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Soft-mode of charged chiral fibrous viruses (fd)†

Kyongok Kang

The frictional forces in suspensions vary depending on the size, shape, and the surface of the particles,

which are either charged or neutral. For anisotropic particles with no spatial gradient in the order

parameter under external parameters, they exhibit either a continuous phase transition or ‘‘freezing’’ of the

order parameter fluctuation. They are known as the collective soft-mode, which has a finite cutoff

dispersion where the relaxation time diverges. From microscopic dynamics of charged chiral fd-viruses, the

soft-mode is revealed with a rotation restoring ‘‘twist’’, obtained from both polarized (VV) and depolarized

(VH) small angle dynamic light scattering. Here, I have found the minimum spatial coherence length at a

lower I–N binodal concentration, which is due to the reverse of electrostatic repulsive forces with an

increase in the concentration of charged chiral rods.

I. Introduction

The control of orientational domains of ionic impurities and
inhomogeneous charged groups of particles under a depolar-
ized field is important to improve the switching efficiency of
surface stabilized ferroelectric displays and functional panels.1

Random motions of mobile charged particles and condensed
ion-polarizations are expected to occur on a small scale,
however, they are not negligible in the fluctuations of the
collective behavior of local director fields. Dynamic light
scattering is a well-used method to measure the collective
motions of particles, where anisotropic macromolecules can
be further distinguished by the parallel and perpendicular
translations diffusion, as well as the rotational diffusion.2 In
the presence of ionic impurities with a polar type of ferro-
electric liquid crystal,1 the electrostatic (Coulomb) interaction
is apparent between mobile ions and the director field. Recently, a
delicate difference between the self-organization of ‘‘condensed’’
and ‘‘uncondensed’’ F-actin bundles was discussed using the
counterion density waves due to multivalent ion concentrations
relating to the twist distortion of the F-actin helix,3 which is
also interesting for the charged chiral rods system. Brownian
dynamics (BD) simulations show a slight deviation between the
stiff and flexible chains with- and without-hydrodynamics in
the intermediate range of the scattering wavevector, in DNA
fragments,4 and in coil–globule transitions of DNA molecules by a
cationic surfactant.5 In the case of charged particles, cumbersome
interactions occur due to either ion specificity or space charges

that can form during a change in the configurational entropy,
shown by electrophoretic light scattering,6 and non-zero mobility
variances in the heterodyne correlation functions.7

Interestingly, the repulsive forces between charged colloids
with an electrostatic interaction of ions have been shown for
salt-free polyelectrolytes with a minimum value of the effective
diffusion coefficient.8 Statistical models of the density and
charge fluctuations are considered in two limiting cases: either
dense ionized matter with small wavevector dependence low
frequency spectrums,9 or the elastic moduli in simple fluids for
a long-wavelength limit.10 Although the coupled translational–
rotational diffusion is discussed for optically anisotropic bio-
logical molecules,11,12 such as the TMV virus,13–15 collagen,16,17

and filamentous viruses (Pf1, M13, and potato virus X),18,19

there is not yet any experimental realization of the coupling
with a high concentration of charged rods.

In this work, the system chosen is crowded suspensions of
charged fibrous viruses (fd) at a low ionic strength (0.032 mM
salt), where deformations of the thick electric double layers are
present. The ionic properties of filamentous bacteriophage fd
were established by Zimmermann et al.,20 where the surface
charge of the fd-virus was determined by a polyelectrolyte
titration, as the isoelectric point with a pH-value of 4.2. Also,
the number of ionizable residues (of carboxylated and amide
groups)21 coated in bacteriophage fd protein and their pKa

values are provided in the table in ref. 20. The rotational
diffusion of the fd-virus suspensions for various ionic strengths
was tested by the rheological properties at dilute and inter-
mediate fd-concentrations,22 and is related to the intrinsic
viscosity of flexible rod-like (cylindrical or ellipsoidal) macro-
molecular solutions. The rotational diffusion is expected to
be rather hindered by an increase in the fd-concentration,
for the two extreme cases of salt-free and high ionic strength.23
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So far, the structure and dynamics of suspensions of charged
rod-like particles have been shown in a ‘‘diluted’’ isotropic
phase, by means of dynamical mean-field theory and Monte
Carlo simulations.23,24 The pair-distribution of charged fd-rods
is then estimated by a depolarized structure factor for rods with
different rod lengths, and Monte Carlo simulations.25 However,
there is not yet any direct evidence for dynamical modes of
charged fd-rods, with an increase in fd-concentration at a low
ionic strength.

In equilibrium, when the system exhibits a critical slowing-
down behavior, on approaching a phase transition, the fluctua-
tions in the order parameter lead to a collective soft-mode that is
shown with a finite cutoff wavevector in the dispersion relation.
This is related to the thermodynamic potential, where the kinetic
coefficients are engaged with the inverse of the viscosity.26

Another feature of equilibrium behavior is the enhanced order
parameter with the spatial coherence length. The aim of this
paper is to discuss the collective microdynamics of these highly
charged fd-rods, by means of small angle dynamic light scattering
(in the wavevector range of 1–8 mm�1). The spatial coherence
length is then obtained from the soft-mode, which gives different
cutoff wavevectors for a given fd-concentration. The change in
coherence length is estimated by the collective microdyanmics of
the charged chiral fd-viruses.

This paper is organized as follows: Section II gives the brief
background theory and experimental details for the collective
dynamics, where small angle dynamic light scattering is per-
formed for given fd-concentrations. With a well-controlled ionic
strength (of 0.032 mM salt buffer solution), the rod concentration
means that it is crowded enough to form several phase transitions:
isotropic–nematic (I–N) coexistence, a chiral-nematic phase,
and hierarchical chiral mesophases. Not only are qualitatively
different dispersion relations observed, but also collective soft-
modes are exhibited for both polarized (VV-mode) and depolarized
(VH-mode) light scattering. The sections from III to VI report the
relaxation behaviors in the dispersion relations, obtained from
the dynamic light scattering correlation functions, with an
increase in concentration. Finally, the concentration-dependent
coherence length with a continuous rotation restoring ‘‘twist’’
effect is provided in Section VII, followed by a conclusion and
discussion.

II. Background theory and
experimental details
A. The system: charged chiral fd-viruses

Highly charged fibrous virus (fd) suspensions at a low ionic
strength are used as a model system for thick charged
rods, where dissociation of condensed ions are released to
the bulk salt solution, resulting in an increase in the effective
diameter, and forming a long electric Debye screening length.27

By increasing the fd-concentration, the system undergoes
an isotropic–nematic transition, as well as the formation of
orientational textures in chiral-nematic phases, before the struc-
tural arrest is reached at the glass transition concentration.28

Since fd-virus particles carry a sufficient amount of negatively
charged groups on the thin condensed counterion layer,
the electrostatic Debye length is tuned by changing the
ionic strength of the buffer solution. There are competing
interactions between the electrostatics and hydrodynamic
interactions, such that, above the ionic strength of 1 mM salt
solution, thin electric double layers are present, in which
screened hydrodynamics are valid,27 however, below the ionic
strength of 1 mM, a relatively longer Debye length is present
compared to the bare diameter of the fd-virus (6.8 nm).
Then, the electrostatic polarization becomes responsive to
the external deformation of thick electric double layers. The
current work is done at a low ionic strength of 0.032 mM salt,
where the Debye length of the fd-virus is about 54 nm, 7 times
larger than the bare diameter, and the length of the fd-virus is
880 nm. Thus it gives a reduced aspect ratio of 16, as shown in
Fig. 1a. The locations of the binodals and spinodals depend on
both the Debye screening length and the effective number of
surface charges.29 The experimental binodal concentrations are
0.8 � 0.2 and 1.5 � 0.4 mg ml�1 for the 0.032 mM buffer. The
lower binodal concentrations are in very good agreement, while
the experimental upper I–N binodal concentration is slightly
higher than the theoretically predicted value. The interest
is then what types of collective microdynamics exist for inter-
acting charged fd-rods, by entering isotropic–nematic binodals,
and chiral-nematic phase concentrations. Fig. 1b shows the
concentration diagram extending above I–N coexistence and up
to hierarchical chiral mesophases, with depolarized optical
morphologies.

Fig. 1 (a) Simple scheme of the comparison of high (20 mM) and low
(0.032 mM) salt concentrations of a charged fd-virus. (b) Concentration-
dependent phase diagram for both salt concentrations, and depolarized
optical morphologies (bottom) of the fd-concentration at a low salt
concentration of 0.032 mM. Isotropic, I–N (isotropic–nematic) biphasic,
N* as a chiral-nematic phase. X* and H* are the hierarchical chiral-
mesophases, at higher concentrations.
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B. Free energy description of an excluded volume effect and
order parameter

In concentrated suspensions of rod-like colloids or polymers, an
excluded volume is convenient to facilitate the free energy for a
given orientational distribution function, with the sum of all
contributing interactions. In order to use the free energy descrip-
tion, a few basic assumptions are needed, as follows: (i) first, a
mean-field approach is considered, such that the dynamics of
a single particle present the whole motion of the thermal
ensemble averages of the system, (ii) the probability to find an
orientation in space is the Boltzmann distribution function
relating to an interaction energy versus thermal energy, and
(iii) there is also a ‘‘spontaneous’’ aligning effect due to an
anisotropic shape above a certain high concentration in the
absence of an external field. Thus, different kinetics of the order
parameter are expected to occur depending on the volume
fractions or effective volumes, as isotropic, isotropic–nematic
coexistence (I–N binodals), and chiral-nematic phases. Fig. 2
shows a sketch of the possible configuration of an effective
volume effect for a hard-rod (in Fig. 2(a)) and a charged rod
(in Fig. 2(b)), where two rods, indicating a higher concentration,
with pair-wise interactions play a role to some degree in the
twist elastic deformation of the angular distributions between
interacting rods. Then, whether or not there will be any
different rotational frictions of charged rods, compared to
hard-core rods, would be an interesting topic. If the orienta-
tional distribution function is P � exp �b

P
uði; jÞð Þ, where the

interaction energy of the particles i and j is u(i,j), and the
Boltzmann factor is b = 1/kBT, then the free energy is propor-
tional to the logarithmic function of a partition function C,

f ðCÞ � VkBT lnV � 1þ
X
a

C Uað Þ lnC Uað Þ
( )

; (1)

where V is the volume of the N-particle system. The interaction
potential of the system is varied by either a hard-core like
interaction, or a soft-potential for charged particles. The rota-
tional motion of rods in both isotropic and nematic phases can
be expressed by the kinetics of the order parameter tensor as a
function of the unit director field for two neighboring rod
indices na and nb:

Sa,b(t) = hnanb � 1/3dabi = Seq(nanb � 1/3dab). (2)

The largest eigenvalue of an order parameter tensor gives the
equilibrium order parameter, S, as qS/qt =�6Dr{qf/qS}, where Dr

is the rotational diffusion constant.30 As one can see in Fig. 3a,
the volume fraction v is in the isotropic–nematic phase coexist,
i.e. viso o v o vnem, and two equilibrium order parameters are
found (indicated by two red dots). Depending on the volume
fraction, different free energy deviations are expected as a
function of the order parameter S. Furthermore, the effective
surface potential of charged fd-rods, an experimentally found
order parameter, can be varied with some scaling parameter
for different ionic strengths as a function of the effective
volume fraction.27 The most general equation of motion for
the order parameter tensor, S, is expressed as the sum of three
contributions:

@S

@t
¼ Did þ DQ;hc þ Dtwist; (3)

with the dimensionless time variable, t = Drt, where Dr is the free
rotational diffusion coefficient. The various contributions are as
follows: first term, Did, is the contribution from free diffusion:

Did ¼ 6
1

3
Î� S

� �
; (4)

where I is the unit tensor. The second contribution, DQ,hc,
comes from interactions, unperturbed by the external field,
with an effective hard-core diameter that accounts for the above
discussed electrostatic interactions, as indicated by the subscript
‘‘Q’’,

DQ;hc ¼
9

2

L

deff
jeff S � S� SS:Sf g; (5)

with an effective diameter deff that can be expressed by an effective
dimensionless concentration (L/deff)jeff.

31,32 The following
expression for the effective diameter can be derived:

deff = k�1[ln KQ + gE], (6)

where k�1 is the Debye length and gE = 0.5772. . . is Euler’s
constant, and where

KQ ¼
2p expfkdg

1þ 1

2
kd

� �2

lB

kL2
N0 �Nc;0

� �2
; (7)

with d as the core diameter, lB as the Bjerrum length, N0 as the
number of immobile charges chemically attached to the surface
of a rod, and Nc,0 as the number of condensed ions of a rod
in the absence of any electric fields.29 The third contribution
Dtwist is the twist contribution, which turned out to be a not

Fig. 2 An illustration of the excluded volume effect for (a) hard-core rods
and (b) charged rods, with length L, diameter D, and a local orientation of
u
-

. The lower concentration (of an isotropic phase) and higher concen-
tration (above the isotropic–nematic coexistence) are referred to as left
and right in (a) and (b), respectively. At a higher concentration, the ‘‘twist’’
effect may play a role in the two interacting rods.
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negligible parameter for charged fd-rods where thick electric
double layers are present,31,32

Dtwist ¼ �
9

2

5

4
� ln 2

� �
1

kdeff

L

deff
jeff S � S� SS:Sf g: (8)

The detailed location of a lower I–N binodal concentration,
including the twist effect, can be obtained from the corres-
ponding dimensionless concentration of (L/d)j = 3.290. . ., as
predicted by Onsager.33,34 A brief scheme of the I–N binodal
and spinodal points are depicted in Fig. 3b. This relies on the
fact that the charge–charge interactions as well as the twist effect
have the same functional dependence on the orientational order
parameter tensor in the equation of motion (3). The lower
binodal concentration is set by:

L

deff
jeff 1� 5

4
� ln 2

� �
1

kdeff

� 	
¼ 3:290 . . . : (9)

The same procedure can be used to obtain the location of
an upper I–N binodal and two spinodal concentrations. The
Onsager value of (L/d)j for the upper binodal is 4.191, as shown
in Fig. 3b. The typical steady-state viscosity increases in the
isotopic phase, but it decreases in the nematic phase,30,35 as
expressed by Z = vkBT/6Dr{((1� S)2(1 + 2S)(1 + 3S/2))/((1 + S/2)2)},
which shows the direct relation of the order parameter and
rotational diffusion constant, such that the rotational torque is
related to the stationary intrinsic viscosity that is the resulting
order parameter kinetics.36 Here, the rotational diffusion con-
stant Dr is assumed to be a complete segment rotation of the
rod length.37 The total free energy is then described by the sum
of all the different contributions of the director field, ion
impurities, and the charge core interactions, as well as the
coupled ones with these terms. In the case of strong charge core
interactions, the director field is equally important, and the
contributions of ion impurities can be ‘‘instantaneously’’
enslaved by the director field exhibited in the thermal fluctua-
tions, which are measurable by dynamic light scattering (DLS).
Thus, random-phase approximation (RPA) is useful for exploring
the intermolecular interactions for the effect of an excluded
volume in the DLS of charged rods.38,39 The collective dynamics

of director fluctuations are then further distinguished by the
mobilities of ion impurities, relating to the rotational viscosity.
The director fluctuations of the nematic phase can then be
predicted by the superpositions of symmetry restoring variables
in long-range hydrodynamics, as shown with the divergence
of susceptibility.40

C. Collective soft-mode of the relaxation behaviors

The rotational diffusion and intrinsic viscosity for rod-like
macromolecules are influenced by the hydrodynamics,2 and
therefore for charged colloids, the electro-viscous forces may
play an additional role in the elastic deformation of a squeezing
flow, as shown by the Derjaguin approximation.41 In particular,
coupling of the rotational and translational motions is seen for
anisotropic particles with low frequency VH light scattering,42

with the explicit expression for the VV–VH-scattering intensities.43

This can also be observed for biological substances, such as
motile microorganisms,44 E. coli bacteria,45 and lysozyme.46

Depending on the aspect ratio of the rods, the dynamic
structure factor is estimated by the form factor of the rods.47

An example of a dynamic structure factor is reported for living
particle motions (of motile or swimming) due to the motility
versus ‘‘resting’’ microorganism studied in the scattering
spectra,44 but the velocity distribution of these living particles
is not a simple Gaussian function. With an increase in the
concentration of the rods, the strength of the intermolecular
interactions and different mutual diffusion constants exist in
the friction coefficients.48 Thus, for a collective motion of a
homogenous and modulated structure, the system is set by a
time-fluctuating spectrum of an order parameter that ‘‘freezes’’
at a finite wavevector by showing critical slowing down beha-
viors such that the relaxation rate becomes zero (G = 1/t = 0)
and the time of relaxation diverges (t = N) at a wavelength
at q = qc = 2p/x.1 One example is the Sm-A–Sm-C* transition
of the thermotropic system of a chiral smectic system, where
there will be a collective mode: continuous symmetry breaking
exists in the chiral Sm-C* phase, while the symmetry restoring
(so-called Goldstone) mode occurs to restore the broken sym-
metry in the Sm-A phase.1,26 The spatial coherence length, x, is

Fig. 3 (a) The free energy difference of rods as a function of the order parameter S, and the volume fraction v. Note that there are two steady equilibrium
order parameters (red dots) for the isotropic–nematic (I–N) coexistence concentration that is indicated by the green line. (b) A brief scheme of the
equilibrium order parameter S as a function of the effective volume fraction, jeff, in which two binodal and spinodal points are indicated.
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then the characteristic measure of the collective soft-mode,
depicted by the so-called 2nd order phase transitions. However,
no soft-mode has yet been explored in the lyotropic system,
where the external parameter can be replaced by the critical
concentration instead of a critical temperature. Also, the kinetic
process in the vicinity of a phase transition will be related to the
inverse of the viscosity of the system. The direct way to investigate
the propagation of an order parameter is to measure the relaxa-
tion rates (or a damping constant) as a function of the wavevector
for various concentrations, such that the cutoff wavevector can be
estimated with different phase-boundaries.

D. Method: small angle scattered intensities and correlation
functions of polarized (VV) and depolarized (VH) dynamic light
scattering

The structure of small particles can be explored by either
scattered light intensities49 or real-space small angle light
scattering for the particle arrangements,50,51 where the optical
contrast is varied with the shape of the scatterers. In this
experiment, the range of the scattering angle is small, compar-
able to the length of a charged rod (1–8 mm�1), and the preferred
directions of alignment occur in the crowded concentrations,
with persisting orientational motions of the charged fd-rods.
Home-made small angle vertical dynamic light scattering
is used to determine the collective microscopic dynamics of
many interacting charged chiral fd-rods, at a low ionic strength
(0.032 mM salt).

Fig. 4a is a simple scheme of the small angle dynamic light
scattering setup,52 where the incident laser beam is vertically
mounted to facilitate the horizontally round quartz cylindrical
cell, in Fig. 4b, with the scattering geometry: a 35 mW He–Ne
laser (JDS Uniphase Model 1145P series, 633 nm wavelength),
which is used as an incident light perpendicular to the cell. Two
mirrors are used to align the incident laser beam from the
bottom to top direction. A rotation stage (NanoRotator, Melles
Griot) is used as a goniometer, which is controlled by a software
stepper motor controller (advanced positioning technology by
Melles Griot 17BSC002). To achieve vertical alignment of the
incident laser beam, we have used two pinholes and a photon
detector on an optical rail. The scattered light is then collected
through an optical fiber that is connected to an avalanche
photo diode detector. We use an ALV-5000/EPP multiple tau
digital real time correlator (by ALV-GmbH, Langen, Germany),
which computes photon correlation functions with a linear
time-step distribution with time lags between 0.125 ms and
2147 s. The optical fiber is placed on an arm that is connected
to the goniometer. An essential element of this vertical DLS is
the achromatic lens (with a focal length of 75 mm), which is
placed on the detection side to ensure that the scattering
volume that is probed is well within the bulk of the sample.
Without this lens, it turned out that the measured correlation
functions exhibit a spurious long-time relaxation.

The incident beam is straight up to the 1 mm thick sample
cuvette, and the detector photomultiplier (PMT) collects the
scattered laser light intensity by varying the goniometer angle
between 5 and 501 (with a scattering wavevector range of 1–8 mm�1).

Then, the scattering wavevector can be decomposed either
perpendicular or parallel to the incident beam. When the
scattering angle is small, the perpendicular component of the
scattering wavevector is dominant below the wavevector of
q B 3.6 mm�1 (i.e. the scattering angle of 20–221), as shown by
the comparison to the total wavevector depicted in Fig. 4c.
However, at higher wavevectors, the perpendicular component
itself deviates from the total scattering wavevector due to a slight
contribution from the parallel component of the wavevector.

Prior to the details, the overall measured scattered intensi-
ties of the polarized light (VV-mode) are shown in Fig. 5a, as a
function of fd-concentration, as well as the depolarized light
scattering intensities (VH-mode) in Fig. 5b. The black vertical
line indicates the wavevector of q B 3.6 mm�1, which distin-
guishes between the perpendicular (below the value) and
parallel component. Very complicated scattered intensity dis-
tributions are shown for both the VV- and VH-modes below the
q-value, the perpendicular components, at a low ionic strength
(0.032 mM). Within the lower wavevector limit, interestingly,
different features of the scattered intensities are seen. In
VV-mode, for an isotropic-phase (0.5 mg ml�1), a standard
scattered intensity distribution is shown, however, with an
increase in the concentration (in the isotropic–nematic coexistence
concentration range of 1.0–1.5 mg ml�1), the distribution changes,
and eventually two pronounced intensity peaks are shown
for the chiral-nematic phase (concentration of 2.0 mg ml�1).
Thus, this concentration can be remarked as approaching the

Fig. 4 (a) A brief scheme of the experimental setup of small angle vertical
dynamic light scattering: F: filter, M: mirror, P: polarizer, A: analyzer, A.L:
achromatic lenz, B.F: band pass filter. (b) The scattering geometry passing
through the sample that is located vertical to the incident laser beam
(= 633 nm). (C) Calibration of the scattering wavevector component
perpendicular to the incident beam. Note that there is hardly any differ-
ence below the scattering wavevector of qc B 3.6 mm�1, but a deviation
appears above, as indicated by an arrow.
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chiral-nematic phase, and whether there will be a concentration-
dependent form factor relating the nematic–chiral-nematic state
would then be left as an open question. Also, a pronounced
VH-mode is shown at a concentration above the isotropic–
nematic coexistence concentration, and the highest scattered
intensity distributions are shown with two pronounced peaks
above the chiral-nematic phase (3.6 mg ml�1), which suggests
that more rotational motions are probable.

Normalized intensity–intensity autocorrelation functions are
provided in Fig. 6 for a few low finite wavelengths that are
comparable to the inverse of the persistence length of the fd-virus
particle (2.2–2.8 mm�1): first of all, regardless of the various con-
centrations, two dynamical modes are evident in the measured
intensity autocorrelation functions for both VV-mode (Fig. 6a) and
VH-mode (Fig. 6b). Rather complicated decays in the depolarized
VH-mode indicate the intra-particle interactions due to the inter-
actions of the order parameter coupled to the concentration.

The rather complicated decay functions of the depolarized
(VH) dynamic light scattering, measured at the wavelength
corresponding to the persistence length of the fd-virus particles
(2.20 mm�1 o qL o 2.91 mm�1), are very stretched at the
concentration of 1.0 mg ml�1, in Fig. 6b. This indicates either
polydispersity or coupled motions of rotations and transla-
tions. From the current measurements of the phase-diagram
at this low ionic strength (32 mM salt), 0.8–1.5 mg ml�1 is
isotropic–nematic coexistence, and above 1.5 mg ml�1, there is
a chiral-nematic phase. The difference between the nematic-
and chiral-nematic turned out to be the flow kinetics, where
nematic-flow is much (B100 times) faster than the chiral-

nematic phase. This is the reason why the VH-correlations slow
down enormously above 1.5 mg ml�1 in Fig. 6b.

The fits of these correlation functions are provided with the
fast- and slow-dynamical mode in the following sections (III–VI):
the appearance of a slow decay mode is a feature of the coupling
of rotational and translational anisotropic diffusions,39 resulting
from a deviation from the perfect rigid-rod model, similar to that
observed in higher concentrations of PBLG solution.53 Another
aspect of a slow-mode is the cooperative motion relating to charge
dissociation/association for charged fd-rods (at a low ionic
strength). When the system has strong interactions between
neighboring charged rods, the electrostatic interaction is pre-
sented with an effective diameter of a rod that varies with salt
concentration, via the Debye length, as well as the virial expansion
relating to the Donnan membrane equilibrium.54 Although the
effect of ionic strength on short-DNA rods and diluted suspen-
sions of fd-rods has been tested by quasi-elastic light scattering
before,55–57 this is the first time that collective microscopic
dynamics of charged chiral fd-rods have been observed in
crowded systems, revealing a delicate electrostatic interaction
between short-range attraction and long-range repulsion.

III. Relaxation behaviors of an isotropic
phase

When the concentration is low, i.e. in the isotropic phase, the
orientational order is random with no preferred direction in the

Fig. 5 The averaged scattered intensity as a function of wavevector for
the (a) polarized VV-mode and (b) depolarized VH-mode. As one can see,
below the wavevector of q B 3.6 mm�1, and above the isotropic–nematic
binodal concentration, strange peaks appeared in the averaged intensity.

Fig. 6 Normalized correlation functions of a few fixed low wavevectors,
comparable to the persistence length of charged fd-rods for (a) polarized
VV- and (b) depolarized VH-scattering. The arrows indicate the increase in
the fd-concentration.
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averaged director field. The scattered intensity of the VV-polarized
light in Fig. 7a is shown as a function of the wavevector, and is the
expected distribution for rod-shaped macromolecules. Note that,
here, a relatively shorter range of the wavevector (1–8 mm�1)
is probed compared to the wavevector of the Konstanz group
(10–30 mm�1).58 Only a VV-polarized light intensity signal is
observed with raw intensity autocorrelation functions in Fig. 7c
and d, for the relaxation behaviors of an isotropic phase. The
arrows indicate an increase in the wavevector, below q B 3.6 mm�1

and above q B 3.6 mm�1. At very low wavevectors, two dynamical
modes are visible with amplitudes, while the slow-mode is not
pronounced with an increase in the wavevector. In the normalized
correlation functions in Fig. 7b, the lines are fitted with two
dynamical modes: one is the fast-mode that is related to the parallel
direction to the rod, and the other is slow-mode due to the
perpendicular direction of the thermal fluctuations. The empirical
fitting function is used as g2(t) � 1 = B + Af exp(�2Gft) + As

exp(�2(Gst)
b), where G, A, and B are the relaxation rate (or a

damping constant), amplitude, and background, respectively.

The stretching exponents are found to be 0.5 o b o 1 for
extended long time tails in the correlation functions. The inset
in Fig. 7b shows a brief illustration of the possible configu-
ration of two interacting charged fd-rods in the isotropic phase,
where the two blue orthogonal arrows indicate translational
motions in parallel and perpendicular directions, while the red
curves are for random orientations that are equally probable
between two orthogonal axes. From the fits, dispersion rela-
tions of an isotropic concentration are obtained in Fig. 7e, for
both fast- and slow-modes, as blue and red data points,
respectively. There is a sudden drop in the relaxation rate,
GVV, for the fast-mode (blue data) in the dispersion relations
of an isotropic concentration, seen as the cutoff wavevector of
qc = 3.064 mm�1 in Fig. 7e. This is an indication of the soft-
mode, regardless of the local peaks in the small wavevector.
In order to implement the damping motion of a fast-mode in
VV-scattering, a rough estimation of damping is depicted as
50[cos(6q � 0.25p)]2e�0.45q, as shown by the red line in the fast-
mode of Fig. 7e. Note, here, two independent processes are
related: one is the cosine oscillating part with an amplitude and
the other is an exponential decay. The reason for a decrease in the
relaxation rates in the fast-mode of an isotropic phase is due to
the fact that there is no preferred director orientation, with
symmetric scatters in the thermal fluctuations. The hindered
motion of mobile ions is somewhat probable in the fast-mode
thermal fluctuation parallel to an increase in the wavevector.
However, thermal fluctuations at higher wavevectors are over-
damped, which also opens the discussion on the linear stability of
the migration of ions in the electrolyte solution, as shown by the
shape of the scattered intensity at low wavevectors in Fig. 5. It is
probable that non-zero off diagonal diffusion coefficients, due to
migration of ionic particles,59 may be relevant to the charged fd-
rods that are surrounded by thick electric double layers of mobile
ions. Thermal fluctuations of the slow-mode, even in the parallel
component, have much smaller relaxation rates of the perpendi-
cular motions, as shown by the logarithmic scale of the square of
the wavevector in Fig. 7f. The slope of the dispersion relation gives
a rough estimation of the diffusion constant of a slow-mode:
D = G/q2, which is far (B100 times) slower than the colloidal
diffusion at low wavevectors. Although it is rather noisy, the
relaxation becomes flattened at higher wavevectors. The overall
possible decrease in the relaxation rate is due to the electro-viscous
friction that engages with a static value of intrinsic viscosity,
decreasing with a logarithmic function of an aspect ratio,36 so
that the rotational diffusion is predicted to be highly influenced by
a large aspect ratio. The interpretation of the slow-mode will be
dealt with separately, due to an increase in the interaction with an
increase in the fd-concentration, in the following sections.

IV. Relaxation behaviors of isotropic–
nematic binodal phases

With an increase in the concentration of charged fd-rods, the
nematic phase can coexist with an isotropic phase, i.e. isotropic–
nematic (I–N) coexistence, as I–N binodals, as seen in Fig. 1 and 3b.

Fig. 7 (a) The averaged scattered intensity of an isotropic phase (fd-
concentration of 0.5 mg ml�1) with a pronounced scattered intensity
below the scattering wavevector of q B 3.6 mm�1. The black lines
correspond to the wavevector of q B 3.6 mm�1. (b) The normalized
correlation functions of the polarized VV-mode for an isotropic phase.
(c) Raw intensity autocorrelation functions for below the scattering wave-
vector of q B 3.6 mm�1, and (d) above the wavevector. (e) Dispersion
relations of the isotropic phase for fast- and slow-mode with VV-
scattering, where the red line in fast-VV-mode is the damping motion.
(f) Detailed view of the slow-mode of the VV-scattering of (e), with a rough
estimation of the diffusion constant.
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The theoretically predicted I–N coexistence concentration
region is 0.66 o [fd] o 0.84 mg ml�1 and the experimental
I–N binodal concentrations are 0.8 � 0.2 and 1.5 � 0.4 mg ml�1

for the ionic strength of 0.032 mM buffer.29

A. Relaxation behaviors of a lower I–N binodal phase
(1.0 mg ml�1)

When the concentration is higher than the isotropic phase, by
entering a lower I–N binodal concentration (1.0 mg ml�1), as
shown in Fig. 8c and d, a vivid VH-signal is detected system-
atically, resulting in VH-correlation functions only at limited
values of lower wavevectors. The signal to noise ratio (or the
field amplitude) of the VH-scattering is decreased by an
increase of a wavevector, and a stronger stretched slow-mode
is shown in VH-scattering (indicated by the arrow in Fig. 8c).
The VV- and VH-correlation functions of the lower wavevectors
are shown in Fig. 8a and c, respectively. Similar to the isotropic
phase in the earlier section, evidently a higher amplitude of the
visible two modes is extended to somewhat larger wavevectors.
This means that more perpendicular thermal fluctuations
are available than that of the isotropic phase (see the few
VV-correlation functions in Fig. 8b). The normalized correlation
functions for both VV- and VH-scattering are shown in Fig. 9a and
b, where the possible configurations of two interacting charged fd-
rods are illustrated in the inset of the figures: translational motions
of parallel (in the faster time window) and perpendicular (in the
slower time window) alignments are shown in Fig. 9a, while the
rotational motions are shown as red curves in the inset of Fig. 9b
for VH-scattering. The solid lines are the fits with a fitting function
of two dynamical modes; here the fast-mode is related to the

fluctuations in the parallel direction to the director, and the slow-
mode is for the perpendicular direction of the alignment.

The corresponding relaxation rates are plotted as a function
of the wavevector in Fig. 9c for the VV-correlations, where a
cutoff wavevector at qc = 5.074 mm�1 is indicated, as the
relaxation rate becomes zero in the fast-mode of VV-light
scattering. The relaxation rates for VH-correlations are provided
in Fig. 9d. The slow-modes for both VV- and VH-correlations are
shown in Fig. 9e and f, respectively. The diffusion constants
were found only for the slow-modes, D = 0.0278 mm2 s�1 and
D = 0.0224 mm2 s�1 for VV- and VH-scattering, which are lower
than that of the isotropic phase (D = 0.03314 mm2 s�1). There is
an averaged non-zero intercept value for the rotational diffu-
sion of 10/6 B 1.7 s�1 (in VH-mode), which is lower than the
rotational diffusion constant (10 s�1) at a high ionic strength.22

B. Relaxation behaviors of an upper I–N binodal phase
(1.5 mg ml�1)

For an upper I–N binodal concentration (1.5 mg ml�1), the
intensity correlation functions and normalized correlation

Fig. 8 The raw intensity autocorrelation functions of the polarized
VV-mode (a and b) and depolarized VH-mode (c) for a lower isotropic–
nematic (I–N) phase (fd-concentration of 1.0 mg ml�1): (a) below
the scattering wavevector of q B 3.6 mm�1, (b) above the wavevector in
VV-mode, and (c) below q B 3.6 mm�1 in VH-mode, limited for small
wavevectors. (d) The averaged scattered intensity of the VV- and VH-mode
as a function of the wavevector for a lower I–N binodal fd-concentration.

Fig. 9 The normalized correlation functions of the (a) polarized VV-mode
and (b) depolarized VH-mode for a lower binodal phase (fd-concentration of
1.0 mg ml�1). The solid lines are the fits with a fitting function of two dynamical
modes, where the fast-mode is parallel, and the slow-mode is perpendicular to
the director. The insets show an illustration for the possible configurations of
two interacting charged fd-rods. The blue arrows indicate translational motions,
and the red arrows indicate rotational motions. (c and d) The dispersion relations
for a lower binodal phase of the polarized VV-mode (fast- and slow-mode), and
depolarized VH-mode (fast- and slow-mode), respectively. (e and f) The details
of the slow-modes, shown in (b) and (d), respectively.
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functions are shown in Fig. 10 and 11a, b, respectively. Two
dynamical modes are visible at higher wavevector VV-correlations,
and are somewhat more stretched in the slow-mode of Fig. 10b,
with a wider q-range in VV-mode than a lower binodal concen-
tration. The VH-correlation functions not only show a severe
change in amplitude at lower wavevectors, Fig. 10c, but this
also extends to higher wavevectors in Fig. 10d. However, the
fast-mode is relatively limited at the lower q-range in VH-mode.
The inset in Fig. 11b for normalized correlation illustrates
a possible configuration for both rotation and translation in
VH-mode with some degree of rotations. The uniqueness of a
dispersion relation for this upper I–N binodal concentration is
the appearance of a series of discontinuous jump states with
an increase in the relaxation rate (Fig. 11c) in the fast-mode of
VV-scattering. Also, the red line for the fast-mode in VV-scattering
(Fig. 11c) presents the damping motion of [cos(6q)]2e0.45q + 2q:
here, the additional term of 2q is added to the damping
motions, with a small step of increasing the shifting wavevec-
tor. On the contrary, in VH-scattering, a soft-mode exists at a
cutoff wavevector of qc = 2.208 mm�1 in Fig. 11d, suggesting
that the overdamped motions are present in the depolarized
VH-scattering, but not polarized VV-scattering at an upper I–N
binodal concentration, which is evidently a different relaxation
behavior compared to that of a lower I–N binodal concentration
(see Fig. 9c and d). The dispersion relation of the VV-mode is
then averaged as the linear in a wavevector, Fig. 11c, indicating
that a slightly ordered phase is found in the diffusive motion,
as expected with an anisotropic diffusion constant: the system has
indeed shown a reasonable diffusion consonant in VV-mode at
the upper I–N binodal concentration (1.5 mg ml�1), the estimated
diffusion constant of the fast-mode is D = 2.643 mm2 s�1, which
is a typical colloidal diffusion constant. More aligned thermal
fluctuations of director fields are seen in the translational motion.
The diffusion constant for the slow-mode in VV-scattering was

obtained to be as slow as D = 0.0155 mm2 s�1. Although
the cutoff wavevector did not appear in the fast-mode of
VV-scattering, a soft-mode exists at a finite cutoff wavevector for
VH-scattering (blue data in Fig. 11d). Since hardly any diffusion is
seen in the slow-modes of the VH-mode, with a complete flatten-
ing in Fig. 11f, overdamped rotations exist in the dispersion
relation of the VH-mode in this upper binodal concentration.
Whether the slow-mode in depolarized VH-scattering is related
to long-range hydrodynamics nematic director fluctuations or
not would be another open question.40

V. Relaxation behaviors of a chiral-
nematic phase

A fully nematic concentration is, in a sense, a chiral-nematic
phase, since it forms a chiral-nematic texture at a concentration
of 2.0 mg ml�1 for a given low ionic strength. A comparison
of the scattered intensities (for both VV- and VH-mode) for
two comparable fd-concentrations is shown in Fig. 12: an upper
I–N binodal (1.5 mg ml�1) and a chiral-nematic concentration
(2.0 mg ml�1). The overall scattered intensities of the VV-signals

Fig. 10 The intensity autocorrelation functions for the polarized VV-mode
(a and b) and depolarized VH-mode (c and d) for an upper I–N binodal phase
(fd-concentration of 1.5 mg ml�1).

Fig. 11 The normalized correlation functions of the polarized VV-mode
(a) and depolarized VH-mode (b) for an upper I–N binodal phase (fd-
concentration of 1.5 mg ml�1). The inset drawing for VH-mode in (b)
indicates the possible alignments of the charged fd-rods in bulk. (c and d)
The dispersion relations for an upper I–N binodal phase for the fast- and
slow-mode of the polarized VV- and depolarized VH-scattering. The
details of the slow-mode are in (e) and (f). The red line in the fast-mode
of (c) depicts the damping motion.
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are detected higher than the VH-signals in the I–N coexistence
concentrations (Fig. 12). Not only is an increased scattered
intensity of the VH-signal detected at a fully-nematic (a chiral-
nematic) phase (with a concentration of 2.0 mg ml�1), but also
the shape of the intensity broadening is depicted in terms of
two separable peaks, in Fig. 12. As soon as the chiral-nematic,
N*-phase is approached, the microscopic dynamics enormously
slow down due to the existence of orientational textures that are
persistent in the chiral-nematic domains, as well as in the
helical domains of hierarchical chiral-mesophases (above
3.5 mg ml�1). So it is only valid for lower than the upper
isotropic–nematic (I–N) binodal concentration (1.5 mg ml�1),
and decent distinction between translational and rotational
diffusion is possible in the charged chiral fd-rods. Above the
upper binodal concentration, not only does the coupling of the
rotational motion to translation become dominant, but also
increased ‘‘twist’’ interactions or rotational motions of charged
fd-rods appear.

The correlation functions of both VV- and VH-scattering are
provided in Fig. 13, where a pronounced signal-to noise ratio of
the VH-signal is detected. Fig. 14a and b show the normalized
correlation functions with possible schemes for rotational
motions. Constrained field amplitudes are seen in the faster time
window for both VV- and VH-correlation functions, implying that
the translational motion in parallel is less than the perpendicular
motions. However, the rotational motions are rather broadened in
the wavevector.

The dispersion of the fast-mode in VV- and VH-scattering
in Fig. 14c and d are shown with the quadratic relation of a
wavevector, as it is a diffusive motion. Here, again, a collective
soft-mode is exhibited in the fast-mode of VV-scattering, with
the cutoff wavevector of qc = 4.086 mm�1 in Fig. 14c slightly
smaller than the cutoff wavevector of qc = 5.074 mm�1 for the
lower I–N binodal concentration (Fig. 9c), indicating that
the dynamic coherence length becomes longer. The red line in
the fast-mode of Fig. 14c for the VV-scattering is for the damping
motion of 25[cos(5q � 0.85p)]2e�0.40q. Interestingly, the amplitude
of oscillation at an upper binodal concentration is reduced
to a half smaller value of the lower I–N binodal concentration.

Also, the slope of the dispersion relation has a different sign, as
the relaxation behaviors are reversed in the fast-mode between

Fig. 12 The averaged scattered intensity of the VV- and VH-mode as a
function of the wavevector for two comparable fd-concentrations: an
upper I–N binodal concentration (1.5 mg ml�1) and a chiral-nematic phase
concentration (2.0 mg ml�1). Note the pronounced scattered intensities
and the broadening of intensity peaks below the scattering wavevector of
q B 3.6 mm�1.

Fig. 13 The raw intensity autocorrelation functions of the polarized VV-
mode (a and b) and depolarized VH-mode (c and d) for a chiral-nematic
phase with a fd-concentration of 2.0 mg ml�1.

Fig. 14 The normalized correlation functions of the (a) polarized VV-mode and
(b) depolarized VH-mode for a chiral-nematic phase with a fd-concentration
of 2.0 mg ml�1. (c and d) The dispersion relations for the fast- and slow-mode
of the polarized VV-scattering, and depolarized VH-scattering. The details of
the slow-mode with the diffusion constant are in (e) and (f). The red line in the
fast-mode of (c) depicts the damping motion.
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VV- and VH-scattering for the chiral-nematic phase concen-
tration. The flattening in the dispersion of VV-fast-mode is
somewhat broadened as qc = 4.086 mm�1, as shown in Fig. 14c.
The soft-mode is now shifted to a zero-wavevector limit in the
fast-VH-mode, implying that the spatial coherence length
becomes sufficiently longer. Here, whether the formation of
orientational textures in the charged fd-rod suspensions is related
to the length scale, either an optical pitch of the chiral-nematic
phase (10 mm) or the persistence length of fd-viruses (2.2–2.8 mm),
or not would be another interesting question. The slow-mode
diffusion in VV-scattering in Fig. 14e is D = 0.0101 mm2 s�1, lower
than the value of an upper I–N binodal concentration. However,
for VH-scattering, a more or less averaged relaxation rate (flat)
is observed in the chiral-nematic phase (Fig. 14f).

VI. Rotation restoring twist of
hierarchical chiral-mesophases

Two higher concentrations of hierarchical chiral mesophases
were chosen – fd-concentrations of 3.65 mg ml�1 (distinguished
as X*-phase, based on the depolarized optical morphologies) and
7.3 mg ml�1 (H*-phase). At these higher concentrations, the
system is expected to equilibrate after much longer waiting
times, and exhibit significantly slower relaxation of the orienta-
tion textures.28,60 At a low wavevector regime, VH-scattering,
Fig. 15, the scattered intensity distributions for two comparable
high concentrations of hierarchical chiral-mesophase are not
only increased, but also substantially different shapes in the
perpendicular direction. For a fd-concentration of 3.65 mg ml�1,
the intensity correlation functions and normalized correlation
functions are shown in Fig. 16 and 17a, b, respectively.
The ‘‘broadening’’ of the rotational motions is depicted in the
inset of Fig. 17b. In the overall correlation functions, the
dominant rotational motions are perpendicular to the rods,
except for a few extended correlation functions at low wave-
vectors in VV-scattering (Fig. 16a). The dispersion relations of
the relaxation behaviors of VV- and VH-scattering are summar-
ized in Fig. 17c and d for a fd-concentration of 3.65 mg ml�1

(X*-phase), where the slow-mode for both VV- and VH- are
‘‘completely’’ overdamped, with no indication of the slope in
the dispersion relations in Fig. 17e and f. Interestingly, there is

Fig. 15 The averaged scattered intensity of the hierarchical chiral meso-
phases for fd-concentrations of (a) 3.6 mg ml�1, and (b) 7.3 mg ml�1. Note
the pronounced scattered intensities below the scattering wavevector
of q B 3.6 mm�1, and the substantial increase in the averaged scattered
intensity for VH-scattering.

Fig. 16 The raw intensity autocorrelation functions of the polarized VV-
mode (a and b) and depolarized VH-mode (c and d) for a hierarchical chiral
mesophase phase (fd-concentration of 3.6 mg ml�1).

Fig. 17 The normalized correlation functions of the (a) polarized
VV-mode and (b) depolarized VH-mode for a hierarchical chiral mesophase
(fd-concentration of 3.6 mg ml�1). (c and d) The dispersion relations for
the fast- and slow-mode of the polarized VV-scattering and depolarized
VH-scattering. The details of the slow-mode are in (e) and (f). The red line in
the fast-mode of (c) depicts the damping motion.
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still a collective soft-mode observed in the fast-mode VV-scattering
with a cutoff wavevector of qc = 2.903 mm�1, Fig. 17c, with a
quadratic decrease of the wavevector.

The damping motion of the fast-mode in VV-scattering is
added as a red line in Fig. 17c, 10[cos(2.5q � 2.8p)]2e�0.35q, with
a lower amplitude. This concentration is then unique to the
observed system such that damping of translation occurs in
the fast component of the fluctuations. By doubling the concen-
tration to 7.3 mg ml�1 (H*-phase), severe slowing down beha-
viors are seen in both the measured and normalized correlation
functions in Fig. 18 and 19a, b, respectively. The possible
configuration of interacting rods is more crowded with rando-
mized rotations and enhanced slowing down behaviors. In the
dispersion relation of the higher concentration (7.3 mg ml�1) of
a hierarchical chiral-mesophase (Fig. 19c and d), the minimal
estimation of a soft-mode is reached at the lowest q-value in the
experiment, qc = 1.828 mm�1. The red line in Fig. 19c for the
fast-mode in VV-scattering is the simulated damping motion of
3[sin(6q � 0.58p)]2e�0.88q, which is qualitatively consistent with
a decreased amplitude of damping motion, with an increase in
the charged fd-concentration. Whether this cutoff wavevector is
related to a finite length of the conformational change, as shown
in molecular dynamics (MD) simulations of filaments,61 or not is
an open question. Thus, enhanced rotation of higher concentra-
tions in VH-mode is not distinguishable any more due to the
slow-mode dominant relaxation. In general, the interpretation of
two modes in both VV- and VH-mode are distinguishable,
according to our scattering geometry, as the fast-mode is related
to the ion-dissociated solvent acting on the parallel motions
of the charged fd-rods, while the slow-mode corresponds to
the ‘‘twist’’ angle or the perpendicular motions of rod–rod
interactions. This can then be regarded as ‘‘restoring’’ rotations
with a unique spatial coherence length, which is an intriguing
observation when the concentration is sufficiency high enough

to carry the coupled motions of rotation to translation. As a
result, the system is overdamped with a rotational degree of
freedom, exhibiting a slowing down behavior, as well as ordered
orientations of the ‘‘domain’’ structure which may be formed
during a reorganization process.62

VII. Dynamic coherence length of
charged chiral fd-rods

At a lower ionic strength (0.032 mM), the aspect ratio of the
charged fd-rods is much reduced (16) due to an increased
effective diameter, which is much lower than the aspect
ratio (60–133) at a high ionic strength (above 1 mM salt). The
system sets the isotropic–nematic transitions effectively for the
lower concentrations. Moreover, the chiral nature of the surface
of fd-viruses plays a role in having a stronger ‘twist’ interaction
when the concentration is increased, for a fully-nematic chiral-
nematic phase. As soon as the chiral-nematic phase concen-
tration is approached, enormous slowing down behaviors are
exhibited in the microscopic dynamics due to the existence of
orientation textures.

Fig. 18 The raw intensity autocorrelation functions of the polarized
VV-mode (a and b) and depolarized VH-mode (c and d) for a hierarchical
chiral mesophase phase (fd-concentration of 7.3 mg ml�1).

Fig. 19 The normalized correlation functions of the (a) polarized
VV-mode and (b) depolarized VH-mode for a hierarchical chiral mesophase
(fd-concentration of 7.3 mg ml�1). The inset shows a brief illustration of the
possible configuration. (c and d) The dispersion relations for the fast- and
slow-mode of the polarized VV-scattering, and depolarized VH-scattering.
The details of the slow-mode are shown in (e) and (f). The red line in the
fast-mode of (c) depicts the damping motion.
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From the two dynamical modes observed in the overall
dispersion relations of both the polarized (VV) and depolarized
(VH) light scattering, except VV-scattering in an isotropic phase,
the fast-mode is related to the thermal fluctuations of the parallel
component, while the slow-mode is related to the perpendicular
motions to the rods. The relaxation rates of the slow-mode
are typically shown to be very low (100 times smaller). Also,
depending on the concentration, the slow-mode plays a role in
the interplay between rod–rod interactions via rotational
motion and the ‘‘twist’’ elasticity. The distinctive cutoff wave-
vectors are found in the lower I–N binodal and a chiral-nematic
phase concentration as the fast-mode translational motions
exhibiting zero relaxation rates, i.e. the relaxation time diverges.
Furthermore, qualitatively different dispersion relations are
observed in rotational motions above a chiral-nematic phase
concentration, while the translational motions are much over-
damped. Quite periodic relaxation rates are seen for the rota-
tional motions with spacing of the wavevector for hierarchical
chiral-mesophases, which reveals an interesting aspect of
the relevant coherence length with a persistent length of the
fd-virus particle (2.26 mm). As a result, the dynamic coherence
length is estimated from x = 2p/qc, where the cutoff wavevector
qc is measured in the soft-mode of the dispersion relations,
plotted in Fig. 20a, as a function of fd-concentration. Here,
the existence of a minimum coherence length at the lower I–N
binodal concentration indicates that there is an enhanced
‘twist’ effect of the charged chiral fd-rods, resulting from the
reverse of an electrostatic interaction. Aligning effects increase
by increasing the concentration up to a lower binodal, however
above the lower I–N binodal concentration, the electrostatic
repulsive interaction becomes stronger with a ‘‘twist’’ effect of
the charged fd-rods. The lowest line in Fig. 20a indicates the
value of the bare length of the fd-virus particle (0.88 mm).

Finally, a brief outlook of the possible spatial coherence length
is illustrated in Fig. 20b with an increase in the fd-concentration,
such that the isotropic phase is shown with equally probable
rotations of two neighboring charged fd-rods, which is not much
different from the lowest limit of the persistent length of the
fd-virus itself (2.2 mm). Upon entering a lower I–N binodal
concentration, the coherence length becomes shorter (1.24 mm),
where a more aligned state is available, reducing the perpendi-
cular gap among neighboring fd-rods. Interestingly, no spatial
coherence length is observed at an upper I–N binodal concen-
tration in the fast-mode of VV-scattering, but it does appear in
VH-scattering as 2.84 mm, a larger limit of the persistent length of
the fd-virus itself (2.8 mm). At a chiral-nematic phase, a slightly
larger dynamic coherence length is observed (1.54 mm), indicated
in the middle of Fig. 20b, where the charged fd-rods are twisted
with rotations. By further increasing the concentration, larger
correlation lengths are observed – 2.16 mm (for the X*-phase) and
3.44 mm (for the H*-phase). Consequently, a pronounced ‘‘twist’’
exists in the charged chiral fd-rods to keep the larger spatial
coherence length. In the case of non-chiral rods, the correlation
length may differ at the I–N coexistence concentration due
to either a lack of ‘‘twist’’ or stronger short-range attractions.
The formation of chiral-nematic orientation textures of a finite

pitch length also relies on the twist elastic modulus: depending
on the concentration, the twist power parameter is varied with
an intrinsic chiral interaction, distinguished by either X*-
(as lower) or H*-phase (as higher) in the hierarchical chiral
mesophase concentration. Then, the finite width of a wavevec-
tor suggests the dynamic coherence length with possible rele-
vant length scales, such as (i) the persistence length of the fd-
virus (2.2–2.8 mm), (ii) the bare length of the fd-virus (0.9 mm),
and (iii) the projections of an optical pitch length of the chiral
nematic-texture (5–10 mm). For a lower concentration, there is
still a separable diffusion between rotation and translation,
however at a higher concentration, the coupling of rotational
motion to translation becomes dominant: as soon as the chiral-
nematic N*-phase is approached, the microscopic dynamics
become enormously slower due to the existence of orientational
textures. Above the upper binodal concentration, not only
does the coupling of rotational motion to translation become
dominant, but also a minimal coherence length appears due to
the increased ‘‘twist’’ interaction or the rotational motions of

Fig. 20 (a) The result of the coherence length as a function of
fd-concentration at a lower ionic strength (0.032 mM salt). There is a
local decrease in the coherence length when approaching the lower I–N
binodal concentration, as the minimum value of x = 1.24 mm, but it
increases again above the binodal concentration. The lowest line depicts
the bare length of the fd-rod. (b) A brief scheme of the possible configuration
of the spatial coherence lengths of the collective soft-mode of two inter-
acting charged fd-rods: an isotropic, I, I–N binodal, I + N, a chiral-nematic,
N*, and hierarchical chiral-mesophases, as X*, and H* phase, with an
increase in the fd-concentration for a given low ionic strength.
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the charged fd-rods. Therefore, a continuous rotation occurs
vividly at higher concentrations with a restoring ‘‘twist’’
deformation, such that translational motion is caged, but the
slow-mode is preserved by rotations of the whole cluster
(or domains) over longer times. The spatial coherence length
in the fast-mode then cooperates with the soft-mode relaxation
that persists in the orientation texture of the charged chiral
fd-viruses, reaching a new phase concentration.

VIII. Conclusions and discussion

This is the first time that the collective soft-mode has been
explored in a lyotropic system and shown in the dispersion
relations of damping motions of charged chiral rods by means
of small angle dynamic light scattering. The system used is
crowded suspensions of charged fibrous viruses (fd) at a low
ionic strength (0.032 mM salt), where deformations of thick
electric double layers are present. With an increase in the
concentration, microscopic dynamics are discussed for an
isotropic, two I–N binodals, a chiral-nematic phase, and two
hierarchical chiral-mesophases. The chiral nature of the sur-
face of fd-viruses plays a role in having a stronger ‘twist’
interaction when the concentration is increased, approaching
a chiral-nematic phase. Continuous rotation occurs in the
restoring ‘‘twist’’ deformation, such that translational motion
is caged at a higher concentration, while the slow-mode is
mainly preserved in the rotations of the whole cluster (or
domains) for much longer time variables. The most intriguing
finding is the existence of a minimum coherence length at the
lower I–N binodal concentration due to an enhanced ‘‘twist’’
effect of the charged chiral fd-rods, as a consequence of the
reverse of electrostatic repulsive forces. In the near future, the
‘twist’ effect of charged chiral fd-rods will be discussed by
means of the optical pitch phase diagram as a function of the
ionic strength and fd-concentration. The realistic microscopic
description of two dynamical modes can be further described
by including the motions of mobile ions attached to the
charged fd-rods, either as the splay–bend or twist–bend elastic
deformations. To check the fidelity of these specific elastic
deformations of charged fd-rods, higher order Landau–Ginzburg
equations should be considered in the kinetics of the orienta-
tional order parameter.
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