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Active colloids at fluid interfaces

P. Malgaretti,*ab M. N. Popescuab and S. Dietrichab

If an active Janus particle is trapped at the interface between a liquid and a fluid, its self-propelled

motion along the interface is affected by a net torque on the particle due to the viscosity contrast

between the two adjacent fluid phases. For a simple model of an active, spherical Janus colloid we

analyze the conditions under which translation occurs along the interface and we provide estimates of

the corresponding persistence length. We show that under certain conditions the persistence length of

such a particle is significantly larger than the corresponding one in the bulk liquid, which is in line with

the trends observed in recent experimental studies.

1 Introduction

Micro- and nanometer scale particles capable of self-inducing
motility within liquid environments1–5 are promising candidates
for the development of novel lab-on-a-chip cell-sorting devices,
chemical sensors,6 or targeted-drug-delivery systems,7 to cite just
a few potential applications. One proposal, which has generated
significant experimental and theoretical attention within the last
decade (see, e.g., the recent reviews in ref. 1, 3 and 4), is to achieve
self-motility by designing ‘‘active’’ particles capable of inducing
chemical reactions within the surrounding liquid. One such
system, which will be of particular interest for the present
study, is represented by spherical beads partially covered over
a spherical cap region by a catalyst which promotes, in the
suspending solution, a chemical conversion of reactants (‘‘fuel’’)
into product molecules.† Due to the partial coverage by the
catalyst, the spherical symmetry of the system is broken in two
ways. First, the material properties of the particle vary across
the surface and an axis of symmetry, which passes through the
center of the particle and the pole inside the catalyst covered
cap, can be defined. Second, the chemical reaction takes place
only on the catalytic part of the surface, and therefore the
chemical composition of the surrounding solution is varying
along the surface of the particle. The out-of-equilibrium
chemical composition gradients along the surface, due to the
chemical reaction, couple to the particle via the interactions
of the molecules in solution with the surface of the particle.

This interplay eventually leads to hydrodynamic flows and to
the motion of the particle relative to the solution, analogous
to classic phoresis.8,9 The active motion of such particles in
the homogeneous bulk of the fluids has been the subject of
numerous experimental (see, e.g., ref. 1, 3, 4, 10 and 11) and
theoretical (see, e.g., ref. 9 and 12–15) studies.

However, in many cases such active Janus particles are
suspended in a solution bound by a liquid–fluid interface,
which raises several new issues. It is known that in thermal
equilibrium, i.e., in the absence of such motility-promoting
chemical reactions, owing to their amphiphilic nature Janus
particles tend to accumulate at liquid–fluid interfaces. (This
effect can be exploited, e.g., for the stabilization of binary
emulsions.16–18) If the Janus particles are trapped at and
confined to liquid–fluid interfaces their collective behavior,
e.g., when externally driven or when relaxing towards equili-
brium after a perturbation, can be strongly affected by this
quasi two-dimensional (2D) confinement itself and by
interface-promoted interactions, such as capillary interactions
(see, e.g., ref. 19–21).

For an active Janus colloid, being trapped at the interface
(i.e., being unable to move in the direction normal to the
interface; see, e.g., ref. 22 for recent experimental results) can,
on the one hand, affect the particle dynamics due to the effects
discussed above. On the other hand, this trapping may induce
novel self-propulsion mechanisms. For example, it has been
recently predicted that if one of the reaction products exhibits a
preference for the surface and thus tends to accumulate at the
interface, the trapped Janus sphere will be set into motion
along the interface by Marangoni flow, induced by the spatially
non-uniform distribution of the reaction products.23,24 (A similar
motility mechanism can originate from thermally induced
Marangoni flows, e.g., if the Janus particle contains a metal
cap which is heated by a laser beam;25 furthermore, as reported
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† Such particles, which have distinct material properties across the two regions of
their surface, are often called Janus particles; in the following we shall use this
notation, too.

Soft Matter

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
M

ar
ch

 2
01

6.
 D

ow
nl

oa
de

d 
on

 1
/6

/2
02

5 
7:

53
:4

5 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.

View Article Online
View Journal  | View Issue

http://crossmark.crossref.org/dialog/?doi=10.1039/c6sm00367b&domain=pdf&date_stamp=2016-03-24
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c6sm00367b
https://rsc.66557.net/en/journals/journal/SM
https://rsc.66557.net/en/journals/journal/SM?issueid=SM012017


4008 | Soft Matter, 2016, 12, 4007--4023 This journal is©The Royal Society of Chemistry 2016

recently, induced Maragoni flows can drive the motion of active
particles even if they are not trapped at but located nearby the
interface.26)

If none of the reaction products exhibits a preference for the
interface, the Marangoni type of propulsion is no longer in
action. The question arises if for an active Janus particle,
trapped at the interface, sustained motion along the interface
can still occur due to the self-induced phoresis mechanism,
which works in the bulk solution. For reasons of simplicity, in
the following we focus solely on the case of planar interfaces. In
thermal equilibrium (i.e., in the absence of diffusiophoresis), a
Janus particle trapped at the interface typically exhibits a
configuration in which the particle axis is not aligned with
the normal of the interface (see Fig. 1). Therefore, at first it
seems that, upon ‘‘turning on’’ the chemical reaction, motion
along the interface may be achieved.‡ However, it is known
that the motion at the interface between two fluids generally
involves a coupling between translation and rotation.2,27,28

Thus the possibility arises that the translation along the inter-
face may lead to a rotation of the axis of the particle towards
alignment with the interface normal. Since self-phoresis of
active particles is, in general, characterized by very small
Reynolds (Re) numbers (i.e., inertia does not play a role),1,3,8,12

such a rotation of the axis of the particle leads to a motionless
state once the axis is aligned with the normal, i.e., the motile
state is just a transient. Therefore, predicting whether or not for

a particular system sustained motion along the interface may
occur via self-diffusiophoresis requires an understanding of the
interplay between the equilibrium configuration of the Janus
particle at the interface, the distribution of reactant and product
molecules upon turning on the chemical reaction, and the
induced hydrodynamic flows in the liquid and the fluid.

Here we study theoretically the issue of sustained self-
diffusiophoresis along a liquid–fluid interface for a simple
model of a spherical, chemically active Janus colloid trapped
at a liquid–fluid interface. Nonetheless we expect this simple
model to qualitatively capture some of the main physical
features of the phenomenon. The chemical activity of the
particle is modeled via the production of one species of solute
molecules, with a uniform rate across the catalytic region. We
determine the conditions under which this model system
exhibits sustained motility. These conditions involve the inter-
play between the equilibrium configuration, the difference in
viscosity between the two adjacent fluids, and the interactions
between the particle and the product (solute) molecules.
Finally, for particles trapped at the interface we analyze the
persistence length and the stability of the motile state against
thermal fluctuations and compare it with the corresponding
motion in unbound fluids.

2 Model

In this section we discuss our model for a catalytically active,
spherical Janus colloid9 trapped at a liquid–fluid interface (see
Fig. 1(a)). The colloid (gray disk in Fig. 1(a)) of radius R has a
spherical cap region (the red patch in Fig. 1(a)) decorated by a
catalyst which promotes the conversion A - B of ‘‘fuel’’
molecules A into product (solute) molecules B. The particle is
trapped at the interface (the horizontal black line in Fig. 1(a))

Fig. 1 (a) Typical configurations of an active Janus particle, i.e., a spherical colloid (shown as a gray disk in sidewise projection onto the plane spanned by
the symmetry axis of the particle and the interface normal n) with a spherical cap providing a catalytic region (red), trapped at the interface (solid black
line) between two fluids. The leftmost configuration corresponds to the catalytic cap having a preference for the upper fluid and very strong, effective
repulsive interactions between the interface and the catalytic cap. The configuration in the middle corresponds to the catalytic cap exhibiting a
preference for the lower fluid and effective interactions between the interface and the catalytic cap, having a long-ranged attractive component and a
dominant short-ranged repulsive one. The configuration on the right (‘‘crossed out’’) does not occur due to the assumed preference of the catalyst for
contact with one of the two fluids. In all three configurations C denotes the center of the sphere. (b) The coordinate systems employed to describe the
motion of such trapped active Janus colloids are shown at the right. In the spatially fixed unprimed coordinate system the interface normal n points into
the y-direction, the x-direction is in the plane spanned by n and the symmetry axis of the particle, and the unit vector in the z-direction lies in the plane of
the interface. The primed coordinate system is co-moving (translating and rotating) with the particle. The origin O0 of the primed coordinate system
coincides with the center C of the sphere. The z0- and y0-directions lie in the plane spanned by n and the symmetry axis of the particle. The z0-axis
passes through the center of the catalytic cap, and the unit vector in the x0-direction lies in the plane of the interface. The angle d A [dm,p � dm) ,
[p + dm,2p � dm), where dm o p/2 denotes the value of d (with the orientation of the cap in the upper fluid, as shown in the figure) at which the rim of the
cap touches the interface, gives the orientation of the O0z0 direction with respect to Ox, where O is the origin of the fixed coordinate system. The unit
vectors of the primed and unprimed coordinate systems are related via ex0 = ez, ez0 = cos(d) ex + sin(d) ey, and ey0 = sin(d) ex � cos(d) ey.

‡ Even if the equilibrium configuration would correspond to the symmetry axis
being aligned with the interface normal, as, e.g., in the case of strongly repulsive,
effective interactions between the interface and the catalytic patch, fluctuations
will perturb this state of alignment and the previous scenario is recovered. These
fluctuations can be thermal fluctuations of the orientation of the axis around the
equilibrium position, or non-equilibrium fluctuations of the rate of the catalytic
reaction along the surface.
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between the two fluids ‘‘1’’ and ‘‘2’’ (denoted also as fluid and
liquid, respectively) with bulk viscosities Z1 and Z2, respectively.
For simplicity we assume that the fuel (A) and the product (B)
molecules diffuse freely in both fluids, that neither of the two
species A and B exhibits a preference for either the interface or
one of the two fluid phases, and that the concentration of
A molecules in the two fluid phases is at a steady state.
Furthermore, it is assumed that the fuel molecules A are
present in abundance such that their number density is not
affected by the reaction. (Under the latter assumption, the
dynamics of the fuel molecules is irrelevant and their sole role
is, similar to that of the catalyst, that of a ‘‘spectator’’ enabling
the reaction due to which active motion emerges. Thus within
this model the diffusion constants of the A particles in the two
fluids do not enter the description.) Accordingly, we assume
that the effects of the chemical reaction can be approximated
by representing the catalyst area as an effective source of solute
which releases molecules B (at a time independent rate per area
of catalyst). We denote the diffusion constants of the solute
molecules in the two fluids as D1 and D2, respectively.

For a Janus particle trapped at the interface several scenarios
can emerge if the parameters controlling the effective particle–
interface interactions, such as the coverage by the catalyst
or the three-phase contact angle of the ‘‘bare’’ particle (i.e.,
without catalyst), are changed. Here we restrict the discussion
to the case that the particle and the two fluid phases have
densities and surface tensions for which the deformations of
the interface due to buoyancy are negligible, and we assume
that the catalytic cap is completely immersed in one of the two
fluid phases. Thus the Janus particle forms the three-phase
contact angle of the bare particle.16 Furthermore, we assume
that the effective interaction between the particle and the
interface is such that the catalytic cap cannot jut into the other
fluid, i.e., the circular boundary between the catalytic cap and
the bare regions gets pinned at the three-phase contact line
(between fluid 1, fluid 2, and the particle surface) upon touching
it. (Accordingly, if the symmetry axis of the particle, i.e., the axis
passing through the center C of the particle and the center of the
catalytic spherical cap, would rotate beyond this touching point,
the interface would no longer be planar.) For simplicity, we
further restrict our discussion to the case in which the three-
phase contact angle of the bare particle is p/2, which implies that
the catalytic cap has to be smaller than a hemisphere. Actually,
the size of the catalytic cap should be sufficiently small so that
thermal fluctuations of the orientation around the equilibrium
one do not lead to the aforementioned touching, which causes
pinning of the liquid–fluid interface. With these assumptions,
the center of the Janus particle lies in the plane of the interface.
(As it will be discussed in Section 3, this particular configuration
significantly simplifies the technical details, and thus provides
transparent and physically intuitive results.) The orientation of
the symmetry axis is determined by the effective interactions
between the catalytic cap and the interface. For net repulsive
interactions16 we expect the equilibrium distribution of the
symmetry axis of the particle to be peaked at the direction
normal to the interface. If, on the other hand, the effective

interaction between the catalytic cap and the interface includes
a long-ranged attractive part and a dominant short-ranged
repulsive part, the equilibrium distribution is expected to be
peaked at a direction which is close to, but distinct from, an
orientation parallel to the interface. (Since the catalytic material
is assumed to be completely immersed in one of the fluids, a
net attractive interaction between the catalytic cap and the
interface would be incompatible with our model.)

Since the surface tension compensates any action of the
active Janus particle in the direction of the interface normal
(which implies that the particle is trapped at the interface),
translation of the particle upon turning on the catalytic reaction
is possible only within the planar interface. Thus a motile state
can be reached only if the axis of the Janus particle is not oriented
perpendicular to the interface. Due to the symmetry of the
problem, all lateral directions of the particle translation are
equivalent; in other words, at a given tilting angle of the
symmetry axis with respect to the normal, upon rotating the
symmetry axis around the normal a state of motion emerges
which is identical to the one in the original configuration. This
allows us to consider the particle motion in the plane spanned
by the axis of the particle (in its orientation at the moment
when the catalytic reaction is turned on) and the normal of
the planar interface. Thus we neglect the effects of thermal
fluctuations leading to a rotation of the axis of symmetry out of
this plane. Under this assumption, and in accordance with
Fig. 1(b), we choose the coordinate system with the y-axis along
the interface normal, pointing towards the upper fluid, the
x-axis as the intersection of the interface with the plane of
motion, and the z-axis as the normal of the latter (see Fig. 1(b)).
For future reference, we also introduce a system of coordinates –
with the origin O0 at the center C of the particle and co-moving
with the particle –, which is denoted by primed quantities. As
shown in Fig. 1(b), in the plane spanned by the axis of symmetry
and the normal to the interface passing through the center of the
particle we choose the z0-axis to point through the center of the
catalytic cap and the x0-axis to lie in the plane of the interface and
to be parallel to the z-axis. (These choices for the primed and
unprimed coordinates are taken as to facilitate more convenient
calculations in Sections 3 and 4 below.)

A viscosity contrast between the two fluids forming the
interface leads to the onset of net torques on particles translating
along the interface. Therefore the orientation of the symmetry
axis of the trapped Janus particle relative to the y-axis will change
once the chemical reaction is turned on and the particle is set
into translation. Depending on the viscosity contrast between the
two fluids, a small fluctuation of the orientation of the symmetry
axis can be either amplified by the induced torque, leading to a
different, yet motile, state, or suppressed. In the former case the
steady state orientation of the axis of the Janus particle is
ultimately determined by the geometry of the particle including
the shape of the catalytic patch and the details of the effective
interactions between the catalytic cap and the interface, which is
a complex problem. Here we shall assume that the motion is
quasi-adiabatic, in the sense that the rotation of the particle
is much slower than the time it takes for the distribution of
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solute molecules B and for the flow of the solution to reach a
quasi-steady-state corresponding to the instantaneous orientation
of the particle. Thus we focus solely on sustained motile states.
The determination of the steady-state orientation of the symmetry
axis of the particle (which, as noted above, ultimately involves the
details of the effective interaction between the catalytic cap and the
interface) is left to future research.

As discussed above, the rotations (spinning) of the particle
around the symmetry axis are neither contributing to, nor being
induced by, the motility along the interface, whereas the
rotations of the symmetry axis around the interface normal
have the sole effect of changing the direction of the in-plane
translation. Therefore describing the motion of the particle at
the interface requires only to account for one translational
velocity component Ux and one angular velocity component
Oz corresponding to translation along the x-axis and rotation
around the z-axis, respectively. These will be determined by
assuming the motion of the fluids to be described by the Stokes
equations and the translation and rotation of the particle to be
quasi-adiabatic in the sense that the hydrodynamics obeys the
(steady state) Stokes equations at the instantaneous state, i.e.,
the orientation and velocity, of the particle. Finally, we assume
that the interface exerts no force on the particle when it is
translating along the interface, that the torques exerted by the
interface with respect to rotations of the particle around the
z-axis are vanishingly small, and that the eventual, small
deformations of the interface in the contact line region accom-
panying such a motion also have negligibly small effects.

The assumption of negligible torques deserves further consi-
deration. In fact, if the catalytic cap leaves its equilibrium
orientation, a torque will arise due to the effective interaction
between the catalytic cap and the interface. Here we focus our
attention on the case in which such contributions are negligible.§
Furthermore, the rotation around the x0-axis involves a moving
contact line, which is a well-known conceptual issue in classical
hydrodynamics.29,30 Here we do not attempt to provide a mecha-
nism through which the associated contact line singularity (i.e.,
translation of the contact line while at the same time the fluids
fulfill the no-slip boundary condition) is removed and motion
occurs (see, e.g., ref. 31–33). Instead we assume that the region,
where a microscopic description is necessary, is very small
compared to the typical length scales in the system and that
there the expected macroscopic velocity values provide a
smooth interpolation.

3 Translational and angular velocities
of Janus particles at liquid–fluid
interfaces

In order to calculate the angular and translational velocity of
Janus particles trapped at a liquid–fluid interface, we model the

two immiscible fluids separated by a planar interface as having
a continuous, but steeply varying, viscosity profile Z(y) inter-
polating between Z2 at y = �N and Z1 at y = +N across the
plane y = 0 (compare Fig. 1):

ZðyÞ ¼ Z0 þ
DZ
2
tanh

y

x

� �
; (1)

where Z0 = (Z1 + Z2)/2 and DZ = Z1 � Z2 denote the mean viscosity
Z0 = Z(0) and the viscosity contrast DZ, respectively, while x,
which is of molecular size, characterizes the width of the
interface. In the following we consider the case of a vanishingly
thin interface, i.e., we take x - 0.

3.1 Reciprocal theorem for a particle at liquid–fluid interfaces

We exploit the reciprocal theorem,24,27,34 derived first by Lorentz35

(the English translation of the original paper is provided in ref. 36)
for the case of a homogeneous fluid and later extended by
Brenner27 to the case in which the viscosity of the fluid varies
spatially.¶ The reciprocal theorem states that in the absence of
volume forces any two incompressible flow fields u(r) and û(r),
which are distinct solutions of the Stokes equations within the
same domain D, i.e., solutions subject to different boundary
conditions but on the very same boundaries qD, obey the
relation ð

@D

u � r̂ � ndS ¼
ð
@D

û � r � ndS; (2)

where r and r̂ denote the stress tensors corresponding to the
two flow fields.

For our system, the assumption of immiscibility of the two
fluids translates into the kinematic boundary condition that
the velocity components of the flow fields above and below the
interface along the direction of the normal to the interface
must vanish at the interface. This effectively enforces the
interface as a physical boundary across which, concerning the
hydrodynamics, there is momentum transfer but no mass
transfer. Therefore it is necessary that the hydrodynamic flow
is obtained by solving the Stokes equations in the domains
above (D1) and below (D2) the interface and by subsequently
working out the problem by connecting the solutions corres-
ponding to the upper and lower fluids via appropriate boundary
conditions at the interface (see below). D1 is delimited by that
part Sp1 of the particle surface Sp exposed to the upper fluid,
the surface of the fluid at infinity in the half-plane y 4 0, and
the upper part, y = 0+, of the fluid interface G (note that this
is the plane with y = 0 and less area occupied by the particle);
D2 is defined similarly.8 We note that the inner normals of the
upper (n1) and lower (n2) parts of the interface G are n1 = ey = �n2.

§ Since the typical effective forces between the interface and the catalytic cap
decay rapidly with the distance from the interface, the assumption remains valid
as long as the catalytic cap is not very close to the interface.

¶ A recent extension of this version of the reciprocal theorem to the case of a free
interface, in which the viscosity exhibits an abrupt change across the liquid–air
interface, can be found in ref. 24.
8 Formally, the domains D1 and D2 as well as the interface G could be closed
along the Ox direction by assuming periodic boundary conditions at |x| - N;
alternatively, one may choose for the surface at infinity, which is closing the
domains D1 and D2, a spherical one, centered at C and with a radius RN - N.
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We restrict the discussion to the case in which for both
flow fields (i.e., the un-hatted and the hatted one, which are
to be considered in the reciprocal theorem), there are no
(e.g., externally imposed, or due to surface tension gradients)
tangential stresses at the interface. For both the un-hatted and
the hatted flow fields, the corresponding flow velocities and
stress tensors within the upper and lower domains, which are
connected via the boundary conditions they have to obey at the
interface, are denoted by the indices ‘‘1’’ and ‘‘2’’, respectively.
By (i) applying the reciprocal theorem (eqn (2)) in each of the
domains D1 and D2 (which can be done because G is a physical
boundary at which the boundary conditions are formally
prescribed by imposing the tangential velocity and the stress
tensor to take the values given by the (yet unknown) velocity
and stress tensor on the other side of the interface, respectively),
(ii) adding the left and right hand sides of the two results of
applying the reciprocal theorem in D1 and D2, (iii) noting that for
flow fields, which decay sufficiently fast with the distance from the
particle (which typically is the case), the contribution from the
integrals over the surfaces at infinity are vanishingly small,
(iv) using the relation (see above) n1 = � n2 = ey between the
interface normals, and (v) noting that the boundary conditions for
the flow velocity at the interface G impose zero normal compo-
nents, i.e., (u1�ey)|y=0 = 0, (u2�ey|)y=0 = 0 and continuous tangential
components27 so that u1|y=0+

= u2|y=0� =: uJeJ (with similar relations
for the hatted velocity field), where eJ�ey = 0, we arrive atð

G
ujjejj
� �

� r̂1 � r̂2ð Þjy¼0�eydS þ
ð
Sp

u � r̂ � ndS

¼
ð
G
ûjjejj
� �

� r1 � r2ð Þjy¼0 � eydS þ
ð
Sp

u � r̂ � ndS:
(3)

In the absence of tangential stresses at the interface the differ-
ence of normal stresses at the interface (r1� r2)|y=0�ey is the force
corresponding to the Laplace pressure,27 and thus is a vector
oriented along the normal ey of the interface. Therefore the first
integral on the left hand side of eqn (3) vanishes due to eJ>ey. By a
similar argument, the first integral on the right hand side of eqn (3)
vanishes, too. Thus for the present system the reciprocal theorem
takes the simple form given in eqn (2) but with D replaced by Sp.

In order to determine the translational and the angular
velocity of the Janus particle, we shall select an appropriate
set of ‘‘dual problems’’ (the ‘‘hatted’’ quantities), typically
associated with known solutions for spatially uniform transla-
tions or rotations (under the action of external forces or
torques) of solid spheres with prescribed boundary conditions
at their surfaces. To this end we consider a solid sphere of
radius R with no-slip boundary conditions translating with

velocity Û and rotating with angular velocity X̂ under the action
of the external force F̂ and the external torque L̂. At the surface
of the particle, the flow û(rp), where rp denotes a point at the
particle surface Sp, is given by

ûðrpÞ ¼ Ûþ X̂� ðrp � rcÞ; (4)

where rC is the position of the center C of the sphere. (Both
rp and rC are measured from a common, arbitrary origin,

the location of which drops out from rp � rC.) Similarly, we
consider a Janus particle, which translates with velocity
U = Uxex and rotates with an angular velocity X = Ozez around
the axis, which is parallel to Oz and passes through the moving
center C of the particle at its instantaneous position. If the
particle exhibits boundary conditions given by a phoretic slip
velocity v(rp), the flow u(rp) at its surface is given by

u(rp) = U + X � (rp � rC) + v(rp). (5)

By using eqn (4) and noting that Û and Ôz are spatially constant
vectors, the right hand side (rhs) of eqn (2) can be re-written asð

Sp

û � r � ndS ¼ Û � Fþ X̂ � L; (6)

where F ¼
Ð
Sp

r � ndS and L ¼
Ð
Sp

rp � rC
� �

� r � ndS denote the

force and the torque, respectively, experienced by the Janus
particle. (In eqn (6), n denotes the normal of the surface Sp of
the particle, oriented into the fluid.) We note that while the
active motion of Janus particles in the bulk is force- and torque-
free, this is, in general, not the case if the motion occurs at the
interface because the interface can exert forces and torques on
the particle. However, because we have assumed that the
interface does not exert a force in the case of translations of
the Janus particle along the interface or a torque in the case of
rotations around the z-axis (in the sense of spinning around an
axis parallel to the z-axis, as discussed above), the components
Fx and Lz vanish. Therefore, if the reciprocal problem involves
only translations along the x-axis and/or such rotations around
the z-axis, the rhs of eqn (6), and, consequently, of eqn (2) is
zero. Restricting now the dual problem as discussed above to
such a choice, and using eqn (5) for the left hand side of
eqn (2), we arrive at

UxF̂x þ OzL̂z ¼ �
ð
Sp

vðrpÞ � r̂ � ndS: (7)

3.2 Calculation of the translational and angular velocities

We proceed by selecting two so-called dual problems, each
involving only one of the two types of motions (translation or
rotation only) for both of which eqn (7) holds. These will
provide two relations allowing one to determine Ux and Oz.
The first one, denoted by the index ‘‘1’’, is that of a sphere of
radius R, the center of which lies in the plane of the flat, sharp
(x - 0) liquid–fluid interface (see eqn (1)), translating without
rotation with velocity Û = Ûxex along the interface. This problem
has been solved analytically,28 and the result of interest here is

n � r̂1ð ÞjSp
¼ � 3

2R
Z rp
� �

Û: (8)

This leads to (see Appendix A for the details of the calculation)

F̂1x = �6pRZ0Ûx := a1Ûx (9a)

and

L̂1z ¼ þ
3p
2
R2DZÛx :¼ b1Ûx: (9b)
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After inserting eqn (8) and (9) into eqn (7) and canceling the
common factor Ûx, we obtain

a1Ux þ b1Oz ¼ C1 :¼ 3

2R

ð
Sp

Z rp
� �

vx rp
� �

dS (10)

where vx(rp) is the x-component of the phoretic slip velocity at
the point rp on the surface of the particle.

The second problem which we consider, denoted by the
index ‘‘2’’, is that of the driven rotation, without translation,

with angular velocity X̂ ¼ Ôzez of a spherical particle of radius
R, the center of which lies in the plane of the flat, sharp (x- 0)
liquid–fluid interface. As noted before, this is a more involved
problem due to the concomitant issue of contact line motion.
For the case in which one of the two fluids has a vanishingly
small viscosity, an exact solution was constructed in ref. 33
under the assumption that a slip boundary condition, with a
spatially uniform slip length along the surface, applies across
that surface region which is immersed in the fluid of non-
vanishing viscosity, called liquid. The result of this calculation
shows that for typical slip lengths l0, which are much smaller
than the size of the particle,** at distances |y|/l0 c 1 from the
interface the hydrodynamic flow within the liquid is de facto
identical to the one which would have occurred if the rotating
sphere would have been completely immersed in the liquid and
a no-slip boundary condition would have been applied. Thus in
this context the only role played by the slip is to remove the
contact line singularity, as discussed in Section 2. This can be
interpreted in the sense that the same solution would emerge
if one assumes that the fluid slips only in a narrow region
localized close to the three-phase contact line, while the no-slip
condition holds for the rest of the sphere. This view is con-
firmed by an alternative solution presented in ref. 38 for the
same problem of the rotation of a sphere at the interface
between a liquid and a fluid of vanishing viscosity.

In the following we shall adopt the latter interpretation and
make the ansatz that for our above problem ‘‘2’’ (in which the
viscosities of both fluids are, in general, certain non-zero
quantities) with a sharp interface (x - 0) the expression for
the stress tensor at the surface of the particle is given by the one
in ref. 33, i.e.,

ðn � r̂2ÞjSp
¼ �3ZðrpÞÔzðez � nÞjSp

; (11)

except for a small region localized close to the three-phase
contact line. As noted, the expression above is expected to
provide a reliable approximation if the viscosity contrast
between the two fluids is large.33 In the limiting case of the
two fluids becoming identical, by construction eqn (11) reduces
to the exact result corresponding to a sphere rotating without
slip in a spatially homogeneous fluid.

With the assumption that the small region near the three-
phase contact line contributes negligibly to the integrals over the
surface of the particle, eqn (11) implies that the corresponding

components of the forces and torques required for the reciprocal
theorem (eqn (7)) are given by (see Appendix A)

F̂2x ’ þ3pR2DZÔz :¼ a2RÔz (12a)

and

L̂2z ’ �8pZ0R3Ôz :¼ b2RÔz: (12b)

After inserting eqn (11) and (12) into eqn (7) and canceling the

common factor Ôz, we obtain

a2Ux þ b2Oz ¼ C2 :¼ 3

R

ð
Sp

Z rp
� �

n� v rp
� �� �

z
dS: (13)

Once a particular model is given for the mechanism through
which the chemical activity determines the phoretic slip v(rp),
the quantities C1 and C2 can be computed and Ux and Oz follow
from eqn (10) and (13). This concludes the calculation of the
translational (Ux) and angular (Oz) velocities of the Janus
particle trapped at the interface. We note that in the limit
DZ- 0 eqn (10) and (13) reduce to the corresponding components
for a Janus particle moving in a homogeneous fluid,34 i.e.,

Ux ¼ �
1

4pR2

Ð
Sp
vxdS and Oz ¼ �

3

8pR3

Ð
Sp
ðn� vÞzdS, respectively.

The latter result deserves further consideration. In the case
of translation along the interface, in the limit DZ - 0 the
recovery of the result corresponding to a particle moving in a
homogeneous fluid is to be expected in the case of a particle
having its center located at the interface. This is so, because the
flow around the Janus particle translating at the interface
converges, as the viscosity contrast approaches zero, towards
the solution corresponding to the motion in a homogeneous
fluid.†† On the other hand, this expectation does not hold in
the case of rotation: the immiscibility of the fluids requires that
the interface modifies the flow by ‘‘forcing’’ the fluid to flow
along the interface. This different structure of the flow survives
even if the viscosity contrast is vanishing. Therefore, recovering
nonetheless the result for rotation in a homogeneous fluid
simply means that the ansatz for the stress tensor at the surface
of the particle (eqn (11)) renders the correct limiting behavior
for vanishing viscosity contrast, irrespective of the corrections
provided by the presence of the interface.

4 Results and discussion

Solving eqn (10) and (13) for Ux and Oz leads to

Ux ¼
C1b2 � b1C2

a1b2 � a2b1
(14a)

** For example, for water on PDMS or on glass surfaces the estimated slip length
l0 is well below 100 nm.37

†† In the case of a homogeneous fluid the flow around the particle which
translates is symmetric with respect to any plane containing the translation
direction. Thus the flow is characterized by a vanishing velocity normal to such a
symmetry plane and a continuous velocity tangential to that symmetry plane
(which thus can be regarded as an ‘‘imaginary planar interface’’ where the
kinematic boundary conditions of an actual interface between immiscible liquids
are obeyed).
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and

Oz ¼
a1C2 � C1a2
a1b2 � a2b1

: (14b)

For the discussion of these results we find it more convenient
to employ the following alternative description of the orienta-
tion of the particle with respect to the interface. We define the
director p of the Janus particle as being the unit vector
corresponding to the axis of symmetry of the Janus particle
oriented towards the catalytic cap. The acute angle between the
director and the interface, in the plane (xOy), is denoted as w
(Fig. 2(a)). It is defined as a signed quantity, with the sign
convention that w is positive if p points towards the half-space
y 4 0 and negative otherwise; thus �p/2 r w r p/2. (The angle
w is thus connected with d (see Fig. 1(b)) via w = min(d,p � d), if
0 o d o p, and w = �min(d � p,2p � d), if p o d o 2p.) The
states with w = �p/2 correspond to the director being parallel
and antiparallel, respectively, to the interface normal ey, for
which Ux vanishes. Therefore, in order for a state of motion
along the surface, i.e., Ux a 0, to be sustainable, any change in
w occurring as a result of motion along the interface should be
such that |w| decreases (i.e., the director rotates towards the
interface).

4.1 Configurations of sustained motility

Referring now to Fig. 2(b) and considering as an example the
situation shown in the upper part with the catalytic cap tilted
slightly to the left of the normal ey, for which w 4 0, one infers
that, upon turning on the chemical reaction, for repulsive
(attractive) interactions between the solute (i.e., the reaction
products) and the particle, the latter will tend to move towards
the right (left), so that Ux 4 0 (Ux o 0). If DZ4 0, i.e., the upper
fluid is more viscous than the lower one, translation with
Ux 4 0 gives rise to a torque on the particle which induces a

counterclockwise rotation, i.e., Oz 4 0. (The upper part of the
particle experiences a stronger retarding friction than the lower
part of the particle.) This corresponds to a decrease of w towards
zero and thus promotes motility. This situation is shown in the
right upper quadrant of Fig. 2(b). On the other hand, translation
with Ux o 0 (and still for w4 0 as well as the cap tilted to the left
of the interface normal; not shown in the right upper quadrant
of Fig. 2(b)) gives rise to a clockwise rotation (i.e., Oz o 0, for the
same reason as above) and therefore to an increase of w towards
p/2, i.e., rotation opposes motility. If DZo 0 (and still w4 0 with
the cap tilted to the left of the interface normal), the sign of those
torques (which are described by the same color), and thus of the
corresponding angular velocities, is reversed. In this case, the
translation towards the left (Ux o 0) is accompanied by a rotation
which decreases w (i.e., Oz 4 0) and thus promotes motility (see the
left upper quadrant of Fig. 2(b)), while translation towards the
right (i.e., Ux 4 0 and still w4 0 with the cap tilted to the left of the
interface normal; not shown in the left upper quadrant) is opposed
by the rotation of the director. Following the above reasoning for
the various possible configurations (i.e., catalytic cap above or
below the interface, attractive or repulsive solute–particle inter-
actions, and viscosity contrast positive or negative), in the plane
(DZ,w) one can identify the cases in which sustained motion would
occur, depending on the repulsive or attractive character of the
interactions between the solute and the particle. These configura-
tions are summarized in Fig. 2(b), where the arrows indicate the
corresponding directions of the translation and rotation. The
colors blue and orange of the arrows refer to repulsive and
attractive interactions, respectively.

From the discussion above (see also the schematic diagram
in Fig. 2(b)) one infers that the states with sustained motion
must satisfy Ux/(ROz) 4 0 for DZ4 0 or Ux/(ROz) o 0 for DZo 0.
Therefore, for a given system these signs of Ux/(ROz) as a
function of the viscosity contrast DZ provide necessary conditions

Fig. 2 (a) Definition of the director orientation with respect to the interface. (b) Schematic diagram indicating the configurations of sustained motility as
a function of the viscosity contrast DZ = Z1 � Z2 and the position of the active cap (red) with respect to the interface (black) given by the acute angle w
between the director and the interface. The orange and blue colors of the arrows refer to repulsive and attractive interactions between the chemically
generated solute and the particle, respectively. In each case we have illustrated both the situation in which the catalytic cap is tilted to the left and the
situation in which it is tilted to the right of the interface normal ey, respectively. This change in the tilting of the cap amounts to all blue and orange arrows
turning around and pointing into opposite directions but without changing colors because the stability criterion (sign(Ux/(ROz))) is invariant with respect to
this change. Therefore in each quadrant only either the repulsive or the attractive interaction case is associated with sustained motion.
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for the occurrence of such motile states. However, in order to
explicitly calculate the sign of the ratio Ux/(OzR) one needs to
provide an explicit form for vs(rp) which determines Ux and Oz

(eqn (10), (13) and (14)). In order to determine vs(rp) it is in
principle necessary (i) to specify the geometrical properties of the
catalytic cap responsible for the reaction within the fluids; (ii) to
specify the reaction; (iii) to provide the diffusion constants of the
reactant and product molecules in the two fluids (for example,
they can either diffuse in both fluids but with different diffusion
constants, or some of the reactants or products may effectively be
confined to one of the two fluids), as well as any effective
interaction between these molecules and the interface (e.g.,
whether or not they act as surfactants); (iv) to provide the
interaction potentials of the various molecular species in the
two solutions (i.e., the two fluids plus the reactants and
the products) with the Janus particle as a whole as well as with
its surface (for both the catalyst covered part and the inert part).

4.2 Motility of a model chemically active Janus colloid at fluid
interfaces

Here we focus on the simple model of a chemically active Janus
particle as introduced in Section 2, for which there is only a
single reaction product (‘‘solute’’) diffusing in both fluids and
for which the reactant molecules are present in abundance
and diffusing very fast in both fluids, such that in both fluids
the number density of reactant molecules is de facto time-
independent and spatially uniform. The effective interaction
of the solute with the colloidal particle is assumed to be of a
range which is much smaller than the radius R of the colloid
and to be similar for the catalyst-covered part and the inert part
of the colloid. Furthermore, we assume a sharp interface (i.e.,
x - 0 so that Z(rp) = Z(y) with Z(y) = Z1 for y 4 0, while Z(y) = Z2

for y o 0). The latter assumptions imply that, by adopting the
classical theory of phoresis8,9,13 which has been developed for
homogeneous (i.e., constant viscosity) fluids, one can express
the phoretic slip as being proportional to the solute concen-
tration gradient along the surface at all points of the surface of
the particle except for a small region near the interface. Within
the corresponding proportionality factor L/(bZ) (the so-called
‘‘phoretic mobility’’; see, cf., eqn (20)), where b = 1/(kBT), kB

is the Boltzmann constant, and T denotes the absolute tem-
perature, it is possible to identify the contribution U(h) of
the solute–particle interaction (relative to the solvent–particle
interaction). U(h) is encoded in L (which has the units of an
area) according to8

L ¼
ð1
0

dhh e�bWðhÞ � 1
� �

; (15)

where h is the distance between the point-like solute and the
particle surface. The potential U(h) is assumed to be such that
U(h - 0) = +N, i.e., right at the particle surface the solvent is
strongly preferred. The potential can be either repulsive at all
distances, or it can become attractive beyond a certain distance
h0 (and thus has to have an attractive minimum because at
large distances it decays to zero); the latter case corresponds
to the adsorption of the solute. Note that L o 0 for purely

repulsive interactions U(h), while if U(h) has an attractive part
and h0 is sufficiently small, one has L 4 0. In the following,
the notion of ‘‘attractive interactions’’ will refer strictly to the
latter case, i.e., potentials U(h) which have attractive parts and
satisfy L 4 0. At this stage we do not yet particularize the cap
to more than the assumed spherical cap shape and to being
completely immersed into one of the two fluids.

Under the above assumptions, the phoretic slip v(rp) follows
from the solute distribution around the surface of the Janus
particle. We further assume that the diffusivity D(r) of the
solute molecules is sufficiently high such that the number
density distribution r(r,t) of the solute is not affected by the
convection of the fluids (i.e., we assume that the Péclet number
Pe is small) and that a steady state distribution r(r) of solute is
established at timescales which are much shorter than the
characteristic translation time R/Ux of the colloid. With this,
r(r) obeys the diffusion equation

r�[Drr] = 0 (16)

subject to the boundary conditions

lim
r!1

r ¼ 0; �Drr � njr¼R ¼ QH y0 � yð Þ; (17)

where n is the outer normal of the particle, Q denotes the
number of solute molecules generated per area and per time at
the location of the catalytic cap, and H(x) is the Heaviside step
function (H(x 4 0) = 1, H(x o 0) = 0). (In accordance with
the assumptions of the model (see Section 2), in the above
diffusion equation there are no terms to account for eventual
interactions of the solute with the interface or with external
fields.)

Since actually only the distribution of solute at the particle
surface is required in order to calculate the phoretic slip,
instead of seeking for the full solution r(r) of eqn (16), which
is a difficult problem, we only focus on the solute distribution
at the particle surface. In the co-moving (primed) coordinate
system (see Fig. 1(b)), in which the phoretic slip velocity is most
conveniently calculated, we introduce, in the usual manner,
the common spherical coordinates (r0, y0, f0) defined via

x0 = r0 sin(y0)cos(f0)

y0 = r0 sin(y0)sin(f0)

z0 = r0 cos(y0). (18)

Accordingly, the solute distribution at the particle surface
r(r0P) = r(R,y0,f0) can be expressed as a series expansion in
terms of the spherical harmonics Ycm(y0,f0):39

rðR; y0;f0Þ ¼
X1
‘¼0

Xm¼‘
m¼�‘

A‘;mY‘mðy0;f0Þ; (19)

where the coefficients Acm are functions of the radius R and
of the other parameters (temperature, diffusion constants,
viscosities, rate of solute production, etc.) characterizing the
system. In the co-moving system, the phoretic slip can be
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expressed in terms of the gradients of r(r0P) along the surface of
the particle5,8,9,13 (except at the three-phase contact line):

v r0Pð Þ ¼ �
L

bZ rp
� �rjj0r r0Pð Þ :¼ vy0ey0 þ vf0ef0 (20)

where rjj
0 ¼ 1

R
ey0@y0 þ

1

R sin y0
ef0@f0 denotes the projection of

the gradient operator along the surface of the particle.
In order to determine the x-component vx of the slip-velocity

in the spatially fixed coordinate system, we use eqn (19) and
(20) and employ the relationship between the unit vectors of
the spatially fixed coordinate system and the co-moving one
(see Fig. 1(b)). Knowledge of vx allows one to determine the
quantities C1 and C2 introduced in eqn (10) and (13) (see
Appendix B for details):

C1 ¼ �2
ffiffiffiffiffiffi
3p
p L cosðdÞ

b
A1;0; (21)

and
C2 = 0. (22)

It is interesting to note that, apart from materials properties
(L) and temperature, C1 depends solely on the projection
(cos(d)) of the particle director onto the plane of the interface
and on the real amplitude A1,0 (see eqn (19)) of Y10ðy0;f0Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=ð4pÞ

p
cosðy0Þ. This is that contribution to the angular depen-

dence of r along the particle surface which varies slowest
between the poles at y0 = 0 (center of the cap) and y0 = p.
This can be interpreted as an indication that for the model
considered here the difference in the solute density between
that at the catalytic pole and at the inert antipole is the
dominant characteristics while the details of the variation of
the density along the surface between these two values are
basically irrelevant for the motion of the particle.

In the case that the two fluids have the same viscosity, i.e.,
DZ = 0, and the diffusion constant for the product molecules is
the same in the two fluids (e.g., being related to the viscosity via
the Stokes–Einstein relation), for the model considered here,
according to which the reactant and product molecules can
diffuse freely in both fluids and unhindered by the interface,
the diffusion equation (eqn (16) and (17)) becomes identical to
the one in a homogeneous bulk fluid which can be solved
analytically.9,13 (Thus, in this limit there is no signature of the
interface left in the diffusion problem.) The corresponding
expansion into spherical harmonics of the solute density at
the surface of the particle (for a bulk solvent without an inter-
face) leads to the expression

A
ðbÞ
1;0 ¼ k

QR

D0
; (23)

where k is a dimensionless factor determined by the geometry
of the Janus sphere (i.e., the extent of the catalyst covered area)
and D0 is the diffusion constant of the product molecules in the
fluids of viscosities Z1 = Z2 = Z0. This leads to the ansatz

A1,0 = B(DZ/Z0)A(b)
1,0, (24)

for a system with an interface, where the dimensionless
function B is expected to depend on the viscosities solely via
the dimensionless ratio e = DZ/Z0. Since in the limit e - 0,
which renders the homogeneous bulk fluid case, one has
A1,0 - A(b)

1,0, the function B must obey the constraint B(e- 0) = 1.
By combining eqn (9), (12), (14) and (21)–(24), we obtain

Ux ¼
1ffiffiffiffiffiffi
3p
p

B
DZ
Z0

� �

1� 3

32

DZ
Z0

� �2
cosðdÞV0 þ O

DZ
Z0

� �3
 !

; (25a)

Oz ¼
3

8

1

R

DZ
Z0

Ux þ O
DZ
Z0

� �3
 !

; (25b)

where

V0 :¼
LA

ðbÞ
1;0

bZ0R
¼ k

LQ

bZ0D0
(26)

renders the characteristic translational and angular velocity
scales |V0| and O0 = |V0|/R, respectively. V0 is independent of
the particle radius R as well as of the value of the viscosity Z0

because, under the assumption of the Stokes–Einstein relation,
bZ0D0 depends only on the radius Rm of the product molecules.
This implies that the translational velocity is independent
of the radius R of the particle while the angular velocity is
proportional to 1/R (up to eventual additional dependencies on
R arising from B).

Eqn (25) shows that both the translational and the angular
velocity are proportional to cos(d). Therefore both vanish for
d = p/2 which matches with the fact that in this case the particle
is in fully upright orientation and thus cannot propel laterally.
Moreover, both Ux and Oz change sign when the director p
(Fig. 2(a)) changes from pointing mainly to the right to pointing
mainly to the left (Fig. 2(b)). On the other hand, the sign of the
ratio Ux/Oz, which, according to the discussion of Fig. 2(b) in
the main text, decides on the sustainability of the motile state,
is independent of d but is determined by the sign of DZ. This is
in agreement with the symmetry exhibited by the diagram
shown in Fig. 2(b). In the limit of a vanishing viscosity contrast

DZ/Z0, Ux approaches the constant value V0 cosðdÞ
	 ffiffiffiffiffiffi

3p
p

. (This
corresponds to the motion in a homogeneous bulk fluid under
the constraint of moving along a plane at an angle d with respect
to the orientation of the director position.) Thus, for small values
of DZ, Ux(DZ) does not vary much, while, as expected, the angular
velocity vanishes linearly pDZ/Z0. In the limiting case DZ - 0
translation and rotation are decoupled and the particle translates
without any rotation because there is no viscosity contrast. In such
a case the net effect of the interface is to keep the particle center
bound to the plane of the interface.

While the diagram in Fig. 2 is entirely determined by the
ratio Ux/Oz, which is independent of B, the magnitudes of both
Ux and Oz do depend on it via the amplitude A1,0 (eqn (25) and
(26)). Since determining the exact form of B(e) is clearly analy-
tically intractable, one can try to analyze its behavior for e { 1.
One option is to employ a perturbation series in terms of the
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small parameter e in order to calculate the distribution of solute
for e { 1, starting from the known solution r0(r) for e = 0
(i.e., for a homogeneous bulk fluid without the interface), from
which one can estimate A1,0 and implicitly B(e). (Note that r0(r)
varies spatially due to the solute sources located at the surface
of the particle and the solute sink at infinity.) We denote by
~r(r) := r(r)� r0(r) and D̃(r) := D(r)� D0 the deviations (first order
in e) of the number density distribution and of the diffusion
coefficient from their corresponding values r0(r) and D0

(spatially constant) in a homogeneous medium. (Note that by
assuming the Stokes–Einstein relation between the diffusion
coefficient and the viscosity D̃(r) is a known function deter-
mined by D0, e, and the known variation of the viscosity across
the interface (eqn (1)).) From eqn (16) and (17) one obtains that
~r is the solution of the differential equation

r�(D̃rr0 + D0r~r) = 0, (27)

subject to the boundary conditions

lim
r!1

~r ¼ 0; ~Drr0 þD0r~r
� �

� n



r¼R¼ 0: (28)

We have been unable to find an analytical solution of eqn (27)
and (28) for a general orientation of the (small) cap. Therefore
we cannot make any further rigorous statements. Instead, we
only formulate expectations concerning the behavior of B(e). For
example, considering the case in which the catalytic cap is in
the upper fluid region (y 4 0), e 4 0 (i.e., enhanced [reduced]
viscosity in the upper [lower] fluid) leads to a reduction
[increase] of the diffusion coefficient in the upper [lower] fluid.
Compared with the homogeneous fluid (e = 0), intuitively this
should lead to a relative accumulation of product molecules
near the catalytic pole (located in the upper fluid) and to a
relative depletion near the inert antipole (which is located in
the lower fluid). For e o 0 the behavior is reversed. Since (as
discussed after eqn (22)) the coefficient A1,0 can be viewed as a
measure of the difference between the densities at the catalytic
pole and at the antipole, the reasoning above suggests that,
upon deviating from the homogeneous state (with A(b)

1,0), A1,0

varies oppositely if the viscosity of fluid ‘‘1’’ relative to that of
fluid ‘‘2’’ increases or decreases, respectively. Therefore, to first
order in e the function z(e) is expected to vary as z(e - 0) =
1 + const�e + O(e2).

4.3 Persistence length and effective diffusion coefficient for a
chemically active Janus colloid at fluid interfaces

The motion of active particles is characterized by distinct
regimes occurring at different timescales. At short timescales
the active motion amounts to a ballistic trajectory whereas at
larger timescales the behavior is diffusive. A key parameter,
which characterizes the motion of active particles, is the
persistence length (which can be defined as below irrespective
of whether the active particle is trapped at an interface or
moving in a bulk fluid)

l = %vt. (29)

This is the typical distance a Janus particle, moving at an
instantaneous velocity %v, covers before thermal fluctuations
will eventually change its direction. The time t is determined
by the rotational diffusion of the particle (see ref. 40). In the
present case of the active particle being trapped at the interface
there are two types of rotations. First, there are rotations of the
catalytic cap orientation, i.e., of p around the interface normal,
with a characteristic time tJ. These rotations lead p out of the
initial plane of motion spanned by p and the interface normal.
This clearly changes the direction of motion. Second, there are
fluctuations of p within the plane of motion with the normal of
the plane of motion acting as the rotation axis. Small fluctua-
tions of this kind do not change the direction of motion
because p remains within the initial plane of motion. However,
large fluctuations can rotate p, within the plane of motion,
from a predominantly forward direction to a predominantly
backward direction so that the particle runs backwards along
the same straight line. This flipping of directions is associated
with a timescale t>. The minimum of these two timescales sets
the rotational diffusion time ti = min(t>,tJ) for an active
particle trapped at an interface.

In the absence of thermal fluctuations the distribution
function of the orientation of the axis p of the particle is peaked
at the steady state value. Thermal fluctuations promote a
broadening of the distribution. Both cases of rotations translate
into fluctuations of the value of the instantaneous velocity of
the particle. Accordingly, the typical velocity %vi of an active
particle trapped at an interface is defined as the mean velocity
of the Janus particle obtained as a weighted integral over all
those possible configurations which give rise to a velocity
with the same prescribed sign.‡‡ Before entering into further
technical details concerning the definition of %vi, it is convenient
to focus on one of the eight cases shown in Fig. 2(b), namely the
case of a Janus particle characterized by V0 o 0 (see eqn (26) for
repulsive solute–particle interactions so that L o 0) and with
the catalytic cap in the upper phase with d o p/2 (so that
w = d 4 0). For DZ 4 0, and within the linear regime e { 1,
eqn (25) renders, in this case, Ux o 0 and Oz o 0. This is the
situation illustrated in the right part of the top right quadrant
of Fig. 2(b). The other cases can be discussed along the same
line. Accordingly, we define %vi as

�vi ¼
ðp=2
dm

SðdÞUxðdÞdd












; (30)

where P(d) is the steady state probability distribution to find a
Janus particle with its axis forming an angle d A (dm,p/2) with
the plane of the interface;§§ dm is the value of d for which the
catalytic cap would touch the interface (see Fig. 1(b)).

‡‡ Since in the present case the system does not undergo any spontaneous
symmetry breaking, the velocity obtained by averaging over all possible config-
urations, rather than only over those with a prescribed sign of the velocity, is zero.
§§ The mean velocity %vi for the same particle moving in the positive direction
would be �vi ¼

Ð p�dm
p=2 LðdÞUxðdÞdd; see the left part of the top right quadrant of

Fig. 2(b). Here P is the distribution of the angle d A (p/2,p � dm).
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In thermal equilibrium, P(d) = Peq(d) depends only on the
effective interactions between the catalytic cap and the inter-
face. For example, in the absence of such interactions one has
Peq(d) = (p/2 � dm)�1. In contrast, in the presence of an effective
attraction we expect that Peq(d) exhibits a peak closer to the
interface (i.e., close to d = 0) while the opposite holds in the case
of an effective repulsion for which one expects Peq(d) to be
peaked at d = p/2. When particles are active, an additional
torque arises due to the catalytic activity, hence modifying the
shape of P(d). In order to estimate P(d) for active particles, we
assume that P(d) factorizes as P(d) = Peq(d)Pneq(d) into an
equilibrium part Peq(d) (as discussed above) and a modulation
Pneq(d) due to the particle activity. As far as Pneq(d) is con-
cerned, we assume that, although the system is out of thermal
equilibrium, we can express it as a Boltzmann weight Pneq(d) p
e�bF(d) of an effective potential F(d) accounting for the torque
arising due to the particle activity. (This assumption is based on
the fact that Pneq(d) is the steady-state solution of a one-
dimensional (with respect to d) advection–diffusion equation
with zero current. It is known that for such systems the steady-
state solution has the form of a Boltzmann weight.41) Since
within the present model there are no effective interactions
with the interface, Peq(d) is a constant which can be absorbed
into the normalization:

PðdÞ :¼ PeqðdÞPneqðdÞ ¼
e�bFðdÞ

Z
(31)

where Z ¼
Ð p=2
dm

e�bFðdÞdd ensures that
Ð p=2
dm

PðdÞdd ¼ 1.

An estimate of the potential F can be obtained as follows.
According to eqn (44), in our model a Janus particle, trapped at
the interface and spinning with angular velocity Oz around an
axis which is contained in the plane of the interface and passes
through the center of the particle, experiences a torque
Lz = �8pZ0R3Oz. Therefore, in order to maintain the angular
velocity Oz(d) of the particle an external torque equal to �Lz

must be applied to the particle. Accordingly, for the Janus
particle translating with Ux(d) while simultaneously rotating
with Oz(d), we introduce an effective torque

L(d) = 8pZ0Oz(d)R3 (32)

analogous to the external one which would have accounted for
the same angular velocity, and define, via L(d) = �dF(d)/dd, the
effective potential F(d) as

bFðdÞ :¼� b
ðd
dm
Lðd0Þdd0 ¼ð25Þ;ð26ÞP sin dmð Þ � sinðdÞ½ �: (33)

In this equation one has P ¼
ffiffiffiffiffiffi
3p
p

bV0R
2DZ, the reference

potential is set to F(dm) = 0, and we have accounted for the
fact that here we discuss only the case in which dm r d r p/2
(each of the other three quadrants can be analyzed following
the same line of reasoning).

The sign of P is determined by the sign of V0 and DZ.
As we noted above, here we focus on the case in which
V0 o 0 (i.e., there is a repulsive interaction between the Janus
particle and the product molecules of the catalysis) so that

P ¼ �
ffiffiffiffiffiffi
3p
p

b V0j jR2DZ ¼ �1
	

2
ffiffiffiffiffiffi
3p
p� �

DZ=Z0ð ÞPe0, where Pe0 =
|V0|R/DP 4 0 is the Péclet number of a Janus particle in a
homogeneous fluid of viscosity Z0 and DP = kBT/(6pZ0R) is the
diffusion constant of the Janus particle defined via the Stokes–
Einstein relation. The above expression for P shows that, for
DZ 4 0 and a Janus particle characterized by V0 o 0, P is
negative. In this case one has F(d4 dm) 4 0 (eqn (33)) and thus
F(d) attains its minimum at d = dm. This means that the action of
the effective torque is consistent with Oz o 0 (see eqn (25b))
which ‘‘drives’’ the particle towards its steady-state orientation
dm, as discussed in Fig. 2(b) (right part of the top right quadrant).
Accordingly, in the right part of the top right quadrant, corre-
sponding to DZ 4 0 and to the director pointing into the upper
fluid, consistent with dm r do p/2 and thus w = min(d,p� d) 4 0,
repulsive interactions (orange arrows) ensure a sustained motility
state by providing a torque which tilts the director towards the
interface, i.e., which in the present case leads to a decrease of d
towards dm. As one can read off from eqn (33), the characteristics of
the Janus particle (see eqn (26)) and of the fluid phases are all
encoded in P. Therefore the above conclusions can be extended
directly to the case of attractive interactions between the Janus
particle and the product molecules of the catalytic reaction by
changing the sign of V0, and hence of P. Therefore, in the case of
attractive interactions (i.e., V0 4 0) and with the cap oriented such
that dm r do p/2 and w = d4 0, P is negative for DZo 0 and thus
F(d 4 dm) 4 0 (in agreement with the situation illustrated in the
left part of the top left quadrant of Fig. 2(b) for which Ux 4 0 and
Oz o 0). Therefore, if particles have the catalytic cap in the upper
phase, for which sin(d) 4 0, the states with small values of sin(d),
i.e., with the catalytic patch being closer to the interface and
thus promoting the motile state, are favored if Po 0. Similarly,
if the catalytic cap of the particle is in the lower phase, where
sin(d) o 0, large values of sin(d), i.e., the catalytic patch being
closer to the interface and thus promoting the motile state, are
favored if P 4 0.

Concerning the persistence length li = %viti of an active
particle trapped at an interface (eqn (29) and (30)) one would
like to understand its relation to the persistence length lb = %vbtb

of a similar active particle moving freely in a homogeneous
bulk fluid. To this end, we proceed by assuming that the
characteristic time ti for the loss of orientation of a Janus
particle, trapped at and moving along an interface between two
fluids characterized by a (not too large) viscosity contrast
DZa 0, is similar to the corresponding characteristic rotational
diffusion time tb for the loss of orientation in a homogeneous
bulk fluid of viscosity Z0.¶¶ However, since one of the three
possible independent rotations of a rigid body would affect the
directionality for the particle trapped at the interface only if it is
associated with a large fluctuation which would flip the director
p with respect to the interface normal (see the discussion
of t> after eqn (29)), it is a reasonable to expect that ti 4 tb.
Furthermore, the argument concerning the weak influence of

¶¶ It is particularly difficult to determine ti because it depends on the details of
the effective interaction between the Janus particle and the interface and it
involves the dynamics of the moving three-phase contact line.
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the rotations associated with t> suggests ti = n0tb with n0 C 3/2
as a good ansatz for the relationship between the two charac-
teristic timescales. Furthermore, we note that eqn (25b) has the
form of a projection onto the x-axis (due to the factor cos(d)) of
a velocity (the factor multiplying cos(d)) oriented along the
director p. Thus in the limit DZ - 0 the latter factor can be
identified with the velocity %vb of the active particle moving in a
homogeneous bulk fluid of viscosity Z0. With B(e - 0) = 1 this

renders �vb ¼
1ffiffiffiffiffiffi
3p
p V0j j.

From eqn (30) and (31), after disregarding corrections to Ux

of order e ¼ DZ
Z0

(eqn (25a)), one obtains

L :¼ li
lb
’ ti

tb

�vi
�vb
’ n0

ðp=2
dm

e�bFðdÞ

Z
cosðdÞdd (34)

By inserting Z ¼
Ð p=2
dm

e�bFðdÞdd and eqn (33) into eqn (34), the

dependencies of L on dm and on P can be calculated. For the
choice n0 = 3/2 these are shown in Fig. 3(a) and (b), respectively.
(We recall that we have focused on the case of the catalytic cap
exposed to the upper phase.) As shown in Fig. 3, for sufficiently
negative values of P the persistence length of a Janus particle
moving at a liquid–fluid interface may be larger than the one in
the corresponding bulk case, i.e., L 4 1. According to the
discussion in the previous paragraphs, the case of P 4 0 with
the catalytic cap exposed to the upper phase corresponds
to either DZ 4 0 and repulsive interactions or DZ 4 0
and attractive interactions, i.e., the cases for which sustained
motility emerges (see Fig. 2(b)). On the other hand, we have
noted that for a given type of interaction (i.e., a given sign of V0)
and a given viscosity contrast DZ, the amplitude P of the
potential F changes sign if the catalytic cap is exposed to the
lower phase, i.e., for d 4 p, relative to the case of the catalytic
cap being exposed to the upper phase. Therefore, these corres-
ponding dependencies on dm and on P are given by the curves
in Fig. 3(a) and (b) but with the opposite sign of P and with

dm - �dm. Consequently, one infers that in this case one has
L 4 1 for sufficiently large positive values of P. Thus also in
the case that the cap is immersed in the lower phase the
persistence length at the interface may be enhanced relative
to the bulk one for those states in which sustained motility
emerges. In summary, this implies that in all cases of sustained
motility (i.e., the system corresponds to any of the cases shown
in Fig. 2(b)) the particle trapped at the interface exhibits an
enhanced persistence length for sufficiently large values of |P|.

Fig. 3(b) shows the dependency of L on P for the case in
which the catalytic cap is exposed to the upper phase. Interest-
ingly, L saturates at negative values of P with large |P|. The
saturation occurs at larger values of |P| upon increasing dm.
Concerning the magnitude of P at which L starts to saturate,

we recall that jPj ¼ 1

2
ffiffiffiffiffiffi
3p
p DZ

Z0
Pe0. Therefore, for

DZ
Z0
! 0 the

onset of saturation at |P| E 5 requires, even for very small
caps, i.e., dm - 0, Péclet numbers Pe0 C 30 � (DZ/Z0)�1 much
larger than the typical values Pe0 C 10 for Janus particles in a
homogeneous bulk fluid. If, however, the viscosity contrast is
high, the required corresponding Pe0 numbers are significantly
smaller. For example, for the water–air interface the viscosity of
air is negligible so that DZ = �2Z0 which implies |P| C 1

3Pe0. In

such a situation, as well as for other liquid–fluid interfaces
characterized by high viscosity contrasts, large values of |P| are
encountered already for typical values of Pe0 and the persis-
tence length at the interface may be enhanced relative to its
bulk value, i.e., L 4 1. As shown in Fig. 3, this effect is
particularly pronounced for small catalytic caps (i.e., dm small).

While the persistence length l characterizes the active
motion of a particle at timescales shorter than the character-
istic rotational diffusion time t, at timescales much larger than
t the motion of the particle crosses over to diffusion with an
effective diffusion constant:40

Deff ¼ Dtr þ
l2

t
:¼ Dtr þ dD; (35)

Fig. 3 (a) Approximate expression for the ratio L = li/lb (eqn (34) with n0 = 3/2) of the persistence length of a Janus particle at the interface (li, catalytic
cap in the upper phase) and in the bulk (lb) as a function of dm for various values of P ¼

ffiffiffiffiffiffi
3p
p

bV0R
2DZ. The angle dm is the opening angle under which the

catalytic cap is seen from the center of the particle when the cap touches the interface (Fig. 1(b)) and thus measures its size. (b) Approximate expression
for L as a function of �P 4 0 for dm = 0, p/4, and p/3. Although the value dm = 0 is unphysical, because in this case the catalytic cap reduces to a point,
the corresponding curve represents the limiting case for which L attains its maximal values.
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where Dtr is the translational diffusion constant of the particle
in the absence of activity and dD = l2/t is the activity-induced
enhancement of the diffusion constant. Eqn (35) allows us to
compare the enhancement dD(i) for the Janus particle trapped
at, and moving along, the interface to the one, dD(b), which
holds for the same active Janus particle moving in a bulk fluid:

dDðiÞ

dDðbÞ
¼ li

lb

� �2tb
ti
’ 1

n0
L2: (36)

Therefore, according to the values of L shown in Fig. 3, for
n0 = 3/2 the enhancement of the diffusion constant due to the
activity of a Janus particle trapped at a liquid–fluid interface
can be up to 1.5 times larger than the enhancement observed in
a homogeneous bulk fluid. Finally, we note that for a particle
trapped at the interface the activity induced contribution dD(i)

can become much larger than the passive translational diffu-
sion constant DP in bulk fluid if (%vi

2ti
2)/(tiDP) c 1 (see the

definition of dD(i) above and eqn (29)). By using %vi = L%vb/n0

(eqn (34)), �vb ¼ V0

	 ffiffiffiffiffiffi
3p
p

, Pe0 = |V0|R/DP, and ti/tb = n0, and by
taking tb = 1/D(rot)

P , where D(rot)
P = 4DP/(3R2) is the rotational

diffusion constant of the particle in a homogeneous bulk
fluid,40 for n0 = 3/2 and by using eqn (34)–(36) the condition
dD(i)/DP c 1 translates into the condition Pe0 c 4.3/L for the
Péclet number of the particle.

5 Summary and conclusions

We have studied the behavior of a chemically active Janus
particle trapped at a liquid–fluid interface, under the assump-
tions that the activity of the particle does not affect the surface
tension of the interface and that the interface can be assumed
to be flat. If particles are moving in such a set-up (Fig. 1), a
coupling between rotation and translation arises due to the
viscosity contrast DZ between the two adjacent fluids. Assuming
that the particles are axisymmetric, and that both fluid phases
are homogeneous and isotropic, the motile state of the particles
is characterized by their linear velocity Ux in the plane of the
interface and their angular velocity Oz about an axis perpendi-
cular to the plane of motion spanned by the interface normal
and the velocity.

In Section 3 we have determined the linear and angular
velocity Ux and Oz, respectively, by using the Lorentz reciprocal
theorem.35 Therein the stress-free interface is accounted for by
imposing the corresponding boundary conditions on the fluid
flow in both phases and the fluids are taken to be quiescent far
away from the particle. The result in eqn (6) is valid for an
arbitrary viscosity contrast DZ, including the limit of vanishing
values of DZ as well as the case that one of the two phases has a
vanishing viscosity.

Determining Ux and Oz via the reciprocal theorem requires
to solve two independent auxiliary problems involving translation
and rotation of a particle trapped at a liquid–fluid interface. In
order to be able to obtain analytical solutions, we have consid-
ered neutrally buoyant particles exhibiting a contact angle of p/2
with the planar interface. Under these assumptions it is possible

to exploit the available analytical solution for the stress exerted
on the fluid by a particle which is translating without rotation.28

The case of a particle rotating at the interface is more challenging
because it requires to determine the fluid flow close to the three-
phase contact line formed as the intersection of the interface and
the particle surface. In order to circumvent the issue of the
motion of the three-phase contact line and in order to gain
analytical insight into the problem, we have assumed that the
fluid slips along the particle only in a small region close to the
three-phase contact line. Accordingly, we can consider the fluid
flow on each part of the surface of the particle to be de facto equal
to the one which a particle experiences in a corresponding
homogeneous bulk fluid under no-slip conditions on its surface
(eqn (11)). The general expressions for Ux and Oz (eqn (14a) and
(b)) show that, for DZa 0, Oz is nonzero. Therefore the motility of
the particle along the interface is strongly affected by the change
in the orientation of the axis of the particle relative to the
interface normal. Accordingly, the velocity of the particle along
the interface can be either enhanced or reduced.

In Section 4A we have established a diagram (Fig. 2) describing
the situations for which Oz promotes orientations of the Janus
particle axis to be parallel to the interface, hence enforcing the
motile state of the particle. In particular, for repulsive interactions
between the particle and the self-generated solute (e.g., for catalytic
platinum caps on polystyrene particles suspended in water–
peroxide solutions88) we have found that the motile state is
fostered if the catalytic cap is immersed into the more viscous
phase, while the opposite conclusion holds for an attractive
interaction. Therefore, by tuning the viscosity contrast DZ, one
can control the motility of Janus particles trapped at liquid–
fluid interfaces.

In Section 4B these general considerations have been
extended further by specifying model particles which allow
one to analyze the density profiles of the reaction product.
The expansion of these profiles in terms of spherical harmonics
shows that only the amplitude A1,0 of the largest wavelength
mode affects Ux and Oz (see Appendix B). Accordingly, for the
model considered here, different systems characterized by
diverse physical properties (such as the viscosity contrast DZ,
the catalytic reaction, or the interaction between the reaction
product and the particle) but exhibiting the same value of A1,0

lead to the same values of Ux and Oz (see eqn (25a) and (25b)).
In particular we have found that both Ux and Oz are propor-
tional to the velocity scale V0 (eqn (26)) which depends linearly
on the prefactor L (see eqn (15)), the reaction rate Q per area,
the inverse mean viscosity Z0 and the inverse diffusivity D0 of
the reaction product. The angular velocity experienced by the
particle of radius R is proportional to V0/R and to the viscosity
contrast DZ.

88 In this case the repulsive character of interaction is inferred from the
experimentally observed motion away from the platinum cap and under the
assumption that the mechanism of motion is self-diffusiophoresis and that only
the oxygen production and the corresponding surface gradients of oxygen are
relevant.
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If the angular velocity promotes the alignment of the axis of
the particle with the interface, the persistence length of the
particle increases. In order to quantify this effect, in Section 4.3
we have proposed a factorization of the probability distribution
(eqn (31)) for the orientation of the axis of the particle into an
equilibrium and into a non-equilibrium distribution induced
by the angular velocity and we have constructed an effective
potential F (eqn (33)) describing the latter. The strength |P|
(eqn (33)) of this potential is proportional to the bulk Péclet
number of the particle, which is of the order of 10, and
therefore may lead to an increase of the persistence length of
a trapped active particle relative to its value in the bulk fluid.
Fig. 3(b) shows that this enhancement increases with |P| as
well as upon decreasing the size of the catalytic cap (which
allows for smaller values of dm (see Fig. 1(b) and 3(a)). At long
timescales the motion of active Janus particles is characterized
by an effective diffusion coefficient (see eqn (35)). Concerning
this regime our results predict that DZ as well as P control the
enhancement of the effective diffusion coefficient. In particular,
by using eqn (36) and the data in Fig. 3, we have found that the
presence of the interface can almost double the activity induced
enhancement of the diffusion coefficient compared with the one
in a homogeneous bulk fluid.

In sum we have obtained the following main results:
� Within a minimalistic model of active Janus particles

trapped at a liquid–fluid interface, we have characterized
their dynamics and have shown that their motility is
strongly affected by the angular velocity induced on the
particle due to the viscosity contrast DZ between the
adjacent fluids.

� We have shown that the rotation–translation coupling
induced by DZ can affect experimentally observable quan-
tities such as the persistence length and the effective
diffusion coefficient of active Janus particles trapped at
liquid–fluid interfaces. In particular, the behavior described
by our model is in agreement with recently reported,
corresponding experimental observations of increased per-
sistence lengths for chemically active Janus particles at
water–air interfaces,22 and it sheds light on the proposition
of an alternative explanation for the observed phenomenon.

� Since the viscosity contrast DZ can control the performance
of active particles moving at liquid–fluid interfaces, we
suggest that it can be relevant also for the onset of
instabilities of thin films covered by active particles.42

Finally, we mention a few interesting extensions of the
present study. Relaxing some of the simplifying assumptions
employed here might shed light on alternative means to control
active particle motility at liquid–fluid interfaces. In this respect
we recall that we have assumed that the contact angle of the
particle with the interface is p/2, and that pinning of the three-
phase contact line is absent. Concerning the contact angle, we
expect particles with a contact angle unequal p/2 to experience
extra torques due to the offset of their center of mass from the
plane of the interface. A similar scenario has been reported for
particles which are pulled, without rotating, under the action of
suitably distributed external forces and torques.28 On the other

hand, pinning of the three-phase contact line might affect
the effective rotational diffusion and, possibly, suppress it,
as shown recently for an equilibrium system.43 Therefore we
expect that for active Janus particles trapped at liquid–fluid
interfaces the pinning of the three-phase contact line can
enhance the persistence length, and therefore the effective
diffusion, as argued in ref. 22, too.

Appendix
A Forces and torques

Here we present the steps of the derivations leading to eqn (9)
and (12). In order to simplify the calculations, here it is
convenient to translate the origin O of the unprimed coordinate
system (fixed in space, see Fig. 1(b)) to the center C of the
moving particle and to use spherical coordinates (r, y, f), which
are defined as usual: x = r sin(y) cos(f), y = r sin(y) sin(f), and
z = r cos(y). (Note that these are defined in the unprimed
coordinate system which, although exhibiting here the same
origin as the primed (co-moving) one, has different orientations
of the axes as compared with the primed one. The unprimed
coordinate system offers a less cumbersome parametrization of
the location of the interface as compared with the primed
coordinate system.) We start with deriving eqn (9).

By using that for a translation (only) with velocity Û = Ûxex

one has28

n � r̂jSp
¼ � 3

2R
Z rp
� �

Û (37)

on the surface Sp of the particle. By noting that

F̂x ¼
ð
Sp

ðn � r̂ÞxdS (38)

is the x component of the integral over the surface of the
normal pressure tensor as given by the above expression, using
eqn (1), and assuming a sharp interface (x - 0 so that Z(rp) =
Z(f) with Z(f) = Z1 for 0 o f o p, i.e., y 4 0, while Z(f) = Z2 for
p o f o 2p, i.e., y o 0) one obtains

Fx ¼ �
3

2R
ÛxR

2

ðp
0

dy sinðyÞ
ð2p
0

dfZðfÞ ¼ �6pZ0RÛx; (39)

which agrees with eqn (9a). The torque is defined as

L ¼
ð
Sp

rp � rC
� �

� r̂ � ndS ¼ R

ð
Sp

n� r̂ � ndS

¼ �3
2

ð
Sp

ZðrÞn� ÛdS;

(40)

where we have used rp � rC = Rn (see Fig. 1). With the above
choice of the coordinate system the torque is along the z-direction.
Since (n � Û)z = nxÛy � nyÛx and Ûy = 0 (due to the choice of the
dual problem ‘‘1’’), with ny = sin(y) sin(f) one obtains

Lz ¼
3

2
R2Ûx

ðp
0

dy sin2ðyÞ
ð2p
0

df sinðfÞZðfÞ ¼ 3

2
pR2DZÛx; (41)

which agrees with eqn (9b).
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Concerning the derivation of eqn (12) we start from the

relation (compare eqn (11) with X̂ ¼ Ozez)

n � r̂jSp
¼ �3ZðrpÞX̂� n; (42)

we note that X̂� n
� �

x
¼ Ôynz � Ôzny and recall that by defini-

tion of the dual problem ‘‘2’’ only the component Ôz of the
angular velocity is non-zero. Thus we obtain

Fx ¼ 3ÔzR
2

ðp
0

dy sin2ðyÞ
ð2p
0

df sinðfÞZðfÞdf

¼ 3pR2DZÔz; (43)

which agrees with eqn (12a). For the torque one has, with
rp � rC = Rn,

Lz ¼ R

ð
Sp

½n� r̂ � n�zdS ¼ �3R
ð
Sp

ZðrÞ n� ðX̂� nÞ
h i

z
dS

¼ � 3R

ð
Sp

ZðrÞÔz sin
2ðyÞdS ¼ �3R3Ôz

ðp
0

dy sin3ðyÞ
ð2p
0

dfZðfÞ

¼ � 8pZ0R
3Ôz;

(44)

which agrees with eqn (12b) and where the following relations
have been used:

X̂� n ¼ �

nyÔz � nzÔy

nzÔx � nxÔz

nxÔy � nyÔx

0
BBB@

1
CCCA (45)

and

n� ðX̂� nÞ
h i

z
¼ nxnyÔx þ nx

2Ôz þ ny
2Ôz þ nynzÔy

¼ Ôz nx
2 þ ny

2
� �

¼ Ôz sin
2ðyÞ:

(46)

In eqn (46) we have used, according to the definition of the dual

problem ‘‘2’’, Ôx ¼ Ôy ¼ 0.

B Diffusiophoretic slip

We start the derivation of eqn (21) and (22) by employing
spherical coordinates (r0, y0, f0):

x0 = r0 sin(y0) cos(f0), y0 = r0 sin(y0) sin(f0), z0 = r0 cos(y0)
(47)

in the co-moving (primed) coordinate system (see Fig. 1(b)) with
r(rp

0) = r(R, y0, f0); in the following, for reasons of shorter
notations we shall not indicate explicitly the dependence on R.
The density can be expressed as a series expansion in terms of
the spherical harmonics Ycm(y0,f0):

rðy0;f0Þ ¼
X1
‘¼0

Xm¼‘
m¼�‘

A‘;mY‘mðy0;f0Þ; (48)

where39

Y‘mðy0;f0Þ ¼ a‘;mPm
‘ ðcos y0Þeimf0 ; i ¼

ffiffiffiffiffiffiffi
�1
p

; (49)

and

Pm
‘ ðxÞ ¼

ð�1Þm
2‘‘!

1� x2
� �m=2 d‘þm

dx‘þm
x2 � 1
� �‘

; ‘ � 0;

jmj 	 ‘
(50)

is the associated Legendre polynomial of degree c and order m with

a‘;m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2‘þ 1

4p
ð‘�mÞ!
ð‘þmÞ!

s
(51)

as a normalization constant.
Before proceeding, we list a few relations (obtained straight-

forwardly from the corresponding definitions) satisfied by
Ycm, Pm

c , and ac,m, which will be needed below:

Y00 ¼
1ffiffiffiffiffiffi
4p
p ; (52)

P�m‘ ¼ ð�1Þmð‘�mÞ!
ð‘þmÞ!P

m
‘ ; (53)

Y‘ð�mÞ ¼ ð�1ÞmY
‘m; (54)

a‘;�m ¼
ð‘þmÞ!
ð‘�mÞ! a‘;m; (55)

ð2p
0

df0
ðp
0

dy0 sin yY
‘0m0 ðy0;f0ÞY‘mðy0;f0Þ ¼ d‘;‘0dm;m0 ; (56)

@Y‘m

@f
¼ imY‘m; (57)

and

sin y0
@Y‘m

@y0
¼ ‘

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘þ 1Þ2 �m2

ð2‘þ 1Þð2‘þ 3Þ

s
Yð‘þ1Þm

� ð‘þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 �m2

ð2‘� 1Þð2‘þ 1Þ

s
Yð‘�1Þm

:¼ a‘;mYð‘þ1Þm þ b‘;mYð‘�1Þm;

(58)

where 
 indicates the complex conjugate quantity.
From the definition of the phoretic slip v(r0P) (eqn (20)) one

obtains

Z r0Pð Þvy0 ¼ �
L

bR

X1
‘¼0

Xm¼‘
m¼�‘

A‘;m
@Y‘mðy0;f0Þ

@y0
(59)

and

Z r
0
p

� �
vf0 ¼ �

L

bR
1

sin y0
X1
‘¼0

Xm¼‘
m¼�‘

A‘;m
@Y‘mðy0;f0Þ

@f0
: (60)

Noting that the unit vectors er0, ey0, and ef0 are given by

er0 = sin y0 cosf0 ex0 + sin y0 sinf0 ey0 + cos y0 ez0

ey0 = cos y0 cosf0 ex0 + cos y0 sinf0 ey0 � sin y0 ez0

ef0 = �sinf0 ex0 + cosf0 ey0 (61)
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and using geometry (see Fig. 1(b)) one obtains

vx ¼ vz0 cos d ¼ v � ez0ð Þ cos d
¼ vy0ey0 � ez0 þ vf0ef0 � ez0
� �

cos d ¼ð61Þ �vy0 sin y0 cos d; (62)

according to eqn (20) vr0 = 0. Therefore

C1 :¼ 3

2R

ð
Sp

dSZ r
0
p

� �
vx

¼ð62Þ
ð59Þ

3

2

L cos d
b

ð2p
0

df0
ðp
0

dy0 sin y0
X1
‘¼0

Xm¼‘
m¼�‘

A‘;m sin y0
@Y‘mðy0;f0Þ

@y0

¼ð58Þ
ð52Þ

L cos d
b

X1
‘¼0

Xm¼‘
m¼�‘

A‘;m a‘;m

ð2p
0

df0
ðp
0

dy0 sin y0Y00

ðy0;f0Þ

�

� Yð‘þ1Þmðy0;f0Þ þ b‘;m

ð2p
0

df0
ðp
0

dy0 sin y0Y00

ðy0;f0Þ

� Yð‘�1Þmðy0;f0Þ
�

¼ð56Þ 3
ffiffiffi
p
p L cos d

b

X1
‘¼0

Xm¼‘
m¼�‘

A‘;m a‘;md0;‘þ1d0;m þ b‘;md0;‘�1d0;m
� �

¼ 3
ffiffiffi
p
p L cos d

b
A1;0b1;0 ¼

ð58Þ �2
ffiffiffiffiffiffi
3p
p L cos d

b
A1;0;

(63)

which agrees with eqn (21).
We now proceed with the calculation of C2. First, we note

that ez = ex0 (see Fig. 1(b)), and therefore (n � v)z := (n � v)�ez =
(n � v)x0, where v = v(rp

0). The latter but one expression is
calculated as follows (note that in the primed coordinate
system n = er0):

ðn� vÞx0 ¼ ny0vz0 � nz0vy0

¼ er0 � ey0
� �

vz0 � er0 � ez0ð Þ vy0 ey0 � ey0
� �

þ vf0 ef0 � ey0
� �h i

¼ð62Þ
ð61Þ

vy0 � cos y0 cos y0 sinf0vy0 þ cosf0vf0
� �

¼ � sinf0vy0 þ cos y0 cosf0vf0
� �

:

(64)

Therefore C2 takes the form (eqn (13))

C2 :¼ 3

R

ð
Sp

dS0Z r
0
p

� �
ðn� vÞz

¼ �3R

ð2p
0

df0 sinf0
ðp
0

dy0 siny0Z r
0
p

� �
vy0

�

þ
ð2p
0

df0 cosf0
ðp
0

dy0 siny0 cosy0Z r
0
p

� �
vf0

�
¼:3

L

b
J1þJ2ð Þ:

(65)

The integrals J1 and J2 are evaluated as follows. By introducing
the notations

Zm
‘ ðy0Þ ¼

dPm
‘ ðcos y

0Þ
dy0

(66)

and

z‘;m ¼
ðp
0

dy0 sin y0Zm
‘ ðy0Þ;

p‘;m ¼
ðp
0

dy0 cos y0Pm
‘ ðcos y0Þ;

(67)

after observing that

z‘;�m ¼
ð53Þð�1Þmð‘�mÞ!

ð‘þmÞ! z‘;m;

p‘;�m ¼
ð53Þð�1Þmð‘�mÞ!

ð‘þmÞ! p‘;m;
(68)

and with

z‘;m ¼
ð66Þ

ð67Þ
sin y0Pm

‘ ðcos y0Þ
� �

p

0
�
ðp
0

dy0
d sin y0

dy0
Pm
‘ ðcos y0Þ ¼ �p‘;m

(69)

one arrives at

J1 :¼
ð2p
0

df0 sinf0
ðp
0

dy0 sin y0 �bR
L

Z rp
0

� �
vy0

� �

¼ð59Þ
ð66Þ

X1
‘¼0

Xm¼‘
m¼�‘

A‘;ma‘;m

ðp
0

dy0 sin y0Zm
‘ ðy

0Þ
ð2p
0

df0 sinf0eimf0

¼ � ip
X1
‘¼0

Xm¼‘
m¼�‘

A‘;ma‘;mz‘;m dm;�1 � dm;1
� �

¼ð68Þ
ð55Þ

ip
X1
‘¼1

A‘;�1 þ A‘;1

� �
a‘;1z‘;1

(note that z0,1 = 0 due to |m| r c) and

J2 :¼
ð2p
0

df0 cosf0
ðp
0

dy0 sin y0 cos y0 �bR
L

Z r
0
p

� �
vf0

� �

¼ð57Þ
ð60Þ

X1
‘¼0

Xm¼‘
m¼�‘

imA‘;ma‘;m

ðp
0

dy0 cos y0Pm
‘ ðcos y0Þ

ð2p
0

df0 cosf0eimf0

¼ ip
X1
‘¼0

Xm¼‘
m¼�‘

mA‘;ma‘;mp‘;m dm;�1 þ dm;1
� �

¼ð68Þ
ð55Þ

ip
X1
‘¼1

A‘;�1 þ A‘;1

� �
a‘;1p‘;1

¼ð69Þ � ip
X1
‘¼1

A‘;�1 þ A‘;1

� �
a‘;1z‘;1 ¼ �J1:

Therefore C2 ¼ 3
L

b
J1 þ J2ð Þ ¼ 0, which verifies eqn (22).
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