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he influence of dipolar and spin
frustration effects on the magnetocaloric
properties of a trigonal prismatic {Gd7} molecular
nanomagnet†

Eufemio Moreno Pineda,‡a Giulia Lorusso,b Karzan H. Zangana,ac Elias Palacios,b

Jürgen Schnack,d Marco Evangelisti,b Richard E. P. Winpenny*a

and Eric J. L. McInnes*a

We report the synthesis and structure of a molecular {Gd7} cage of the formula (iPr2NH2)6[Gd7(m3-

OH)3(CO3)6(O2C
tBu)12] which has crystallographic C3h symmetry. Low temperature specific heat and

adiabatic demagnetization experiments (the latter achieving temperatures below 100 mK), lead to the

observation of the effects of both intramolecular dipolar interactions and geometric spin frustration. The

dipolar interaction leads to a massive rearrangement of energy levels such that specific heat and entropy

below 2 K are strongly modified while magnetic susceptibility and magnetization above 2 K are not

affected. The consequences of these phenomena for low temperature magnetocaloric applications are

discussed.
Introduction

A wide variety of applications have been envisioned exploiting
the magnetic properties of mono- or poly-metallic lanthanide
complexes.1 The anisotropic lanthanides have been proposed as
building blocks in quantum computers,2 data storage3 and
spintronic devices.4 Conversely, Gd(III) systems, where the
lanthanide ion is isotropic and has a large spin (s ¼ 7/2), can
have large magnetocaloric effects (MCE),5 and hence could be
good candidates for very low temperature magnetic cooling.6

Almost all MCE studies of molecular clusters have been
indirect, where magnetization or heat capacity data are ana-
lysed to derive magnetic entropy changes for a given change in
applied magnetic eld. Some of us recently reported direct
magnetocaloric experiments on a {Gd7} molecule where we
Institute, The University of Manchester,

E-mail: Eric.Mcinnes@manchester.ac.uk;

ragón (ICMA), CSIC – Universidad de

eria Condensada, 50009 Zaragoza, Spain

ducation, Salahaddin University-Erbil,
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achieved cooling to temperatures as low as �200 mK in adia-
batic demagnetization experiments.7 Moreover, we found that
the temperature evolution of the sample on demagnetisation
under quasi-adiabatic conditions (following paths of constant
entropy or isentropes) was not linear as for a simple para-
magnet, but showed specic regions of enhanced cooling, and
even heating, on demagnetisation. That {Gd7} molecule has
a centered-hexagonal array of metal ions. With antiferromag-
netic exchange coupling, this triangle-based structure suffers
geometric spin frustration. The latter is an important
phenomenon in extended lattices, and is associated with having
many degenerate ground state congurations, leading to exotic
magnetic behaviours such as spin glasses and spin ice.8 It can
also lead to enhanced MCE because of the increased density of
states at critical elds.9 We showed that the observed isentrope
structure in {Gd7} was a direct signature of spin frustration.7

Here we report a new {Gd7} cage with a different geometri-
cally frustrated structure and investigate the consequences on
its MCE via adiabatic demagnetization experiments. Moreover,
we observe the effects of internal dipolar interactions that are
competitive with the exchange couplings, with further conse-
quences for MCE applications.
Results and discussion

The compound is obtained from reaction of [Gd2(O2C
tBu)6-

(HO2C
tBu)6]10 with

iPr2NH in MeCN (see ESI for more details†).
Single crystal X-ray studies showed formation of (iPr2NH2)6-
[Gd7(m3-OH)3(CO3)6(O2C

tBu)12]§ 1 (Fig. 1).
Chem. Sci., 2016, 7, 4891–4895 | 4891

http://crossmark.crossref.org/dialog/?doi=10.1039/c6sc01415a&domain=pdf&date_stamp=2016-07-15
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c6sc01415a
https://rsc.66557.net/en/journals/journal/SC
https://rsc.66557.net/en/journals/journal/SC?issueid=SC007008


Fig. 1 Crystal structure of 1, viewed down (a and c) and perpendicular
to (b and d) the S3 axis (Gd, blue; O, red; C, grey; H and Me omitted for
clarity). Dashed lines highlight three {Gd3} triangles sharing a vertex.

Chemical Science Edge Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

5 
A

pr
il 

20
16

. D
ow

nl
oa

de
d 

on
 7

/1
9/

20
25

 1
2:

20
:1

9 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
1 crystallizes in the P�62c space group with the anionic {Gd7}
cage lying on the �6 (S3) axis, giving one sixth of the molecule in
the asymmetric unit, and hence crystallographic C3h symmetry.
The metallic core consists of six Gd(III) ions forming a trigonal
prism [Gd(2) and symmetry equivalents]. The prism encapsu-
lates a central Gd(III) ion [Gd(1), Fig. 1]. Six CO3

2� groups bridge
the trigonal edges of the prism, also binding to the central Gd
(3.211 binding in Harris notation);11 these carbonates must
arise from CO2 xation.12 There are three m3-OH, one bridging
each edge between the triangular faces of the trigonal prism,
also binding to the central Gd(III) ion. This highlights an alter-
native description of the cage as three {Gd3(m3-OH)} triangles
sharing a single vertex [Gd(1), Fig. 1b]: the triangles are isosceles
with Gd(1)/Gd(2,20) and Gd(2)/Gd(20) distances of 3.9548(1)
and 3.9388(9) Å, respectively. Twelve pivalates complete the
cage: two pivalates bridge each Gd(2)/Gd(20) with 2.11 and 2.21
coordination modes (the latter is disordered, lying on the
mirror plane), and each Gd(2) vertex is capped by a 1.11 pivalate.
Gd(1) is nine-coordinate with tricapped trigonal-prismatic
geometry (continuous shape measure, CShM of 0.910, Table
S1†).13 Gd(2) is eight-coordinate, but no clear unique descrip-
tion is favoured by CShM (Table S1†). Six di-isopropyl ammo-
nium cations provide charge-balance.

Magnetic susceptibility (cM) studies (applied magnetic eld,
B0¼ 0.1 T) were carried out on a polycrystalline sample of 1 in the
temperature (T) range 2–300 K (Fig. 2a). At room-temperature the
product cMT is 55.2 emu K mol�1, consistent with seven Gd(III),
8S7/2 ions (cMT¼ 55.1 emu Kmol�1 for seven non-interacting s¼
7/2 with g ¼ 2.00). Upon cooling, cMT(T) remains constant down
to ca. 10 Kwhere it drops sharply, to 43.5 emu Kmol�1 at 2 K. The
magnetization (M) data for 1 at low temperature show rapid
increases ofM with applied magnetic eld, reaching a saturation
value of 48.7 mB at 7 T and 2 K (Fig. 2b and S1†), consistent with
complete polarization of the spin system (maximum possible M
is 49.0 mB for seven s ¼ 7/2 with g ¼ 2.00).
4892 | Chem. Sci., 2016, 7, 4891–4895
Specic heat (C) measurements under different applied
magnetic elds were also carried out for 1 (Fig. 2c). Above ca. 5
K, C is dominated by lattice phonon modes of the crystal, which
can be described by the Debye model (dotted line) and simplify
to C/T3 ¼ 0.05 J kg�1 K�1 at the lowest temperatures. The strong
eld dependence of C at low temperature, and the ability to fully
magnetise the system, suggests 1 as a good candidate for
a cryogenic magnetic refrigerant. Therefore, we have evaluated
the entropy (Fig. 2d) andMCE (Fig. 2e and f) of 1 indirectly from
C(B0,T) and M(B0,T), using known procedures.5c We obtain
a maximum magnetic entropy change of �DSm ¼ 30.8 J kg�1

K�1 at 2.1 K for a eld change DB0¼ (7–0) T. Hence, under these
experimental conditions, we are accessing a large proportion
(83%) of the full magnetic entropy content, viz. Sm ¼ nR ln(2s +
1) ¼ 36.9 J kg�1 K�1 (n ¼ 7, s ¼ 7/2, R is the gas constant). The
latter is reached in zero eld for T above ca. 3 K (Fig. 2d), while
nil magnetic entropy (i.e. magnetic saturation) is reached at 7 T
below ca. 2 K. We can access this high fraction of the magnetic
entropy because of the small antiferromagnetic exchange
between Gd(III) ions, coupled with spin frustration, giving a high
density of low-lying states.

The magnetic data have been modelled using a Heisenberg
spin Hamiltonian (1) consistent with the C3h symmetry (Fig. 2a,
insert):

Ĥ ¼ �2J1
X7

j¼2

�
ŝ1$ŝj

�� 2 J2ð ŝ2$ŝ5 þ ŝ3$ŝ6 þ ŝ4$ŝ7Þ

�2 J3ð ŝ2$ŝ3 þ ŝ3$ŝ4 þ ŝ4$ŝ2 þ ŝ5$ŝ6 þ ŝ6$ŝ7 þ ŝ7$ŝ5Þ

þgmBBŜz (1)

ŝi denote the individual spin operators (i ¼ 1 is the central Gd)
and Ŝz denotes the z-component of the total spin operator. Since
the Heisenberg Hamiltonian possesses several symmetries,
a complete matrix diagonalization of the system is possible
despite the huge 87 matrix dimension.14 J1 is the interaction
between the central Gd ion (S1) and all others; J2 is the inter-
action on the edges between triangular faces of the trigonal
prism; J3 is the interaction on the edges of the triangular faces.
The best agreement between experimental data and calcula-
tions for cMT(T) andM(B0) is achieved with J1¼ J2¼�0.02 cm�1

and J3 ¼ 0 cm�1, assuming g ¼ 2.00 (Fig. 2a and b). Note that
these parameters, with J3 ¼ 0, would support the description of
1 as three triangles sharing a vertex as depicted in Fig. 1(a and
b).

This topology results in geometric spin frustration because
not all the antiferromagnetic interactions can be satised,15

and results in very high degeneracies of states. For example, for
these parameters in this Heisenberg model, the three lowest
energy eigenstates possess total spins of S ¼ 13/2, 11/2 and 15/
2, each with their 2S + 1 degeneracy, and lie within 0.005 cm�1

of each other. However, using this model to calculate the zero-
eld specic heat as a function of temperature gives a peak in
C(T) at ca. T ¼ 0.1 K which is not observed experimentally
(Fig. 2c). This suggests that our model, at least below 2 K, is
inadequate.
This journal is © The Royal Society of Chemistry 2016
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Fig. 2 Magnetic properties of 1. (a) Molar magnetic susceptibility (cM), in the form of cMT(T), measured in an appliedmagnetic field of 0.1 T, and fit
(solid line) to spin Hamiltonian (1) appropriate for the spin system in the insert. (b) Magnetization (M) as a function of applied field (B0) and
temperature (T¼ 2, 4 K), and fits (solid lines) from spin Hamiltonian (1). (c) Specific heat (C) as a function of temperature at B0 ¼ 0 (black symbols),
1 T (red), 3 T (blue) and 7 T (green), and lattice contribution (dotted line). Solid lines show the results that follow fromHamiltonian (1), dashed lines
those including an effective internal field, see text. (d) Entropy, as obtained from C(T) data. (e) Magnetic entropy change obtained from C(T,B0)
and M(T,B0). (f) Adiabatic temperature change obtained from C(T,B0).
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The isotropic exchange interactions found using eqn (1) are
very weak, in fact signicantly smaller than in other Gd(III) cages
we have studied (e.g. J z �0.06 cm�1 in our planar {Gd7} that
also contains m3-OH bridges).7 Hence we calculated the intra-
molecular dipolar interactions to test the validity of neglecting
them. In fact for the shortest Gd/Gd distances (on the edges
between triangular faces of the trigonal prism) the dipolar
interaction tensor has elements that range in magnitude from
0.014 to 0.033 cm�1, and are thus of the same order as the
isotropic J values found using (1). Hence they must be included
in our model. However, quantum mechanical calculations with
anisotropic Hamiltonians for spin systems of this size need
millions of CPU hours on supercomputers,16 hence we have
performed simulations with a ctitious cluster having the same
magnetic skeleton as 1, but replacing the s ¼ 7/2 spins with
spins s ¼ 3/2.

Such simulations (Fig. S2 and S3, ESI†) show that the dipolar
interactions inuence the magnetic properties only mildly for
T > 2 K, i.e. they do not signicantly inuence our modelling of
the experimental cMT(T) and M(B0) curves, and hence we would
obtain the same best values for the isotropic J as above.
However, inclusion of dipolar interactions has drastic effects on
the calculated magnetic properties below 1 K. This is because of
the degeneracy breaking of the otherwise degenerate low-lying
states. Specic heat is particularly sensitive to rearrangement of
low-lying levels and, given that we have C(T) data down to 0.3 K,
this provides a sensitive test.
This journal is © The Royal Society of Chemistry 2016
Full matrix diagonalization of the anisotropic spin Hamil-
tonian (i.e. including the dipolar interactions) is not possible for
the full spin system of 1. Therefore, in order to mimic the effect
of the dipolar eld on the magnetocalorics of 1 for the full spin
system, we have introduced a ctitious effective internal eld
Beff that, by means of its Zeeman splitting, smears out the
otherwise sharply peaked density of states. From calculation of
C(T) we nd that Beff ¼ 0.5 T moves the heat capacity at zero
applied eld (B0 ¼ 0) to give good agreement with experiment
(Fig. 2c); for an external eld of B0 ¼ 1 T, we nd Beff ¼ 0.2 T
gives good results. For the larger applied elds such a correction
is not necessary.

We have previously shown that we can observe the effects of
spin frustration in the shape of isentropes (paths of constant
entropy) in temperature–eld plots measured by direct MCE
experiments.7 Hence, we have performed such measurements
for 1 (see ESI† and ref. 6b and 7 for the experimental procedure)
and also used these to test the inuence of dipolar effects on the
MCE response. An example of the temperature evolution of 1 on
demagnetization under controlled quasi-adiabatic conditions is
in Fig. S4†: in this example, demagnetizing from B0 ¼ 1.5 T
results in cooling of the sample from an initial temperature T0
¼ 0.6 K to a nal temperature Tad ¼ 0.13 K, which is signi-
cantly lower than the temperatures achieved in our earlier
experiments with the planar {Gd7} cage.7 Fig. 3a shows data for
different B0 and T0, in the form of isentropes (see Fig. S5† for
further data).
Chem. Sci., 2016, 7, 4891–4895 | 4893
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Fig. 3 Adiabatic temperature, Tad, as a function of applied magnetic
field, B0, along isentropic curves: (a) from experiments and (b) calcu-
lated using Hamiltonian (1). The dashed line in (a) relates to the
uncertainty in the correction applied to the experimental data below
0.1 K (see ESI†). Inset: the arrow highlights the experimental
enhancement of Tad(B0), which becomes noticeable for B0 near ca. 1 T
and T < 0.25 K.
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Unlike a simple paramagnet, where the isentropes would be
linear, we nd minima in the T–B plots at ca. 0.3 and 1.0 T (the
latter is shallow but real). These minimamean there are regions
of enhanced and retarded cooling (even warming) on demag-
netization. These minima are due to the frustration, and they
are most pronounced at the lowest temperatures where
quantum effects are dominant, smearing out on warming as
many states become Boltzmann populated and the system
behaves more classically. Insight into their origin comes from
a Zeeman diagram and zero-Kelvin magnetization plot calcu-
lated from the Heisenberg Hamiltonian (1) and the isotropic
exchange values above (Fig. S6†). Above 1.1 T, there is a unique
singly degenerate ground state (nil entropy), i.e. M is saturated
at 49 mB. Below this eld there is a high degeneracy of states
(high entropy) and the sample cools on demagnetising into this
regime. Between ca. 0.6 and 0.3 T there is a low (single)
degeneracy of states and M(B) plateaus at 35 mB; hence on
demagnetising into this region the material passes from high to
low entropy which would lead to heating. Below 0.3 T a high
4894 | Chem. Sci., 2016, 7, 4891–4895
degeneracy of states is again met, as the system undergoes
a series of level crossings to lower M, and we are back in
a cooling regime. The 35 mB plateau in M(B) is consistent with
ameta-stable spin conguration where all the outer Gd(III) spins
are fully aligned with each other but fully opposed to the central
Gd(III) spin (an S ¼ 35/2 state).

Calculated isentropes based on this Heisenberg model are in
good qualitative agreement with the experimental curves
(Fig. 3), correctly nding two anomalies in the T–B curves, but:
(i) the theoretical isentropes give the anomalies at ca. B0 ¼ 0.1 T
and 0.9 T, i.e. there is a signicant eld shi particularly for the
lower eld feature, and (ii) the features, particularly at 0.9 T, are
much more pronounced than in the experimental data. Both
points can be explained by the neglect of the dipolar interac-
tions in the calculations. In terms of the shi in the lower eld
minimum, the effect of the dipolar eld will be greatest for the
lowest applied magnetic elds (and lowest temperatures). This
is also apparent from our modelling of the experimental C(T)
data (see above). We also observed such a discrepancy for the
centred-hexagonal {Gd7} system.7 Ultimately, any source of
magnetic ordering, including dipolar elds, can shi such
features in eld. This also limits the lowest attainable temper-
ature upon demagnetization.

The broadening of the isentrope minimum at 0.9 T implies
a less regular spin structure than arises from the Heisenberg
model, and this cannot be modelled by an additional static eld
to mimic the dipolar eld. Hence, in order to examine this effect
of the dipolar interactions we have calculated the T–B isen-
tropes for the ctitious cluster of s ¼ 3/2 spins, enabling exact
calculation (see above), with and without dipolar interactions
(Fig. S3, ESI†). Inclusion of the dipolar interaction leads to
a pronounced smearing of the minimum. Although these
results cannot be compared quantitatively to 1 (the different
spin leads to different numbers and densities of states, hence to
T–B minima at different elds), the shapes of the curve are
remarkably similar to the experimental data for 1.

Conclusions

Summarizing, we have found a second example where signa-
tures of geometric spin frustration have been observed in
adiabatic demagnetization experiments of a molecular nano-
magnet. They give rise to minima in temperature-applied
magnetic eld curves, in turn giving regions of enhanced
cooling at critical applied magnetic elds. In contrast to the
previous example,7 the isotropic exchange interactions are
comparable to the intra-molecular dipolar interactions and the
latter cannot be neglected. Their effect is to smear out the
frustration signatures and to dampen the enhanced cooling
rates. Moreover, although in the present investigation
a temperature Tad lower than 100 mK could be achieved (Fig. 3),
in general dipolar interactions limit the temperatures that can
be reached in such experiments. These results highlight the
importance of the relative magnitudes of the interaction
parameters in molecular clusters in terms of their use for MCE.
The antiferromagnetic interactions are necessary for spin frus-
tration which gives rise to large entropy changes, but if the
This journal is © The Royal Society of Chemistry 2016
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interactions are too large then the full magnetic entropy will not
be available on (de)magnetization. If, on the other hand, the
interactions are too weak, then the MCE will be limited by
dipolar interactions. Most studies of the MCE in molecular
systems have simply relied on indirect determination of MCE
parameters, and are blind to these effects.
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