, the direct cross-coupling of benzene with acetonitrile was developed with a palladium catalyst hybridized with a titanium dioxide photocatalyst.¹⁰ However, to date, the direct cross-coupling of sp^3 C-H bonds with acetonitrile has not been discovered. Considering the literature support for the Pd-catalyzed alkylation of unactivated $C(sp^3)$ -H bonds¹¹ and the reductive elimination of dialkyl palladium(π) species,^{11g-i,12} it is envisaged that this process should be feasible if the cyanomethyl group could effectively replace the anion of an alkyl palladium (n) species. **EDGE ARTICLE**

Classified **Palladium-catalyzed ligand-promoted site-

selective cyanomethylation of unactivated bise

Selective cyanomethylation of unactivated

Clap³) — H** bonds with acetonitrile[†]

Yongbing Liu,³

Results and discussion

The direct cyanomethylation of unactivated sp³ C–H bonds of aliphatic amides was achieved via palladium catalysis assisted by a bidentate directing group with good functional group compatibility. This process represents the first example of the direct cross-coupling of $sp³$ C–H bonds with acetonitrile. Considering the importance of the cyano group in medicinal and synthetic organic chemistry, this reaction will find

> In the previous reports, it was found that an alkyl arylpalla- $\dim(\Pi)$ species could be formed by the treatment of an aryl p alladium (n) species with a cyanomethyl anion in the presence of a ligand. On the basis of these results, the palladium-catalyzed direct cyanomethylation of N-(quinolin-8-yl)butyramide $({\bf 1a})$ with acetonitrile was examined using 2,2′-bipyridine as the ligand, under basic conditions (Table 1, entry 1). Unfortunately, no desired product was observed. A copper (n) salt was then added into the reaction system, because the copper-promoted C-H bond activation of acetonitrile¹³ and the transmetalation of an organocopper species onto an organopalladium (n) species¹⁴ have been well documented. As shown in Table 1, copper carboxylates were found to be effective, with $Cu(O_2C^nPr)_2$ providing the best result (entry 3). A series of mono and bidentate ligands¹⁵ were then screened, and it was found out that the reaction yield was improved with $5,5'$ -dimethyl-2,2 $'$ bipyridine (L2) (entry 6). Furthermore, the effect of the palladium catalyst was examined with $Pd(OPiv)$ ₂ giving the optimal result (entry 9). Further optimization showed that this reaction was signicantly improved with CsOPiv as the base (entry 15). In addition, the use of acetonitrile and heptane as the co-solvent could further increase the yield (entry 18). It was also noted that the reaction yield was dramatically decreased in the absence of the ligand, indicating that the ligand plays a role in stabilizing the dialkyl palladium (n) species or the *in situ* generated Pd metal (entry 20). To our delight, the reaction yield could be further improved by increasing the load of palladium catalyst (entry 21).

> With the optimized reaction conditions in hand, a substrate scope study on linear aliphatic amides was then carried out. As shown in Table 2, the direct cyanomethylation of unbranched amides provided the desired products in moderate to good yields (2a–f). In addition, a variety of functional groups, such as the alkenyl, chloro, ester, phenyl and thienyl groups, were well

a Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, USA. E-mail: geh@iupui.edu

b Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China

[†] Electronic supplementary information (ESI) available: Experimental details including characterization data, copies of ¹H, ¹³C NMR and NOESY spectra. See DOI: 10.1039/c5sc04066c

Pd(OAc) ₂		NaHMDS	L1	$\mathbf{0}$
Pd(OAc) ₂	Cu(OAc) ₂		L1	11
Pd(OAc) ₂	$Cu(O2CnPr)2$		L1	20
$Pd(OAc)_{2}$	$Cu (acac)_2$		L1	Trace
Pd(OAc) ₂	CuOAc		L1	11
Pd(OAc) ₂	$Cu(O2CnPr)2$		L2	30
Pd(OAc) ₂	$Cu(O2CnPr)2$		L ₃	23
$Pd(OAc)_{2}$	$Cu(O2CnPr)2$		L4	21
Pd(OPiv) ₂	$Cu(O2CnPr)2$		L ₂	34
PdCl ₂	$Cu(O2CnPr)2$		L2	22
$Pd(MeCN)_2Cl_2$	$Cu(O2CnPr)2$		L2	26
$Pd(OPiv)_{2}$	$Cu(O2CnPr)2$	K_3PO_4	L2	25
$Pd(OPiv)_{2}$	$Cu(O2CnPr)2$	KOAc	L ₂	49
Pd(OPiv) ₂	$Cu(O2CnPr)2$	KOPiv	L2	52
$Pd(OPiv)_{2}$	$Cu(O2CnPr)2$	CsOPiv	L2	56
Pd(OPiv) ₂		CsOPiv	L2	69
$Pd(OPiv)_{2}$		CsOPiv	L ₂	73
$Pd(OPiv)_{2}$	$Cu(O2CnPr)2$	CsOPiv	L2	$76(72)^{g}$
$Pd(OPiv)_{2}$		CsOPiv	L2	68
Pd(OPiv) ₂	$Cu(O2CnPr)2$	CsOPiv		9
$Pd(OPiv)_{2}$	$Cu(O2CnPr)2$	CsOPiv	L2	$85(80)^{g}$
		$Cu(O2CnPr)2$ $Cu(O2CnPr)2$ $Cu(O2CnPr)2$		

 a Reaction conditions: 1a (0.3 mmol), Pd source (0.036 mmol), L (0.12 mmol), Cu source (0.36 mmol), Ag_2CO_3 (0.6 mmol), base (0.36 mmol), MeCN (3.0 mL), air (1 atm), $130\degree$ C, 15 h unless other noted. \degree Yields are based on $1a$, determined by 1 H-NMR using dibromomethane as the internal standard. ^c NaHMDS (1 M in THF, 1.5 mL) was used. $\frac{d}{t}$ MeCN/toluene (1.5 mL/1.5 mL). $\frac{e}{t}$ MeCN/hexane (1.5 mL/1.5 mL). f MeCN/heptane (1.5 mL/1.5 mL). g Isolated yield. h MeCN/cyclohexane (1.5 mL/1.5 mL). i Pd(OPiv)₂ (0.045 mmol).

tolerated under the catalytic system, allowing for the further manipulation of the original products. Furthermore, there is an apparent steric effect for this reaction because a lower yield was obtained with substrates bearing a substituent on γ -carbon (2g).

Furthermore, the scope of a-substituted aliphatic amides was studied under the modified reaction conditions (Table 3). As expected, propanamides bearing a linear, branched, or cyclic alkyl group were shown to be effective substrates (3a–h). It is worth mentioning that this reaction showed high site-selectivity by favouring the $sp³$ C–H bonds of the methyl group over those of the methylene groups, including that of the relatively reactive benzylic $sp³$ C–H bond (3c). Furthermore, the cyclic $sp³$ C–H bond could also be functionalized, albeit with a moderate yield (3k). Amides with α -tertiary carbon (3l) were inappropriate substrates and could be quantitatively recovered under current conditions.

To provide some insights into the catalytic cycle, we carried out mechanistic studies into this process. It has been reported Table 2 Scope of the linear aliphatic amides a,b

^a Reaction conditions: 1 (0.3 mmol), Pd(OPiv)₂ (0.036 mmol), L2 (0.12 mmol), Cu(O₂CⁿPr)₂ (0.36 mmol), Ag₂CO₃ (0.6 mmol), CsOPiv (0.36 mmol), MeCN (1.5 mL), heptane (1.5 mL), and air (1 atm), 130 °C, 15 h. b Isolated yield. ^c Pd(OPiv)₂ (0.045 mmol). ^{d'}Pd(OPiv)₂ (0.06 mmol). Q = 8-quinolinyl.

Table 3 Scope of the α -substituted aliphatic amides^{*a,b*}

^a Reaction conditions: 1 (0.3 mmol), Pd(MeCN)₂Cl₂ (0.06 mmol), L2 (0.12 mmol), Cu(OAc)₂·H₂O (0.09 mmol), Ag₂CO₃ (0.6 mmol), KOPiv (0.09 mmol), MeCN (2.0 mL), air (1 atm), 130 °C, 1 h. b Isolated yield.
^c Pd(OPiv)₂ (0.06 mmol), L2 (0.12 mmol), Cu(O₂CⁿPr)₂ (0.36 mmol), $Pd(OPiv)_{2}$ (0.06 mmol), L2 (0.12 mmol), Cu $(O_{2}C^{n}Pr)_{2}$ (0.36 mmol), Ag2CO3 (0.6 mmol), CsOPiv (0.36 mmol), MeCN (1.5 mL), heptane (1.5 mL), air (1 atm), 130 °C, 15 h. Q = 8-quinolinyl.

Scheme 1 Control experiments on the reaction mechanism. Condition A: 1m or 5 (0.3 mmol), Pd(OPiv)₂ (0.036 mmol), L2 (0.12 mmol), $Cu(O_2C'Pr)_2$ (0.36 mmol), Ag_2CO_3 (0.6 mmol), CsOPiv (0.36 mmol), MeCN (1.5 mL), heptane (1.5 mL), air (1 atm), 130 °C, 15 h. Condition B: 1m or 5 (0.3 mmol), Pd(MeCN)₂Cl₂ (0.06 mmol), L2 (0.12 mmol), Cu(OAc)₂ · H₂O (0.09 mmol), Ag₂CO₃ (0.6 mmol), KOPiv (0.09 mmol), MeCN (2.0 mL), air (1 atm), 130 °C, 1 h.

Scheme 2 Deuterium-labelling experiments

that aliphatic esters and nitriles could undergo dehydrogenation to form the corresponding α , β -unsaturated derivatives.¹⁶ Therefore, a sequential dehydrogenation/1,4-addition process could potentially occur in this reaction and could provide the desired products. To clarify this, N-(quinolin-8-yl)acrylamide (5) was prepared and subjected to the reaction conditions (Scheme 1). It turned out that no desired product (2m) was obtained, and thus the dehydrogenation/1,4-addition process could be excluded.

To further probe the reaction mechanism, a series of deuterium-labelling experiments were carried out. As shown in Scheme 2, no apparent H/D exchange was observed with deuterium-labelled 2,3-dimethyl-N-(quinolin-8-yl)butanamide (D_3-3d) (Scheme 2a), indicating that the sp³ C–H bond cleavage is an irreversible step under the current reaction conditions. Furthermore, no obvious kinetic isotope effect was observed for

Scheme 3 Proposed reaction mechanism

3d (vs. D_3 -3d) based on the early relative rate of the parallel reactions (Scheme 2b), whereas a primary isotope effect with regard to acetonitrile (MeCN vs. CD_3CN) was obtained (Scheme 2c), suggesting that the $sp³$ C–H bond cleavage of acetonitrile is the rate-limiting step in the catalytic process.

On the basis of the abovementioned observations and the previous studies, $11-14}$ a plausible reaction mechanism is proposed (Scheme 3), involving the coordination of amide 1 or 3 to a Pd^H species, followed by a ligand exchange process, giving rise to the palladium intermediate **A**. Irreversible $sp³$ C–H bond activation of this intermediate under basic conditions generates the cyclometalated palladium (n) complex **B**. Transmetalation of the complex **B** with the cyanomethyl copper (n) species, possibly from a silver-promoted process of acetonitrile, affords the dialkyl palladium intermediate C, which provides the final product 2 or 4 upon reductive elimination.

To further broaden the synthetic application of this methodology, removal of the 8-quinolylamino directing group of 4b was carried out based on the reported two-step process,¹¹ and the C–N bond of amide was selectively cleaved to deliver the desired acid product 6b in a 65% yield without affecting the cyano group (Scheme 4).

Conclusions

In summary, a highly regioselective cyanomethylation of aliphatic amides with an 8-aminoquinolinyl group as the directing moiety was developed via a palladium-catalyzed cross Edge Article Chemical Science Chemical Science Chemical Science Chemical Science Chemical Science Chemical Science

dehydrogenative coupling process. This process exhibited a predominant preference for methyl C–H bonds over methylene C–H bonds with good functional group tolerance. Mechanistic studies were carried out that excluded the possibly sequential dehydrogenation/Michael addition process. Detailed mechanistic studies of this reaction and expansion of the substrate scope¹⁷ are currently ongoing in our laboratory.

Acknowledgements

The authors gratefully acknowledge financial support for this research from NSF CHE-1350541 and Indiana University-Purdue University Indianapolis. Ke Yang is also grateful for financial support from NSFC: (No. 21332005) and the Jiangsu Innovation Programs (P. R. China).

Notes and references

- 1 For selected reviews, see: (a) F. F. Fleming, Nat. Prod. Rep., 1999, 16, 597–606; (b) F. F. Fleming, L. Yao, P. C. Ravikumar, L. Funk and B. C. Shook, J. Med. Chem., 2010, 53, 7902-7917; (c) R. López and C. Palomo, Angew. Chem., Int. Ed., 2015, 54, 13170–13184; for a selected book, see: (d) Z. Rappoport, The Chemistry of the Cyano Group, Wiley-Interscience, London, 1970.
- 2 (a) S. P. Khanapure and E. R. Biehl, J. Org. Chem., 1990, 55, 1471–1475; (b) N. Kumagai, S. Matsunaga and M. Shibasaki, J. Am. Chem. Soc., 2004, 126, 13632–13633; (c) B. Anxionnat, D. G. Pardo, G. Ricci and J. Cossy, Org. Lett., 2011, 13, 4084–4087; (d) J. Velcicky, A. Soicke, R. Steiner and H. Schmalz, J. Am. Chem. Soc., 2011, 133, 6948–6951; (e) T. Wu, X. Mu and G. Liu, Angew. Chem., Int. Ed., 2011, 50, 12578-12581; (f) G.-W. Wang, A.-X. Zhou, J.-J. Wang, R.-B. Hu and S.-D. Yang, Org. Lett., 2013, 15, 5270–5273; (g) S. Chakraborty, Y. J. Patel, J. A. Krause and H. Guan, Angew. Chem., Int. Ed., 2013, 52, 7523–7526; (h) J. Shen, D. Yang, Y. Liu, S. Qin, J. Zhang, J. Sun, C. Liu, C. Liu, X. Zhao, C. Chu and R. Liu, Org. Lett., 2014, 16, 350–353; (i) A. Bunescu, Q. Wang and J. Zhu, Chem.–Eur. J., 2014, 20, 14633– 14636; (j) P. J. Lindsay-Scott, A. Clarke and J. Richardson, Org. Lett., 2015, 17, 476–479; (k) A. D. Mamuye, L. Castoldi, U. Azzena, W. Holzera and V. Pace, Org. Biomol. Chem., 2015, 13, 1969–1973.
- 3 For a selected review, see: D. A. Culkin and J. F. Hartwig, Acc. Chem. Res., 2003, 36, 234–245.
- 4 For selected examples, see: (a) T. Frejd and T. Klingstedt, Synthesis, 1987, 40-42; (b) A. Nortcliffe, N. P. Botting and D. O'Hagan, Org. Biomol. Chem., 2013, 11, 4657–4671; (c) O. M. Ali, A. E.-G. E. Amr and E. E. Mostafa, Res. Chem. Intermed., 2014, 40, 1545–1556.
- 5 For selected examples, see: (a) F. Diaba, C. L. Houerou, M. Grignon-Dubois and P. Gerval, J. Org. Chem., 2000, 65, 907–910; (b) L. Wu and J. F. Hartwig, J. Am. Chem. Soc., 2005, 127, 15824–15832; (c) T. Mukaiyama and M. Michida, Chem. Lett., 2007, 36, 1244–1245; (d) C. Verrier, S. Oudeyer, I. Dez and V. Levacher, Tetrahedron Lett., 2012, 53, 1958–

1960; (e) Y.-C. Fan, G.-F. Du, W.-F. Sun, W. Kang and L. He, Tetrahedron Lett., 2012, 53, 2231–2233.

- 6 (a) R. Shang, D.-S. Ji, L. Chu, Y. Fu and L. Liu, Angew. Chem., Int. Ed., 2011, 50, 4470–4474; (b) P. Y. Yeung, K. H. Chung and F. Y. Kwong, Org. Lett., 2011, 13, 2912–2915.
- 7 M. Kosugi, M. Ishiguro, Y. Negishi, H. Sano and T. Migita, Chem. Lett., 1984, 1511–1512.
- 8 D. A. Culkin and J. F. Hartwig, J. Am. Chem. Soc., 2002, 124, 9330–9331.
- 9 (a) J. You and J. G. Verkade, Angew. Chem., Int. Ed., 2003, 42, 5051–5053; (b) J. You and J. G. Verkade, J. Org. Chem., 2003, 68, 8003–8007.
- 10 H. Yoshida, Y. Fujimura, H. Yuzawa, J. Kumagai and T. Yoshida, Chem. Commun., 2013, 49, 3793–3795.
- 11 For selected reviews, see: (a) X. Chen, K. M. Engle, D.-H. Wang and J.-Q. Yu, Angew. Chem., Int. Ed., 2009, 48, 5094–5115; (b) T. W. Lyons and M. S. Sanford, Chem. Rev., 2010, 110, 1147–1169; (c) H. Li, B.-J. Lia and Z.-J. Shi, Catal. Sci. Technol., 2011, 1, 191–206; (d) G. Rouquet and N. Chatani, Angew. Chem., Int. Ed., 2013, 52, 11726–11743; (e) O. Daugulis, J. Roane and L. D. Tran, Acc. Chem. Res., 2015, 48, 1053–1064; (f) Z. Chen, B. Wang, J. Zhang, W. Yu, Z. Liu and Y. Zhang, Org. Chem. Front., 2015, 2, 1107–1295; for selected examples, see: (g) X. Chen, C. E. Goodhue and J.-Q. Yu, J. Am. Chem. Soc., 2006, 128, 12634–12635; (h) D.-H. Wang, M. Wasa, R. Giri and J.-Q. Yu, J. Am. Chem. Soc., 2008, 130, 7190-7191; (i) B.-F. Shi, N. Maugel, Y.-H. Zhang and J.-Q. Yu, Angew. Chem., Int. Ed., 2008, 47, 4882–4886; (j) L. D. Tran and O. Daugulis, Angew. Chem., Int. Ed., 2012, 51, 5188–5191; (k) S.-Y. Zhang, G. He, W. A. Nack, Y.-S. Zhao, Q. Li and G. Chen, J. Am. Chem. Soc., 2013, 135, 2124-2127; (l) S.-Y. Zhang, Q. Li, G. He, W. A. Nack and G. Chen, J. Am. Chem. Soc., 2013, 135, 12135–12141; (m) K. Chen, F. Hu, S.-Q. Zhang and B.-F. Shi, Chem. Sci., 2013, 4, 3906–3911; (n) E. T. Nadres, G. I. F. Santos, D. Shabashov and O. Daugulis, J. Org. Chem., 2013, 78, 9689–9714; (o) K. Chen and B.-F. Shi, Angew. Chem., Int. Ed., 2014, 53, 11950–11954; (p) R.-Y. Zhu, J. He, X.-C. Wang and J.-Q. Yu, J. Am. Chem. Soc., 2014, 136, 13194–13197; (q) B. Wang, X. Wu, R. Jiao, S.-Y. Zhang, W. A. Nack, G. He and G. Chen, Org. Chem. Front., 2015, 2, 1318–1321. Edge Article

article on oriental Science Articles. This process arbibited

article common preference for reason of the access Article is licensed under a creative common states are the states are the states are the state
	- 12 For selected examples, see: (a) M. R. Netherton, C. Dai, K. Neuschütz and G. C. Fu, J. Am. Chem. Soc., 2001, 123, 10099–10100; (b) J. H. Kirchhoff, C. Dai and G. C. Fu, Angew. Chem., Int. Ed., 2002, 41, 1945–1947; (c) J. H. Kirchhoff, M. R. Netherton, I. D. Hills and G. C. Fu, J. Am. Chem. Soc., 2002, 124, 13662–13663; (d) J. Zhou and G. C. Fu, J. Am. Chem. Soc., 2003, 125, 12527–12530.
	- 13 For selected examples, see: (a) Y. Suto, N. Kumagai, S. Matsunaga, M. Kanai and M. Shibasaki, Org. Lett., 2003, 5, 3147–3150; (b) A. Bunescu, Q. Wang and J. Zhu, Angew. Chem., Int. Ed., 2015, 54, 3132–3135; (c) C. Chatalova-Sazepin, O. Wang, G. M. Sammis and J. Zhu, Angew. Chem., Int. Ed., 2015, 54, 5443–5446; (d) Y. Suto, R. Tsuji, M. Kanai and M. Shibasaki, Org. Lett., 2005, 7, 3757–3760.
- 14 For selected reviews, see: (a) P. Espinet and A. M. Echavarren, Angew. Chem., Int. Ed., 2004, 43, 4704– 4734; (b) C. Cordovilla, C. Bartolomé, J. M. Martínez-Ilarduya and P. Espinet, ACS Catal., 2015, 5, 3040–3053; for selected examples, see: (c) V. Farina, S. Kapadia, B. Krishnan, C. Wang and L. S. Liebeskind, J. Org. Chem., 1994, 59, 5905–5911; (d) M. Eckhardt and G. C. Fu, J. Am. Chem. Soc., 2003, 125, 13642–13643; (e) S. P. H. Mee, V. Lee and J. E. Baldwin, Angew. Chem., Int. Ed., 2004, 43, 1132– 1136. Openical Science

14 Tor selected on telescope, form, for N. Topics, 2016, 4, 1204

4. M. Colorent, angle Common, Article. 2016, 11, 2004, 44, 1244

4. M. Colorent, angle Commons, 2016. Downloaded the selection of the comm
	- 15 With monodentate ligands (80 mol%), such as pyridine, 2,6 lutidine and quinolone, the reactions give only trace amount of product 2a under similar conditions as entry 7 in Table 1.
	- 16 Y. Chen, J. P. Romaire and T. R. Newhouse, J. Am. Chem. Soc., 2015, 137, 5875–5878.
	- 17 Attempt to use higher nitriles with secondary α -carbon such as propionitrile, butyronitrile and benzyl cyanide as coupling partners was unsuccessful under current conditions. Besides, the coupling of $sp²$ C–H of benzamides with $CH₃CN$ using 8-quinolylamino as the directing group was not achieved under similar conditions.