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An optimized protocol for the analysis of
time-resolved elastic scattering experiments

Michelle A. Calabrese, Norman J. Wagner and Simon A. Rogers*†

A deconvolution protocol is developed for obtaining material responses from time-resolved small-angle

scattering data from light (SALS), X-rays (SAXS), or neutrons (SANS). Previously used methods convolve

material responses with information from the procedure used to group data into discrete time intervals,

known as binning. We demonstrate that enhanced signal resolution can be obtained by using methods

of signal processing to analyze time-resolved scattering data. The method is illustrated for a time-

resolved rheo-SANS measurement of a complex, structured surfactant solution under oscillatory shear

flow. We show how the underlying material response can be clearly decoupled from the binning

procedure. This method greatly reduces the experimental acquisition time, by approximately one-third

for the aforementioned rheo-SANS experiment.

Introduction

The study of soft matter is a multidisciplinary and active area of
research that often includes materials with time-dependent
structures, resulting from self-assembly, phase transitions or
an external excitation, such as a shear or electromagnetic field.
Accessing structural information on the relevant length scales
in soft matter science can be achieved through light, X-ray, or
neutron scattering. During a scattering experiment, a beam of
particles of a specified wavelength is directed onto the material
of interest. This elastic scattering is collected at a detector that
records the spatial position of the particle and the time of
acquisition. Scattering from stationary or steady-state materials
provides microstructural information about the quiescent or
locally time-independent state; thus the material properties can
be represented by the time-average over the experimental
period, T. However, there has been a recent increase of interest
surrounding time-resolved scattering experiments, where materials
such as biological macromolecules,1,2 gels,3–5 vesicles and
membranes,6–8 polymers and polymer crystal phases,9,10 and
micelle solutions11–14 have been investigated. The structure of
materials responding to an applied excitation should not be
analyzed by this simple time-average of the scattering, as the
time-dependent nature of the response cannot be discerned.
Accordingly, the development of new methods to analyze

time-dependent scattering data is essential to both accurately
and efficiently determine the true temporal material response.

Time-dependent scattering is often analyzed by an averaging
procedure known as ‘binning.’ The binning procedure groups
the scattering information into fixed intervals (bins) of duration
tw, referred to as the bin width. Here, the material response is
examined on a timescale much shorter than that of the full
experiment, tw { T. By dividing the scattered particles into
discrete time bins, the material properties are averaged over tw

and are assumed to be relatively constant within the bin. For
example, in a scattering experiment of 30 minute duration
(T = 30 min), researchers may choose to examine the structural
changes after every minute (tw = 1 min). In this case, the average
material structure per one-minute time bin is analyzed.

In order for such analysis to be performed, the detector must
time-stamp each detected particle in addition to recording its
spatial position. Fig. 1 shows an example data set, where the
X and Y position on the detector and the time of detection for
each scattering event are shown in three dimensions for a
typical small angle neutron scattering (SANS) experiment. The
red data points in Fig. 1 represent neutrons scattered during
a cycle of an oscillatory shear experiment of period T, so that
the time axis is normalized as t/T. The spatial and temporal
dependence of the scattering events leading to this detector
response, as shown in Fig. 1, is indicative of the continuously
varying dynamics inherent to the system of interest.

In the standard binning method, three dimensional spatially-
and temporally-resolved data are reduced to a sequence of
two-dimensional patterns, where the detector response to the
scattering is grouped into non-overlapping time bins of duration
tw. As shown in Fig. 1, the detected scattering events are binned
with tw = T/10 (between black or colored lines) to form a total of
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ten scattering patterns over the experiment period, T. By using the
standard binning method, all derived material properties have an
equal temporal resolution and precision of tw. The temporal
precision of the binned data is determined by the bin width, tw,
whereas the temporal resolution is determined by the time step
between consecutive bins, which in the standard binning method
is also tw. Any properties that are changing on time scales faster
than tw cannot be detected. The scattering patterns shown result
from the data binned between each set of colored lines and
contain information about the material properties during that
specific portion of the oscillation. In the previous example of a
30 minute scattering experiment with a bin width of one-minute,
the standard binning method would result in 30 total bins each of
duration one minute. Any structure changes occurring faster than
one minute would not be detected using this method.

Processing time-dependent scattering

The data binning procedure is analogous to applying a moving
average to a time series, as they both result in smoothed, time-
averaged data. However, unlike in the moving average procedure,
the data binning procedure is necessary to examine time-resolved
data, as the material response cannot be elucidated without data
processing. The goal of the time-resolved data analysis, therefore,
is to resolve the underlying material response. In the context of
time-resolved scattering experiments, the coarse-grained binning
procedure is necessary to reduce the dimensionality of the data
for analysis. In many cases, the binned data is referred to as
being the ‘true’ material response, which is not accurate because
the binned data depends on the choice of bin width. The true
material response should be independent of the analysis method.

By applying an ever-widening bin-width to the same experimental
data, the finer features of the response will be ‘averaged out’ until
eventually the bin is the same width as the period. Thus to
determine the true material response, the method of analysis
should account for, and remove, artifacts associated with the
coarse graining procedure.

Convolution and deconvolution

Suppose that the underlying material response of interest,
m(t), is continuous and is represented by time-resolved elastic
scattering data. The material response of interest could be the
intensity or position of a particular peak, for example, or some
integral function of the pattern such as an alignment factor
or order parameter. These responses necessarily change as a
function of real time throughout the experiment, and may be
brought about from external forces such as shear or temperature
change. This time-dependent response, m(t), is not to be confused
with the instrument resolution function or the material scattering
function, which are defined in the inverse space domain. These
functions are inherent to the instrument and the scattering data
and are convolved in the inverse space domain, resulting in the
instrument-smeared signal that is recorded during a scattering
experiment. The function m(t) therefore describes the time-
dependent nature of the instrument-smeared signal; the following
procedure does not attempt to alter or correct the signal based
on instrument smearing. We also note that a finite wavelength
distribution of neutrons in SANS experiments introduces time
smearing of the response and this is not explicitly considered here,
such that the method may require additional considerations
for experiments performed with a broad distribution of incident

Fig. 1 Example time-resolved neutron scattering experiment of period T, where the detector records the spatial X and Y positions, and time of
detection, for each scattered neutron. Each red dot represents an individual scattering event. The standard binning method for an oscillatory shear
experiment groups neutrons registered within an interval of time, tw, together (indicated by colored and black lines), forming a single scattering pattern
with temporal resolution tw. Here, tw = T/10. Note the two temporal ends of the figure are joined, such that t/T = 0 = 1.
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velocities, such as in a spallation neutron experiment. The
scattering data is grouped into time bins, b(t,tw), of duration tw,
which is defined by the boxcar function at a time, t,

b t; twð Þ ¼ 1

tw
H �t� tw

2

� �
� 1

tw
H �tþ tw

2

� �
(1)

where

HðtÞ ¼
ðt
�1

dðsÞds (2)

is the Heaviside step function, and d(s) is the Dirac delta function.
The use of this bin function ensures that all neutrons inside the
bin are counted with equal weighting, while those outside are
ignored. The binned data, referred to as c(t), is equivalent to the
area overlap between the material response and the bin as a
function of the amount that the bin is translated,

cðtÞ ¼
ð
m t 0ð Þb t� t 0; twð Þdt 0: (3)

Eqn (3) is more concisely written as

c(t) = m(t)#b(t,tw) (4)

where # is the convolution operator. Eqn (4) therefore explicitly
states that the binned data is the convolution of the material
response and the bin. In order to obtain the material response
m(t), from the convolved data, c(t), a deconvolution must be
applied. According to the convolution theorem, the Fourier trans-
form of a convolution is equal to the product of the Fourier
transforms. Denoting the Fourier transform operator as F, and
the Fourier transform of a time domain function by a change of
variable and capitalization, the theorem states that

F{c(t)} = C(o) = F{m(t)#b(t,tw)} = M(o)�B(o,tw). (5)

In order to bin the data, a value of tw in eqn (3) is chosen.
Accordingly, b(t,tw) and B(o,tw) in eqn (4) and (5) are fully
known. Given the form of the bin, as defined in eqn (1), the
Fourier transform is the well-known sinc function,

F bðt; twÞf g ¼ B o; twð Þ ¼
2sin

two
2

� �
two

: (6)

No assumptions, other than continuity in time, are made about
the form of m(t) or M(o). To remove any artifacts associated
with the binning procedure, the Fourier transform of the
convolved (binned) data can be divided by the known Fourier
transform of the bin,

MðoÞ ¼ CðoÞ
B o; twð Þ: (7)

The deconvolution, obtained by applying the inverse Fourier
transform, results in replication of the material response
unaffected, in principle, by any effects of the binning procedure,

F�1 MðoÞf g ¼F�1
CðoÞ

B o; twð Þ

� �
¼ mðtÞ: (8)

The differences between the binning procedure and the full
deconvolution process are illustrated for a time-periodic material
response in Fig. 2(a) and (b), respectively, for bins of different
sizes on a simulated data set. Only the first half of the period is
shown in Fig. 2 for clarity. The simulated material response
(black, Fig. 2(a) and (b)) is constructed of odd harmonics of equal
magnitude up to and including the 29th harmonic. The simu-
lated response was convolved with different time windows to
obtain the results in Fig. 2(a); these results were then deconvolved
by the same time window in Fig. 2(b).

Fig. 2 The results of binning only (a) and binning and deconvolving (b) time-resolved sample data set from bins of width T/N, where T is the period of
oscillation and N is an even integer. Only the first half of the oscillation is shown for clarity. The solid black line indicates the underlying material function,
and the colored lines indicate the results of the two procedures. Only by deconvolution can the true material response be determined without artifacts
from the analysis.
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The results in Fig. 2(a) represent the material response that
is obtained when different bin sizes are chosen to process the
data. For convenience, the bin duration, tw, is expressed as an
even integer fraction of the period of oscillation, T, such that
tw = T/N. Here, the temporal resolution is approximately
continuous through t/T, whereas the temporal precision is deter-
mined by the bin width, T/N. Larger integers thus correspond
to shorter bins, better approximating the underlying material
response. Clearly, the results of binning alone are dependent on
the bin size, as significantly different responses are seen with
changing N. In Fig. 2(b), the data from Fig. 2(a) is deconvolved to
obtain the true material response. The result of the deconvolution

is completely independent of the bin size, a property required of
the material response.

On the basis of the data displayed in Fig. 2, a bin as wide as
half of the period, T/2, can be used, in theory, to accurately
determine the material response via deconvolution. Such analysis
has clear implications in the length of time required to carry out
a time-resolved scattering experiment. In many studies where
binning is used, bin widths on the order of T/30 are employed
to provide a reasonable balance between temporal resolution and
experiment duration.5,14 If a constant number of scattering events
per bin is desired (normally around 100 000 –250 000 or greater,
depending on the information sought by the researcher), then
scattering events sufficient to fill bins of width T/2 can be
collected 15 times faster than the number of scattering events
required to fill bins of width T/30. However, experimental
limitations and noise in the data limit the practical bin size
that can be applied to reduce scattering time, which will be
discussed in the next section.

Discretization

The formalism above in support of deconvolution assumes
continuous functions and transforms. Practically, the underlying
continuous material response can only be measured discretely,
and therefore, the ‘true’ deconvolved signal must also be
discrete. The integrals in eqn (3) and those involved in the
transforms in eqn (5) and (8) are therefore replaced by sums.
While the arguments remain the same, the application of the
ideas requires refinement when dealing with discretely-measured
data. The primary concerns when deconvolving discrete data
are associated with Fourier transformation and inverse Fourier
transformation, which can be affected by noise, time-step size,
and bin-width. Additionally, the binned data must be processed
in a specific manner to implement the deconvolution procedure.
In the standard binning method, the temporal precision and
temporal resolution are the same because the bins are non-
overlapping in time. Accordingly, the binned material response
cannot be deconvolved because there exists only one data point
per bin width. The binning procedure can be modified to allow
the bins to ‘slide’ at a certain time step, ts, where ts { tw. In this
method, referred to as the sliding binning method, the bins
overlap in time so that neutrons are counted multiple times,
but only once per bin. Implementing the sliding binning
method greatly increases the temporal resolution of the binned
signal (by a factor of n = tw/ts), thus enabling better deconvolution.
In the previous example of a 30 minute scattering experiment with
a bin width of one-minute, the sliding binning method increases
the total bin number by 30n. A chosen value of n = 5 would result
in 150 total bins, each of duration one minute (illustrated in
Fig. 3). Note that the appropriate choice of n is dependent on the
data set, and larger n-values are often required for wider bin
widths. This numerical example, given in step 1. of Fig. 3, uses the
sliding binning method to achieve five-fold improved temporal
resolution over the standard binning method. Fig. 3 also helps to
visualize the full procedure, from the data processing to the final

Fig. 3 Flow chart illustrating the data processing and deconvolution
procedure, with a Matlab example for reference. Steps 2 to 4. Correspond
to equations discussed in the text, whereas step 1. Is performed in the
scattering reduction software. Step 3a allows the user to determine the
optimal truncation frequency for the inverse transform.
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deconvolution step. A sample procedure and Matlab commands
are provided as a practical example, which addresses issues such
as noise and bin width effects (which will be discussed below).

Noise effects

The deconvolution process provides a pathway for dramatically
reducing the acquisition time for a time-resolved scattering
experiment by using larger bin sizes. However, noise effects
limit the practical bin width that can be applied to a data set to
obtain an accurate deconvolved signal. Fourier transforming
discrete data requires division by the number of points in the
time domain signal, and inverse Fourier transformation requires
multiplication by the number of points in the frequency domain
signal. The signal-to-noise ratio (SNR) of an experimentally-
measured signal can be increased by truncating the spectrum
in the frequency domain. Truncating the frequency spectrum is
almost always necessary based on the noise level and the error
associated with experimental data (step 3a, Fig. 3). In time
periodic experiments, the truncation frequency can be esti-
mated by examining the magnitude of the noise in the Fourier
transform of the time-averaged data, which is most apparent
at high frequencies. Truncating the full spectrum thereby
removes a significant amount of noise from the signal. The
inverse Fourier transform then only uses the frequencies that
are above the level of the noise to reconstruct the discrete true

signal. In data sets where the noise amplitude is higher than
that of a frequency that contributes to the signal, the feature
resulting from that frequency cannot be resolved in the true
signal. Fig. 4 examines the effect of noise on the deconvolu-
tion procedure for different bin widths and different trunca-
tion frequencies.

The signals in Fig. 4 are calculated by deconvolving the time-
average of the original signal featured in Fig. 2 with different
levels of added noise. These calculations are the same as those
performed in Fig. 2; however noise was added to the time-
averaged signal before performing the deconvolution, such that
the results are no longer analytically defined. Gaussian-distributed
zero-mean white noise was generated in Matlab, where one
standard deviation of the noise amplitude was equal to 0.1%,
0.25% or 0.5% of the mean amplitude of the time-averaged
signal. Fig. 4 clearly shows the effect of noise on the deconvolved
signal at different bin widths (T/2, T/10, T/32), and of truncating
the full Fourier spectrum at different frequencies, ranging from
the full frequency spectrum (no truncation) to 1/32 of the full
spectrum (number of frequencies used to construct the original
signal). As seen in Fig. 4, the closer the truncation frequency is to
the number of frequencies used to generate the signal, the more
noise is filtered, leading to a smoother signal. However, the end
of the Convolution and deconvolution section illustrated a case
where a bin width of T/2 can reduce the time that would currently

Fig. 4 Binning and deconvolution of noisy data at different bin (time) widths. Noise levels of 0.1, 0.25 and 0.5% were added to the time-average of the
original signal from bin widths of T/2, T/10 and T/32. The full frequency spectrum transform always returns noisy data. However, truncating the Fourier
transforms (denoted as a fraction of the full spectrum) removes noise from the signal so that the true signal is more closely approximated. The original
signal (black) has frequencies corresponding to 1/32 of the full Fourier transform. The true signal at 1/32 of the full transform is best approximated using
bins of T/32, and deviates significantly with increasing bin size. Data is shifted vertically for visual aid.
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be taken to acquire data sufficient for bins of width T/30 by a
factor of 15. However, as Fig. 4 shows, there are limitations in the
bin width that should be chosen when performing an experi-
ment. Bins of width T/32 handle the noise the best, as the smaller
bin width leads to sharper features in the time-averaged signal,
which results in a high signal-to-noise ratio. Using bins of T/32,
the deconvolution result after truncation is nearly unaffected by
the increasing noise level within the range examined. However,
the effect of the added noise is pronounced at bins of T/2, where
even the truncated deconvolution results greatly differ from the
expected original signal. Smaller bin widths are optimal in the
deconvolution procedure for several reasons. The width of
the sinc function in frequency space is inversely proportional
to the bin width in real time, meaning that smaller bin widths
cover a wider frequency range. The number of roots in the sinc
function also increases with wider bin sizes in the same fre-
quency range, leading to more information loss with wider bins.
Lastly, the amplitude of the sinc function at high frequencies is
larger when the bin size is smaller, leading to a the higher signal-
to-noise ratio when the deconvolution is performed. However, by
truncating the spectrum at all bin widths, the deconvolution
result becomes closer to that of the original signal. The trunca-
tion of the frequency spectrum is important to perform during
this procedure (Fig. 3 and 4) such that only the frequencies with
amplitudes significantly above the level of the noise are used to
reconstruct the discrete true signal.

Time-step size effects

A fundamental result in the field of information theory, often
referred to as the Nyquist–Shannon sampling theory states that

If a function x(t) contains no frequencies higher than B Hz, it
is completely determined by giving its ordinates at a series of
points spaced 1/(2B) s apart.

The sampling theorem sets the upper limit on the angular
frequencies that can be determined by the Fourier transforma-
tion of discretely-measured data. The upper frequency limit of
the band, denoted by B, and the size of the time step, ts, are
therefore related by:

B ¼ p
ts
: (9)

The frequency response of the bin function defined in eqn (1)

decays with angular frequency as
2

two
as shown in eqn (6). In

the deconvolution, the Fourier transform of the convolved data
is therefore divided by a number less than or equal to one. It is
possible to set a value on how much the frequency response has
decayed by truncating the response at a particular frequency. If
we refer to the amplitude of the sinc function as L:

L ¼ 2

two
(10)

The frequency that solves eqn (10) can be readily equated with
the upper frequency of the band from eqn (9) to give a relation

between the step size, the bin width, and the desired amplitude
of the sinc function,

2

Ltw
¼ p

ts
) tw

ts
¼ 2

pL
: (11)

This result states that if one wishes to probe frequencies as
high those required to decay the sinc function to 5% of the

zero-frequency value, such that L = 0.05, then
tw

ts
¼ 40

p
� 12:73.

This requires the step size to be thirteen times smaller than the
bin width. However, often times the experimental scattering
signal decays much faster than that of the sinc function. In
oscillatory shear experiments, for example, the stress response
is highly indicative of the scattering signal. The higher order
harmonics present in the Fourier transform of the stress
response are a good estimate of the higher order harmonics
present in the structural response. In many of these experiments,
it is more realistic to decay the sinc function to 15–20% of the
zero-frequency value, where the frequency of the sinc function is
near that of the data truncation frequency (determined using step
3a in Fig. 3). At 15–20% of the zero-frequency value, a step size of
ts = tw/3 or tw/5 is often sufficient; however, the optimal step size
is dependent on the data set and bins of large tw may require
finer step sizes.

Bin-width effects

In addition to the amplitude, the phase of the sinc must also be
considered to determine which frequencies will be irretrievably
lost during the deconvolution. As sin(o) = 0 when o = np 8 nAZ,

frequencies equal to
n2p
tw

will be eliminated from the deconvolved

function. Practically speaking, the deconvolution will be undefined
when the discrete Fourier transform (DFT) of the time window
contains zeros, as the DFT of the time-averaged data is divided by
that of the window function. As mentioned in Fig. 3, the number
of points for the transform can be carefully chosen to avoid such
complications. Note that the chosen number of points for the
transform, k, should be greater than or equal to the number of
slices. By doing so, the transform will be padded with zeros
(Matlab), as opposed to prematurely truncating the spectrum.

Experimental results and accessibility

The standard and proposed analysis techniques are compared
using a time-resolved large amplitude oscillatory shear (LAOS)
rheo-SANS experiment taken at the National Institute of
Standards and Technology Center for Neutron Research (NCNR).
The experiment was performed on a previously characterized15,16

mildly branched wormlike micellar solution with an applied strain
amplitude g0 = 225 and angular frequency o = 0.2 rad s�1.
Scattering was measured in the 1,3 flow-vorticity plane of shear.
One material property that is directly calculated from binned
neutron data, which therefore may represent c(t), is the alignment
factor. The scalar alignment factor is a measure of shear-induced
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segmental alignment (anisotropy) and is defined by the spatial
average on the detector, given by,

Af ¼
Ð 2p
0 Iðq;fÞ cos 2 f� f0ð Þð ÞdfÐ 2p

0 Iðq;fÞdf
(12)

where I(q) is the intensity over a small fixed q-range, f is the
azimuthal angle, and f0 is the azimuthal angle of maximum
intensity. This average is calculated over a finite range of scattering
vectors based on a specific physical feature of interest.

Fig. 5 shows the results for the standard binning method,
the sliding binning method, and the full deconvolution (trans-
lated for visual aid). First, the alignment factor was calculated
for each of the thirty, non-overlapping bins (red) using the
standard binning method (tw = ts = T/30). The sliding binning
method (gray) was performed on the same data set using
overlapping bins with a step size five-fold smaller than the
bin width (tw = T/30, ts = T/150 = tw/5), yielding a five-fold
improvement in the temporal resolution and 150 total bins.
While a value of n = 5 (as seen in Fig. 3) provides sufficient
temporal resolution to perform the deconvolution for bins
of width T/30 in this experiment, larger values of n may be

required when the chosen bin size is larger than T/30. The
experimental data processed using the sliding bin method
(gray) was then deconvolved to elicit the true (discretized)
material response (black). The discrete nature of the standard
binning method, which leads to poor temporal resolution,
is apparent in Fig. 5, whereas the sliding binning method
presents improved temporal resolution. The sliding bin curve
(gray) exhibits small oscillations in the alignment factor signal,
suggestive of a higher frequency material response, that are not
seen with the standard binning method. While portions of the
sliding bin curve could be interpolated from the standard bin
points, the existence of the higher frequency oscillations in the
material structure and the position and value of the maximum
alignment would not be resolvable via interpolation. The
deconvolved signal (black) displays sharper oscillations in Af

that reflect the true material alignment. The residuals in Fig. 5
highlight the improvements to feature sharpness and quality
obtained by the deconvolution procedure.

In Fig. 6, we examine the higher frequency oscillations in the
alignment factor and compare the deconvolved, true alignment
(black) to the measured shear stress (blue). The alignment
factor oscillations clearly correspond to similar oscillations in
the measured shear stress. These features cannot be resolved
using the standard binning method due to poor temporal
resolution and limited number of points, making it more
difficult to derive information from the stress-SANS law,17 or
other empirical relationships. Simply reducing the bin size will
not improve the situation, as the statistical accuracy of the data
decreases correspondingly. The improved temporal resolution
and feature clarity gained from the deconvolution provide a

Fig. 5 Experimental results from a mildly branched wormlike micellar
solution under LAOS at o = 0.2 rad s�1 and g0 = 225 ( _g0 = 45 s�1). The time
periodic 1–3 plane alignment factor, c(t), is binned into 150 bins of width
tw = T/30 (ts = tw/5). The standard binning method (red) is compared to the
sliding binning method (gray) and the full deconvolution (black). Small
oscillations in the alignment factor signal from 0.45 o t/T o 0.65 are not
resolved using the standard binning method. The residuals between the
methods show the impact of the deconvolution procedure, where the
deconvolved signal exhibits sharper, more pronounced oscillations that
represent the true material alignment. Error bars span the bin time width.

Fig. 6 Comparison of the deconvolved signal (black) and the material
shear stress response (blue). The oscillations detected in the deconvolved signal
directly reflect the features in the stress response. The enhanced temporal
resolution and sharpness of the features gained by deconvolution enables
quantitative relationships to be developed between the alignment and stress.
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more direct and accurate pathway to quantitatively link the
structural alignment to the measured bulk rheological properties.
The deconvolution process also provides a method for reducing total
experiment time required to achieve a given accuracy in scattering
experiments. However, the noise level ultimately limits the resolution
that can be obtained. Similar to the results shown in Fig. 4, the
experimental deconvolution results for this data set are insensitive to
bins of width T/20 compared with T/30 (data not shown), leading to a
reduction in scattering (data acquisition) time of one-third.

In additional oscillatory shear conditions, we found that the
deconvolution results were also unaffected by the reduction in
bin width from T/30 to T/20 (data not shown). Depending on
the features present in the signal, further time reduction can be
obtained by implementing larger bin sizes. The time-averaged
signal in Fig. 6 has two small oscillations on the order of T/10
in the alignment factor and stress signal: one from 0.45 o t/T
o 0.55 and the other from 0.55 o t/T o 0.65. Therefore, when a
bin size on the order of T/10 is used, the magnitude of the
Fourier transform at these frequencies is roughly equivalent
to the noise, making an accurate deconvolution difficult to
perform. As the material stress response contains complementary
features to the alignment factor response, the appropriate bin
width can be estimated by examining the width of the stress
response features and then choosing a smaller bin size. By
decreasing the bin size from T/10 to T/20, the deconvolution
was successfully performed for this data set.

In summary, we have shown a procedure to determine the
true, underlying material response from a time-periodic signal
given discrete data points, such as the alignment factor calcu-
lated from neutron events. This is accomplished by rigorously
deconvoluting the scattering data, which is unavoidably operated
on by a sliding boxcar function in time during data processing.
When applied to a particular time-resolved data set, the proposed
sliding bin method gives the same temporal precision as the
standard bin method, while greatly improving the temporal
resolution. The full deconvolution procedure yields the true
material response, which is unobtainable using binning alone.
This procedure is general and can be applied to many forms of
time-periodic scattering data.

Conclusions

An improved method of analyzing time-resolved elastic scattering
data is shown to increase the precision of the functions derived
from scattering information, while significantly decreasing the
data acquisition time. The developed deconvolution procedure
greatly improves the temporal resolution and the resulting accu-
racy of the calculated material response to an external excitation.
Sample data sets with and without noise and SANS measurements
taken during large amplitude oscillatory shear show that the
experiment time can be reduced by one-third or more, depending
on the time scale of the features. The improved accuracy and
precision of the deconvolved signal features enable the scattering
signal to be quantitatively linked to the measured rheology for the
development of structure–property relationships.
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