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Upper bound on the Edwards entropy in frictional
monodisperse hard-sphere packings

Vasili Baranau,a Song-Chuan Zhao,b Mario Scheel,cd Ulrich Tallarek*a and
Matthias Schröter*ef

We extend the Widom particle insertion method [B. Widom, J. Chem. Phys., 1963, 39, 2808–2812] to

determine an upper bound sub on the Edwards entropy in frictional hard-sphere packings. sub corre-

sponds to the logarithm of the number of mechanically stable configurations for a given volume fraction

and boundary conditions. To accomplish this, we extend the method for estimating the particle insertion

probability through the pore-size distribution in frictionless packings [V. Baranau, et al., Soft Matter,

2013, 9, 3361–3372] to the case of frictional particles. We use computer-generated and experimentally

obtained three-dimensional sphere packings with volume fractions j in the range 0.551–0.65. We find

that sub has a maximum in the vicinity of the Random Loose Packing Limit jRLP = 0.55 and decreases

then monotonically with increasing j to reach a minimum at j = 0.65. Further on, sub does not distinguish

between real mechanical stability and packings in close proximity to mechanical stable configurations. The

probability to find a given number of contacts for a particle inserted in a large enough pore does not

depend on j, but it decreases strongly with the contact number.

1 A statistical mechanics approach to
granular media

While granular materials are ubiquitous in our daily lives, we
still lack a comprehensive theory describing their behaviour.
The underlying problem stems from their mesoscopic size
(typically several hundred micrometers). In consequence, granular
systems are athermal, i.e. thermal fluctuations are orders of
magnitudes smaller than the potential energy of the particles in
a gravitational field. Also, they are dissipative as collisions and
sliding contacts excite internal degrees of freedom which irreversibly
convert the kinetic energy of the particles into heat. Finally, all
contacts between particles are frictional, i.e. the contact forces
between particles have tangential components.

Still, if granular materials are dilute, which means that their
volume fraction j is smaller than a few percent, their dynamics
can be well described by an appropriately extended kinetic

theory, which has by now reached the maturity level of text
books.1

But the question if dense systems with j Z 0.55 can also be
described with the toolkit of statistical mechanics is still open
to debate. One of the first suggestions that this might be the
case was made by Sam Edwards and coworkers in two seminal
papers.2,3 They suggested that due to the dissipative nature of
granular systems the role of the conserved quantity should be
played by the volume of the system. Assuming that there exists
some type of dynamics which samples all mechanically stable
states of the system equiprobably, they defined a configura-
tional entropy S which is proportional to the logarithm of the
number of mechanically stable states at a given volume V.
Finally, they introduce a configurational temperature X, named
compactivity, in analogy to classical statistical mechanics as
1/X = qS(V)/qV.

The following almost three decades have seen an increasing
number of work building on these ideas.4–39 Specifically, it has
been realized that for each spatial configuration of frictional
hard spheres there can be a multitude of contact force con-
figurations, all of which fulfill the same boundary stress con-
ditions.23 This leads to a second temperature-like variable
named angoricity â.12,16,33 Moreover, there exist a number of
open questions regarding the feasibility of such an approach.
For example, there exist four different approaches how to build
a ‘‘thermometer’’ to determine compactivity and angoricity
from the experimental data.5,10,15–18,20,25,32,33 It turns out that
only two of them agree quantitatively while the other two have
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problems to account for certain aspects of loose packings.34

Other open questions include the existence of a zeroth law for X
and â33 and the possibility or even necessity of an equiprobable
sampling protocol.21,24,27,30,36,37 For recent reviews on this field
see ref. 40 and 41.

1.1 Defining mechanical stability

A core idea of Edwards’ approach is to consider only mechanically
stable packings. For an experimentalist on earth, such packings
are the most generic state of granular matter: due to gravity and
the dissipative nature of contacts and collisions, eventually all
grains in a not permanently driven sample will come to a
complete rest. And the resulting packings will have a small but
finite bulk and the shear modulus as they have to withstand the
anisotropic pressure p created by gravity. This pressure can only
be reduced to zero by microgravity42 or embedding the particles
in a density matched fluid.43

Comparing with thermal hard sphere model systems, such as
colloids, the condition of mechanical stability significantly
reduces the number of valid configurations in the phase space.
While the former only requires non-overlap between all particles,
the latter additionally requires that the particles have a least in
average Ziso contacts, to exhibit a finite shear and a bulk modulus.
This isostatic contact number Ziso can be computed by equating
the number ndof of degrees of freedom each particle possesses

with the number of constraints fixed by its contacts ndof ¼ m
Ziso

2
.

The factor two in the number of constraints mZiso/2 follows from
the fact that each contact is shared by two particles; the multitude
m of blocked forces depends on the dimension, the shape of the
contact area and the friction coefficient m. For spheres in three
dimensions m = 1 in the frictionless case (each contact blocks only
one normal force) and m = 3 for frictional contacts (one normal
and two tangential forces). ndof does also depend on m: for m = 0 we
only need to consider the three translations, for m4 0 additionally
the three rotations become relevant.†

This results in Ziso = 4 for frictional spheres (granular
matter) and Ziso = 6 for frictionless spheres (such as foams
and emulsions). One consequence of the lower Ziso for frictional
spheres is that most granular packings are hyperstatic (Z 4 Ziso)
as shown in simulations and experiments.45–49

The intuitive connection between Z and j seems obvious:
the more dilute the packing, the fewer the contacts should be
on average. However, for frictional hard spheres, where Z is
controlled by the packing geometry and not compression, there
exists presently only a mean field theory.19 The predicted Z(j) is
in good agreement with experiments49,50 and the ansatz has
recently been expanded to more shapes,51,52 however only for
the frictionless case.

1.2 The range of mechanically stable packings

As the Edwards entropy is only defined for mechanically stable,
yet amorphous states, we are interested here in the upper and

lower bounds of j between which these packings exist in the
thermodynamic limit.‡

The upper boundary is often referred to as Random Close
Packing (RCP). Although both its exact value of j and its
physical interpretation are still a matter of debate54–56 there
is a growing consensus that j E 0.65 corresponds to the onset
of crystallization in monodisperse sphere packings.56–63 An
alternative, a more precise name would be the Glass Close
Packing (GCP) limit as it is the highest achievable density for
packings with suppressed crystallization, which is the ideal
glass density for monodisperse spheres.64–67 The onset of
crystallization at GCP has to be distinguished from the sponta-
neous crystallization occurring in equilibrating thermal systems
such as colloids at j E 0.494–0.61.64,68–74 The latter is driven by
the entropy increase due to newly gained vibrational degrees of
freedom which implies that these hard sphere crystals are not
mechanically stable. In contrast, in crystallization occurring
above the GCP limit all particles are completely arrested by
their contacts with their neighbors. Because the contact number
at GCP is larger or equal to 6 and therefore above Ziso of both
the frictionless and frictional cases, this upper boundary is
unaffected by m.

The lower bound on the mechanical stability of granular,
frictional packings is commonly referred to as Random Loose
Packing (RLP). It does depend on pressure43,75 and the friction
coefficient:43,76 the higher the m the smaller the jRLP. For
experimentally relevant values of mE 0.5 and vanishing pressure
jRLP approaches 0.55.19,43,75–79 While the existence of RLP is
an experimental fact, the physics behind this threshold is still
an open question. However, numerical studies47,48 of the m
dependence of Ziso lead to the conjecture that at least in the
zero pressure limit RLP does correspond to the isostatic point.

In summary, the configurational entropy of sphere packings
can only be nonzero for volume fractions between the Random
Loose Packing limit (depends on friction, but for most materials
j E 0.55) and the Glass Close Packing limit (independent of
friction, j E 0.65).

1.3 Measuring the configurational entropy

Except for simplified model systems4,26 the configurational
entropy cannot be directly computed from first principles.
And a direct enumeration of the distinct mechanical states
can only be achieved for systems composed of a relatively small
number (less than 20) of frictionless disks.21,24,30,80

Under certain additional assumptions, S(j) can be computed
from the volume fluctuations of a repeatedly driven granular
packing.18,20,34 However, the results obtained this way do not agree:
while in ref. 18 and 34 S(j) decreases monotonously from RLP to
RCP, in ref. 20 an intermediate maximum of S(j) was reported.

Finally, S can be determined for soft frictionless disks by
dividing the total accessible phase space volume by that of an

† This calculation is strictly valid only for infinite friction. For a more detailed
discussion see ref. 44.

‡ A counter example is the ‘‘tunnelled crystals’’ described in ref. 53. Here the
number of configurations does not grow exponentially with the number of
particles in the system, which means that in the thermodynamic limit their
entropy is zero.
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average basin of attraction.24,30,36,81 Due to its limitation to
frictionless systems these results have however been limited to
the rather narrow range of volume fractions around GCP.

1.4 Outline

In this paper, we present a method to compute an upper bound
on the Edwards entropy of frictional hard-sphere packings.
This method is an extension of the Widom particle insertion
method,82–84 which for frictionless hard spheres link the excess
chemical potential of packing to the probability of particle
insertion in this packing. For this paper, we need the prob-
ability of inserting a particle into a mechanically stable packing
so that the inserted particle is mechanically stable itself. To
determine this probability, we extend a method for estimating
the particle insertion probability in frictionless packings65 onto
the case of frictional packings.

The paper is structured as follows: in Section 2 we discuss
the preparation protocols utilized for creating the packings
used in the paper, Section 3 introduces the method to estimate
the Edwards entropy of the packings, and in Section 4 we present
and discuss our results. Finally, Section 5 concludes our paper
and Appendix 6 provides additional experimental details.

2 Packing preparation

In this section, we describe the computational protocols and
experimental methods used to create mechanically stable packings
of spheres. Additionally, we introduce a method for the numerical
generation of mechanically unstable packings, which are used for
comparison. A summary of different preparation protocols can be
found in Table 1, two examples of packings are depicted in Fig. 1.

2.1 Lubachevsky–Stillinger packings

The Lubachevsky–Stillinger (LS) algorithm85,86 simulates Newtonian
dynamics and elastic collisions of hard spheres under a vacuum
with zero gravity, while at the same time the spheres grow (or,
equivalently, the box is contracted). The algorithm terminates
when the non-equilibrium reduced pressure (compressibility
factor)68,87 reaches a certain threshold (1012). After termination,
the final configuration of the particles, i.e. their coordinates and
radii are stored as one packing. The volume fraction of this
packing can be controlled by the compression rate of the box; for
low enough compression rates the packings become crystalline.

The packings generated by the LS algorithm contain 104

monodisperse frictionless spheres, residing in a cubic box under

periodic boundary conditions. Using the code by Skoge et al.68

we created packings in a density range j = [0.565–0.65],§
corresponding to compression rates between 0.2 and 4.6 � 10�4.

The mechanical stability of the resulting packings is not
automatically enforced by the Lubachevsky–Stillinger algo-
rithm. An infinite equilibrium pressure would be equivalent
to mechanical stability even for frictionless particles,88 but (i)
the pressure that is tracked during the algorithm operation is
inherently non-equilibrium and (ii) the dynamics is stopped at
a finite pressure threshold where the particles are still moving.

However, as our analysis later will show that the properties
of these packing are close to the properties of fully arrested
packings. This can also be seen by expanding all particles with
a single linear strain step of 10�4 and counting particle inter-
sections as contacts.19 The average contact number Z deter-
mined in such a way is larger than the isostatic, frictional limit
of 4 in all our simulations. This is not a generic feature of
numerically produced packings and other protocols produce
packings with j o 0.65 only with Z E 0.65

2.2 Makse packings

The next set of packings corresponds to the mechanically
stable packings used in the paper by Briscoe et al.,18 which
can be downloaded from ref. 89. This protocol takes Luba-
chevsky–Stillinger packings and stabilizes them using a dis-
crete element method (cf. Section VI from Supplementary
material in ref. 19). During the operation of the discrete element
method, the particles are enhanced with Hertzian normal forces
and tangential friction. Like Lubachevsky–Stillinger packings,
these packings are three-dimensional and reside in cubic boxes
with periodic boundary conditions in all directions.

The lowest value of j = 0.5513 for Makse packings was
reached by Briscoe et al. for spheres with a friction coefficient of
m = 104. To avoid mixing of packings created with different
parameters, we use in this paper only the subset of their
packings created with this value of m.

2.3 Fluidized bed packings

This experimental dataset addresses the question of mechanical
stability by preparing loose packings of glass spheres which are
(a) completely at rest and (b) stable under a finite pressure, i.e.
their own weight.

Table 1 Properties of numerical (first three rows) and experimental (last row) packing preparation protocols used in the paper

Protocol Mechanical stability Friction Gravity Periodic b.c. No. of particles No. of packings Density range

Lubachevsky–Stillinger Approximately stable � � + 104 71 0.560–0.650
Makse Stable + � + 104 13 0.551–0.637
Diluted Unstable � � + 104 36 0.550–0.650

Fluidized bed Stable + + � 1903–2053a 503 0.570–0.592

a In the bulk region.

§ Some of the packings with j4 0.6 were already used in Fig. 3 and 4 of Baranau
et al.65
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The sample consists of 14 000 monodisperse quartz glass
spheres with a diameter of 351 � 0.5 mm from Sandoz Fils S.A.
Individual packings are created by fluidizing the particles with flow
pulses of water in a fluidized bed.10 Then X-ray tomographies of the
samples were obtained at the European synchrotron radiation
facility (ESRF) in Grenoble at beamline ID15A. The high X-ray flux
allowed us to take a full tomogram with up to 1500 projections in
less than 20 seconds in the monochromatic X-ray beam. This
enabled us to gather several hundred tomograms (cf. Table 2), each
representing a separate packing configuration.

The fluidized bed consists of a cylindrical tube with an inner
diameter of 8 mm or 22.7 particle diameters. The inner surface of the
tube was roughened manually to prevent crystallization near the
boundary. During preparation, the bed is expanded by a short water
pulse (10 or 15 s), then it sediments for 10 seconds. After sedimenta-
tion, while the bed is in a stationary state, a tomogram is taken. Then
the cycle ‘‘water pulse–sedimentation–reconstruction’’ is repeated.

The fluidization parameters used in three different experi-
ments are listed in Table 2. We will subsequently refer to the
three experiments according to their flow rate Q, i.e. Q_250,
Q_167, and Q_150. Table 2 lists also the average j of all
packings, as well as the j interval in each set.¶ In agreement

with previous work10 we find that lower flow rates create denser
packings. By comparing successive tomograms, we validated
that even the lowest Q used in the experiments was sufficient to
create a new packing configuration with each pulse. To ensure
that beds are not disturbed by rotation during tomography
scans, we took two tomograms without issuing a water pulse
in-between. The resulting difference in particle positions is
smaller than our overall accuracy of approximately 0.1 voxel.

The sphere positions were first detected as the centers of
mass of the binarized images; this estimate was then improved
by finding the cross correlation maximum with a set of grey-scale
template shifted in 0.1 voxel steps along all axes.8 Together with
the good monodispersity of the quartz spheres this method
results in the, to our knowledge, the best published accuracy
of experimental particle positions. This claim is made quantita-
tively in Appendix 6.1, where we demonstrate the first peak of the
pair correlation function.

We restrict our subsequent analysis to the bulk regions of
fluidized bed packings, i.e. we analyse only particles whose
centers are at least 2 mm (respectively, 5.6 particle diameters)
away from the cylinder boundary. In addition, we exclude a
layer of two particle diameters at the top and bottom of every
reconstructed packing.

Fig. 1 Example of a computer-generated and a reconstructed packing. Left: Computer-generated Lubachevsky–Stillinger packing at the density
j = 0.65. Right: Reconstructed fluidized bed packing (flow rate Q = 167 ml s�1) with the density j = 0.5784 in the bulk region.

Table 2 Experimental parameters for the fluidized bed packings. The column ‘‘number of particles’’ refers to the analysed bulk region

Flow rate,
Q (ml s�1)

Flow
duration (s)

Resolution
(mm per voxel)

No. of
particles

No. of
packings

Average bulk
density, j Density range

250 10 12 1909–1962 263 0.574 0.570–0.579
167 10 12 1903–1968 173 0.575 0.571–0.580
150 15 18 2053a 67 0.588 0.581–0.592

a For this set of packings, we were slightly varying the radius of the bulk region to ensure an equal amount of spheres in the latter.

¶ The fluidized bed volume fraction was measured by uniformly generating 107

points in the bulk regions and counting the number of points that were inside the
particles.

8 This method proved itself superior to an interpolation from a set of cross
correlations based on a voxel-distance grid.
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We find that we still have to exclude 34% of the packings
from our analysis because their pore-size distributions show
features which both differ from theoretical predictions and
are not seen in any of the computer-generated packings. We
attribute these unexpected features to image processing artefacts
which distort the positions of a small number of spheres. Details
on how experiments with untypical pore-size distribution are
identified can be found in Appendix 6.2.

2.4 Diluted packings

These types of packings are intended to illustrate the effect of
missing mechanical stability. They are created by first taking a
reference Lubachevsky–Stillinger packing at a density j = 0.65.
Then, particle positions and box size are proportionally scaled
to obtain densities in a desired range j = 0.55–0.65. The
resulting packings have contact numbers Z equal to zero and
are therefore not mechanically stable.

3 Computing an upper bound on the
Edwards entropy
3.1 Theoretical approach

In this subsection, we discuss our modified version of the
Widom particle insertion method82–84 which allows us to
compute an upper bound on the Edwards entropy per particle.
The main idea here is that we enforce the condition of
mechanical stability by (a) starting from packings which
already possess these properties and (b) by inserting particles
in such a way that they will have enough contacts to be
mechanically stable themselves.

3.1.1 Edwards entropy. Ignoring the contact forces, each
packing configuration of N monodisperse spheres can be
represented as a point in a 3N-dimensional packing phase
space (3 coordinates per particle center). If the side lengths of
the packing box are Lx, Ly, and Lz, the total phase space volume
is equal to Vtot = (LxLyLz)

N.
Packing preparation protocols can be described in two

equivalent ways: either the volume of the box is decreased, or
the particle diameter is increased. The former is more equivalent
to experimental methods where fixed-size particles ‘‘settle’’ from
an expanded state into a final volume. The latter is normally
used in numerical protocols.

We will assume in the following discussion monodisperse
packings** that are prepared by increasing the particle diameters:
starting from an arbitrary low density configuration in the phase
space, the protocol changes the particle positions (moving the
configurational point in the phase space) and at the same time
increases the particle diameter until they reach a configuration
that is mechanically stable for a given friction coefficient.

Then configurations with the same final particle diameter can be
grouped into equivalence classes if these configurations can be
obtained from one another by (i) continuous symmetry operations

(translational or—in the case of cylindrical or spherical boundaries—
rotational symmetries);88 (ii) rattler displacements.

Thus, the entire phase space can be divided into (protocol-
dependent) countable81 basins of attraction of equivalence
classes of mechanically stable configurations with different
particle volume fractions (densities). For frictionless particles,
basins of attraction can be produced, among other protocols,
by ‘‘Stillinger quenches’’ (quenches that try to increase particle
diameters as fast as possible).90,91

In order to investigate the ‘‘number of mechanically stable
states’’ at a given particle diameter D or equivalently volume
fraction j, we need to operate with the density of states. It will
be more convenient to investigate the number of states in a
small interval of final particle diameters D.

If N is the number of particles, V is the box volume, Oi is the
volume of the phase space of a basin of attraction, and Di is its
final particle diameter, we can write the total volume of the
basins of attraction with Di A [D;D + dD) as

OðN;V;D; dDÞ ¼
X

Di2½D;DþdDÞ
OiðN;VÞ (1)

and the probability to encounter a state i in the interval of final
diameters [D; D + dD) as

piðN;V ;D; dDÞ ¼
OiðN;VÞ

OðN;V ;D; dDÞ; Di 2 ½D;Dþ dDÞ: (2)

Thus, we can write the entropy of mechanically stable states
with Di A [D; D + dD):

SðN;V ;D; dDÞ ¼ ln
1

N!

� �
�

X
Di2½D;DþdDÞ

pi ln pið Þ; (3)

where
1

N!
accounts for indistinguishability of particles.36,81

If we assume equiprobability of stable states,36,41 i.e. the
equality of all Oi, the Edwards entropy becomes S = ln(C/N!)
where C(N,V,D,dD) is the number of mechanically stable con-
figurations with Di A [D;D + dD).

Switching back to a more experimental view we assume now
that the final particle diameter is equal to the initial one but the
box is rescaled to match the final density. This leads to a range
of accepted box linear dimensions [L, L + h) instead of a range
for accepted particle diameters, where h can be termed a
‘‘granular Planck length’’.

SðN;V ;D; hÞ ¼ ln
1

N!
CðN;V ;D; hÞ

� �
: (4)

It will be convenient for the discussion below to allow
particle centers to move inside the Planck volumes of size
h3. That is the entire phase space will be split into hypercubes
of volume h3N and a hypercube is considered mechanically
stable if it contains at least one mechanically stable configu-
ration. The number of mechanically stable hypercubes will be
equal to C(N,V,D,h) for a sufficiently small h (if h is too big, one
hypercube may contain several mechanically stable configura-
tions). Again, hypercubes shall be merged into equivalence classes.

** These ideas can be generalized to polydisperse packings by assigning a
nominal diameter to each particle before multiplying with the growth factor.
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From now on D and h are considered fixed and we omit them from
the list of parameters.

We can also define a probability to sample a correct
(mechanically stable) configuration among all possible con-
figurations as

pcorrect(N,V) = C(N,V)h3N/VN. (5)

Then the Edwards entropy can be expressed as

S ¼ ln
1

N!
pcorrect V

�
h3

� �N� �
.

3.1.2 Widom’s insertion method. To estimate C(N,V), we
adapt the Widom particle insertion method82–84 to granular
systems. Let us keep the volume of a packing V fixed, but add
one more particle to the packing of N particles which is in the
configuration Xi, where i = 1. . .C(N,V). We can then define Ki as
the number of possible positions in a packing to insert the
N + 1th particle in this packing so that (a) there is no overlap with
already present particles and (b) the additional particle is itself
in a mechanically stable position. This second condition is equal
to the requirement that the N + 1th particle has in average at
least the isostatic number of contacts with its neighbors.

The number of all correct configurations C(N + 1,V) can thus
be estimated as

C(N + 1,V) Z K1 + K2 + � � � + KC(N,V) = C(N,V)hKi,
(6)

where the average is over all correct configurations for the (N,V)
system. The inequality stems from the fact that some unstable
configurations of N particles can become stable if we add the
N + 1th particle, and we miss them. In Section 4.4 we give an
estimate for the prevalence of such configurations.

We can now introduce the average insertion probability (into
an already stable packing):

pinserth i ¼ hKi
V=h3

¼ hKih
3

V
: (7)

Eqn (6) is then transformed into

CðN þ 1;VÞ � CðN;VÞV
h3

pinserth i: (8)

By combining eqn (4) and (8) we obtain

SðN þ 1;VÞ � SðN;VÞ þ ln
V

Nh3
pinserth i

� �
: (9)

By combining eqn (5) and (8), we could also derive an
equivalent expression for pcorrect(N,V):

pcorrect(N + 1,V) Z pcorrect(N,V)h pinserti. (10)

We immediately derive from eqn (9)

S N2;Vð Þ � S N1;Vð Þ þ
ðN2

N1

ln
V

Nh3
pinserth i

� �
dN: (11)

We will later use N2, the larger N, as a reference point, so
we express S(N1,V) through S(N2,V) and also make substitutions

N1 - N and N2 - N0:

SðN;VÞ � S N0;Vð Þ þ
ðN
N0

ln
V

N 0h3
pinserth i

� �
dN 0: (12)

An important step in the Widom method is to assume that
the h pinserti can be represented by pinsert from a single system:

h pinserti = pinsert. (13)

A sufficient condition for eqn (13) in classical systems is that
an examined single packing is in equilibrium. But the discus-
sion above does not necessarily require packings to be equili-
brated and does not imply ergodicity. The only requirement is
that packings produced by a given protocol at given (N,V)
possess similar properties and are in this sense ‘‘typical’’, so
that we can apply eqn (13).††

It will be more natural to switch in eqn (12) to the entropy
per particle, s = S/N. This quantity shall depend only on the
particle volume fraction j and h. We also replace N with j in
the integration in eqn (12) through j = NVsp/V, where Vsp is the
sphere volume. We thus arrive at the master equation (where
we use the subscript ‘‘ub’’ to denote the upper bound)

subðjÞ ¼
j0

j
s0 j0ð Þ þ

j� j0

j
ln

Vsp

h3

� �
þ 1

� �

� j lnðjÞ � j0 ln j0ð Þ
j

þ 1

j

ðj
j0

ln pinsertð Þdj0:
(14)

A natural choice for j0 in eqn (14) is the point where s0 is

zero: the entire term
j0

j
s0 j0ð Þ will then vanish. As discussed in

the introduction, the highest possible value of j for packings
with suppressed crystallization is the Glass Close Packing limit
jGCP. At this endpoint of the amorphous branch of the hard
sphere phase diagram55 there will be only one densest configu-
ration (up to particle permutations, symmetry operations, and
possibly up to rattler displacement). All configurations equi-
valent up to continuous symmetry operations, such as transla-
tions, and rattler displacements are already combined by design
into equivalence classes. The number of discrete symmetry opera-
tions is the same for any N, it is 48 for a fully periodic cubic box
(symmetry order of the octahedral symmetry Oh).94 The density
jGCP can be expressed through the box size LGCP with

jGCP ¼ N
pD3

6

1

LGCP
3
. If we select h so that the last interval of

box volumes (LGCP � h,LGCP] in eqn (4) contains only the GCP
configuration, then we can compute s0 as s0 = ln(48N!/N!)/N =
48/N, which in the thermodynamic limit will go to zero. We
note that this selection of the reference point leaves h hidden in
sub (cf. eqn (4)), and the value of h is essentially unknown.

3.1.3 Remarks on Widom’s method. Eqn (8) represents the
essence of the Widom particle insertion method82–84 for granular
matter and is equivalent to eqn (1) in ref. 82 or eqn (5) in ref. 84.
These equations are derived for classical thermodynamic systems

†† The replacement of hpinserti with pinsert is often used implicitly, e.g. in eqn (3) in
ref. 92 and eqn (4) in ref. 93.
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with arbitrary potential. Eqn (2.2) in ref. 95 is the expression of
the same idea, but specifically for the hard-sphere fluid.

A more detailed mathematical discussion of the Widom
method can be found in our accompanying paper.96 We validate
there our procedure65 for estimating pinsert for the hard-sphere
fluid. The same procedure, extended for granular systems, is
presented in the next section.

For classical systems, all the equations in the previous
section are exact. For such systems one also measures the
volume of valid configurations, not their number. The phase
space for classical systems contains additional kinetic degrees of
freedom, but switching to excess quantities eliminates them from
equations. Thus, it is more common to express eqn (10) through
the excess chemical potential Dm, Dm/kT = �ln(h pinserti).82,84,92,95

Eqn (14) looks even simpler in excess quantities, Ds ¼
Ds0j0=jþ j�1

Ð j
j0
ln pinsertð Þdj0. We validate this form of equa-

tion in the accompanying paper.96 Eqn (10) requires minimal
changes to switch to classical systems, we only have to replace
inequality with equality:

pcorrect(N + 1,V) = pcorrect(N,V)h pinserti. (15)

We illustrate eqn (15) in Fig. 2 for the case of a one-
dimensional hard-sphere fluid with N = 2 (i.e. ignoring the
requirement of mechanical stability). In this case the N + 1
phase space is only three-dimensional and can therefore be still
visualized.

Both s and s0 in eqn (14) contain h (cf. eqn (4)). Thus, the
presence of additional h3 there, as well as of Vsp, can be
daunting. We note though that Vsp and h3 in eqn (14) are also
both hidden in pinsert and are cancelled out. The presence of h3

follows directly from eqn (7). To understand the dependence of
pinsert on Vsp, we notice that K from eqn (7) shall be extensive,

i.e. K = Na(j), and thus pinsert ¼ jaðjÞ h
3

Vsp
¼ jaðjÞ h3

pD3=6
, where

D is the particle diameter. We will discuss the implications

pinsert B h3(if h - 0), pinsert B D�3 (16)

during the estimation of pinsert below. We believe that it is
easier to use pinsert instead of a, but Vsp and h3 in eqn (14) shall
be exactly the ones used for the estimation of pinsert.

In classical systems the Widom insertion method is normally
used in conjunction with the canonical ensemble.82–84 This is in
principle also possible for the granular case: the ratio C(N,V)/h
from eqn (4) represents the density of states, which can also be
written as

P
i

d Vi � Vð Þ,2,41 where the summation of delta-

functions is over all mechanically stable states. Switching to
the canonical ensemble would remove the delta-functions and
the unknown hidden h from eqn (14). In the canonical ensemble
the partition function ZN looks like ZN ¼

P
i

exp �Vi=w½ �, where w

is the compactivity. Here the compactivity controls the average
volume that the small subsystem gains when it is generated
(along with a large ‘‘bath’’ of particles) with a certain packing
preparation protocol. However, as the correct method to

measure compactivities is still an active area of research,34 we
abstain here from switching to the canonical ensemble.

We also mention that for particles with soft shells, when
mechanically stable states are defined by local elastic energy
minima and shells are wide enough to avoid zero energy
plateaus at any relevant j, entropy can be defined as the number
of states at every j even in the microcanonical ensemble.36,81 It
would also remove the delta-functions and unknown hidden h
from eqn (14). We do not consider such particles in this paper.

3.1.4 How to estimate the insertion probability pinsert. The
insertion probability is measured by randomly placing a large
number of points inside the packing and then determining for
each point the distances to the surfaces of several nearest
particles (cf. Fig. 3). This way we measure for each random
point a set of rz, which denote the distance from the point to the
zth closest particle surface (the range of z is discussed below).

The idea is now to estimate the correct insertion probability
of a ‘‘virtual’’ particle with a given number of contacts by giving
conditions on these distances. We assume two particles to be in
contact if the closest distance between their surfaces does not
exceed some small arbitrary constant d. To insert a virtual

Fig. 2 Visualization of the Widom method (eqn (15)) using a one-
dimensional hard-sphere system, and ignoring the condition of mechanical
stability. Panel (a) shows a specific two-particle system in a one-dimensional
box extending from 0 to 1. Panel (c) displays the available phase space
pcorrect(2,V), for arbitrary positions of the two particles, as a green area. The
specific system of panel (a) is here indicated as a black dot. Panel (b)
visualizes in green the available space for the insertion of a third particle
in this specific system without overlap with the first two particles. The green
area in panel (d) shows the available phase space of the generic three-
particle system. Panel (b) coresponds to an one-dimensional hyperslice of
this phase space, it is indicated by the black vertical line. The Widom
insertion method now corresponds to the statement that one can compute
pcorrect(3,V) (the fraction of the green volume in 3D in panel (d)) by multi-
plying pcorrect(2,V) (the fractiton of the green area in panel (c)) with pinsert

(the fraction of the green length in panel (b)).

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
M

ar
ch

 2
01

6.
 D

ow
nl

oa
de

d 
on

 1
1/

10
/2

02
4 

4:
57

:3
5 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c6sm00567e


3998 | Soft Matter, 2016, 12, 3991--4006 This journal is©The Royal Society of Chemistry 2016

particle with an arbitrary radius r0 having Zz contacts, we
require two conditions: (a) the particle has to fit in, i.e. r1 = r0,
(b) it has to touch at least z particles, i.e. rz r r1 + d.

The last condition will be easier to discuss if we operate with
relative distances r1z = rz � r1 for z 4 1 (cf. Fig. 3). By inserting a
large number of virtual particles we then measure the prob-
ability density functions for the distributions of r1 and r1z,
which we denote as f (r1) and g1z(r1,r1z), respectively (note that
g1z depends on r1 as well). f (r1) is described in many papers as
pore-size distribution.97–105 We also operate with the condi-
tional probability density g1z(r1z|r1) to find a given value r1z

when the distance to the first closest sphere is r1: g1z(r1z|r1) =
g1z(r1,r1z)/f (r1). We denote the corresponding cumulative dis-
tributions as G1z(r1,r1z) and G1z(r1z|r1).

The probability density hz(r0) to insert a particle with radius
r0 and at least z contacts can be computed using the two
conditions named above as

hz(r0)dr0 = Pr{r1 A [r0,r0 + dr0), r1z A [0,d)}

= f (r0)dr0 � Pr{r1z A [0,d)|r1 = r0}. (17)

Here, by definition,

Pr{r1z A [0,d)|r1 = r0} = G1z(d|r0). (18)

G1z(d|r0) can be interpreted as ‘‘zero distance probability’’, i.e.
the probability to have at least z contacts for a pore with radius
r0. By combining eqn (17) and (18), we obtain

hz(r0) = f (r0)�G1z(d|r0). (19)

If R is the radius of ‘‘real’’ particles, then hz(R)dR is the
probability for an inserted particle to have at least z contacts
and the radius in the range [R,R + dR).

To enforce mechanical stability for inserted virtual particles,
we have to choose a relevant z. The two immediate choices are
z = 3 and z = 4. It is known that 4 is the minimal possible
average coordination number in mechanically stable packings
(realized in packings with infinite friction). The contact number
distribution is never a ‘‘delta-function’’,19 so non-rattler particles
with three contacts are inevitable, though not every configu-
ration of three contacts will be mechanically stable. We will
denote the correct minimal z as zmin, but will discuss the choice
between zmin = 330,106,107 and zmin = 4108,109 in the Results
Section 4.

At this point, we can estimate the probability pinsert from
eqn (14) to correctly insert a particle in a packing:

pinsert = dR�f (R)�G1zmin
(d|R). (20)

The distributions f (R) and G1z(d|R) depend all implicitly on
the volume fraction j and thus determine the dependence of
pinsert on j.

3.1.5 Scaling of pinsert with h and D. Because we define
mechanically stable configurations up to Planck volumes h3N,
particle centers are allowed to move inside their Planck
volumes h3 without invalidating the condition of mechanical
stability of configurations. It implies that both dR and d shall
be equal to the Planck length assumed in eqn (14). In the
following we will use h = 2 � 10�7:

dR = d = h = 2 � 10�7. (21)

Eqn (16) implies that pinsert scales as h3 and D�3. Because h is
present as dR in eqn (20) explicitly, G1zmin

(h|R) shall conform to

G1zmin
(h|R) B h2 (if h - 0). (22)

We will use this restriction in Section 4.1. To examine scaling of
eqn (20) with D, we shall express f (R) and G1zmin

(d|R) through

dimensionless distributions f 	
R

D

� �
and G	1zmin

d
D

				RD
� �

, respec-

tively. From the elementary probability theory it follows that

f r1ð Þdr1 ¼ f 	
r1

D


 �
d
r1

D
and thus f r1ð Þ ¼ f 	

r1

D


 �1
D

. Through rewrit-

ing g1z(r1,r1z) in the same way (applied to both arguments) and

dividing by f (R), we can write g1z r1zjr1ð Þdr1z ¼ g	1z
r1z

D

			r1
D


 �
d
r1z

D
.

Thus, G1z hjr1ð Þ ¼
Ð h
0
g1z r1zjr1ð Þdr1z ¼

Ð h=D
0

g	1z
r1z

D

			r1
D


 �
d
r1z

D
. Note

that we had to change the limits of integration. It means that
whenever we require that G1z(h|r1) B h2 (i.e. G1z(h|r1) = A(D)h2),

it implies that G1z hjr1ð Þ 
 h

D

� �2
i:e: G1z hjr1ð Þ ¼ B

h

D

� �2 !
.

Thus, pinsert ¼ f 	
r1

D


 �h
D
B

h

D

� �2
, and scaling with both h and D

is correct, if eqn (22) indeed holds as expected. We will imply
D = 1 a.u. from now on.

3.2 Overview of data analysis steps

In finite size packings, such as our experiments and simula-
tions, neither f (R) nor G1z min

(h|R) can be measured directly. The
maximum observed value for r1 (radius of inserted particle) is
B0.4R. Moreover, the minimum values of r1zmin

(and generally
of all r1z) are much larger than h even for r1 o 0.4R. To fix this
issue, we fit the obtained values of f (r1) and extrapolate r1 - R.
Additionally, we need to fit G1z(r1z|r1) for z = zmin and extrapolate
r1z - h and r1 - R. To make our results more general, we will
present a method applicable for all z from 3 at least to 11.

The entire procedure to estimate the upper bound of the
Edwards entropy according to eqn (14) contains therefore the
following steps:

(1) We uniformly generate 107 random points in all packings.
For each point, we measure distances to the closest particles,

Fig. 3 Schematic illustration of distances from a random point to the
closest particle surfaces in two dimensions.
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with indices z from 3 to 11 (though in principle we will need only
z = zmin).

(2) We fit f (r1) and extrapolate it to r1 = R (cf. the next section
for the fitting procedures).

(3) We distribute values of r1 into bins. Initially we use
100 bins of equal size, then merge some of them to ensure that
the minimum number of points in each bin is 80. For each bin
(i.e. for each r1), we fit g1z(r1z|r1) as a function of r1z. Then we
extrapolate it to r1z = 0, and estimate G1z(h|r1).

(4) For each value of z, we fit G1z(h|r1) as a function of r1 and
extrapolate it to r1 = R.

(5) Finally, we insert f (R) and G1zmin
(h|R) into eqn (20) to

obtain pinsert at each j and insert pinsert into eqn (14) to obtain
the upper bound of the Edwards entropy per particle sub.

3.3 Details of the fitting and extrapolation steps

In this subsection we will justify our choice of fit functions used
for the extrapolation steps. In order to demonstrate better
statistics we present in the figures in this section the combined
distributions g1z(r1z|r1) from 39 fluidized bed packings with
j = 0.587 � 0.003.

3.3.1 Fitting f (r1) and extrapolating it to r1 = R. As in our
previous work65 we followed Schenker et al.103 and fitted f (r1)
with the truncated Gaussian distribution:110

f r1ð Þ ¼ C
1

s
ffiffiffiffiffiffi
2p
p exp � r1 � mð Þ2

2s2

 !
; r1 � 0: (23)

Theoretical results97–99 predict that f (r1) is of the form
A exp(ar1

3 + br1
2 + cr1 + d), of which eqn (23) is a special case.

The validity of the function from eqn (23) was already demon-
strated in our previous paper65 (see Fig. 2 in that reference).

The normalization constant C in eqn (23) corresponds to the
fact that the probability for a pore to appear in the interparticle
void space is 1� j. It can be computed using

Ð1
0 f r1ð Þdr ¼ 1� j.

Fits were performed using the maximum likelihood method for
a truncated Gaussian distribution.110

3.3.2 Fitting g1z(r1z|r1) and extrapolating it to r1z = 0. We
found that the two-parameter probability distribution known as
the Nakagami distribution111 provides the best fits for all the
distributions g1z(r1z|r1) computed in experiments and simula-
tions (z = 3. . .11). The Nakagami probability density function
fx(x;m,O) is defined as

fx x;m;Oð Þ ¼ 2mm

GðmÞOm
x2m�1 exp �m

O
x2


 �
: (24)

It is a two-parameter distribution, which is defined for
x A [0,+N). At x = 0, it grows as x2m�1. At large x, it decays as
exp(�x2). Examples of the distribution g1z(r1z|r1) as a function
of r1z for contact numbers z = 3, 4, 7, and 8 and their fits with
the Nakagami distribution are presented in Fig. 4.

As there is no first-principle based theory supporting our
choice of the Nakagami distribution, we have tried to fit other
distributions with support x A [0,+N) and fx - 0 at x - 0. The
result is that one-parameter distributions do not have enough
degrees of freedom to fit all the different g1z(r1z|r1) curves, while

three-parameter distributions are too flexible and fits are not
robust. Among the examined two-parameter distributions, the
gamma and Rice distributions possess shapes similar to
the observed g1z(r1z|r1), but the quality of fit is inferior to the
Nakagami distribution. For example, the gamma distribution
decays at large x with exp(�x) which is too slow.

From the parameters m and O from the Nakagami fit we
compute the zero distance probability G1z(h|r1), which is the
cumulative density function of the Nakagami distribution Fx at
x = h. The latter has the following analytical expression

Fxðx;m;OÞ ¼ P m;
m

O
x2


 �
¼def g m;

m

O
x2


 �.
GðmÞ: (25)

Here, P(s,x) is the regularized incomplete gamma function,
gðs; xÞ ¼

Ð x
0
ts�1e�tdt is the lower incomplete gamma function,

and G(m) is the gamma function. Thus, we can express
G1z(h|r1) as

G1z hjr1ð Þ ¼ g m;
m

O
h2


 �.
GðmÞ: (26)

3.3.3 Fitting G1z(h|r1) and extrapolating it to r1 = R. The
last step is to extrapolate the zero distance probability G1z(h|r1)
to r1 = R. Fig. 5 shows G1z(h|r1) for contact numbers 3 and 8 as
blue lines. In the absence of a theoretically-derived fit function
we use a heuristically motivated least-squares fit of the form:

ln[G1z(h|r1)] = d � exp[ar1
2 + br1 + c] (27)

for all points with r1 Z 0.1, which is the lowest boundary for
which the fit is still applicable for all coordination numbers z.
Corresponding fits are depicted as the red lines in Fig. 5.

We confirm that the estimates of pinsert do not change
qualitatively if G1zmin

(h|R) is determined by averaging the three
G1zmin

(h|r1) values with the highest available r1.

4 Results and discussion
4.1 Scaling of zero-distance probabilities G1z(h|R) with h

Eqn (22) requires that G1zmin
(h|R) B h2 for sufficiently small h. It

follows from the form of the Nakagami distribution (eqn (24))
that for small x the cumulative Nakagami distribution Fx(x;m,O)
scales as x2m. For a given protocol, m is a function of z, j, and
r1. Thus, eqn (22) implies that mzmin

(r1 = R) = 1 at all j (the
Nakagami distribution is then transformed into the Rayleigh
distribution).

To test the behaviour of mz, we build mz(r1) from the
Nakagami fits for the combined g1z(r1z|r1) distributions for
the 39 Q_150 packings used in Section 3.3 (with j = 0.587 �
0.003). The results are presented in the left panel of Fig. 6.

As before, to estimate mz(R) we have to extrapolate r1 to R.
For z r 6, the mz(r1) plots visually reach asymptotes for the
largest values of r1 for all the packings that we used. Thus, to
estimate mz(R) we simply take an average of the last three values
of mz(r1). The plots mz(R) vs. j for the Makse packings are
presented in the right panel of Fig. 6.

The values with z r 8 show no systematic dependence on j
in Fig. 6. Thus, we can compute their averages. The estimates
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hmz(R)ij for the Makse packings are (z = 3. . .11): 0.792, 1.238,
1.761, 2.424, 3.185, 4.128, 5.883, 8.412, and 11.923. The values
with z 4 6 are very crude estimates.

Both m3(R) and m4(R) are around unity, which is in line
with the requirement mzmin

= 1. None of them is equal to unity
though. One possible explanation is that our estimates for

m4(R) are still too high and the plot m4(r1) continues to decrease
with r1 (like plots mz(r1) do, cf. Fig. 6), so that it eventually
reaches the value m4(r1) = 1 at r1 = R. This effect will be
incorporated into the extrapolation of G1z(h|r1) with r1 - R
(cf. Fig. 5), if this extrapolation is correct. At the same time,
m3(R) does not seem to reach the value 1. Thus, we will prefer
zmin = 4 to zmin = 3.

The proximity of m3(R) and m4(R) to unity and their indepen-
dence from j, as expected from general scaling considerations,
demonstrate the validity of our approach and the correctness of
fits, though we never incorporated these requirements during
the fitting procedure.

4.2 Zero-distance probabilities G1z(h|R)

Fig. 7 shows that the zero distance probabilities G1z(h|R) have
no systematic dependence on j for z Z 3. The data shown here
represent the Makse packings, but the Lubachevsky–Stillinger
packings are qualitatively similar. This result corresponds to
the statement that the local structure of large pores in a

Fig. 5 Extrapolating the zero distance probability G1z(h|r1) (blue lines)
using eqn (27) (red lines). G1z(h|r1) � Pr(r1z o h|r1) is the probability that a
pore with radius r1 will have exactly z contacts with real particles in a shell
of width h. The data represent 39 combined fluidized bed packings
(Q_150) with an average j of 0.585. The particle diameter is normalized
to unity, the extrapolation is therefore to r1 = 0.5.

Fig. 4 The experimentally obtained g1z(r1z|r1) (blue lines) are fit well with Nakagami distributions (red lines). The data represent 39 combined fluidized
bed packings (Q_150) with an average j of 0.585. Distributions for r13, r14, r17, and r18 (respectively z = 3, 4, 7, and 8) are displayed. Each fit is shown twice,
in a linear (top) and in a log–log scale (bottom). The particle diameter is normalized to unity.
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packing remains unchanged over the entire density range of
random monodisperse packings.

Because the values of G1z(h|R) do not change systematically
with j, we can compute an average hG1z(h|R)ij by averaging
over the whole volume fraction range. The corresponding results
for all the protocols are shown in Fig. 8. For the fluidized bed
packings, we combined the data for all the values of flow rate Q
prior to averaging.

Differences between the protocols become only apparent for
z 4 5. Among the numerical protocols, the Makse packings
have the highest zero distance probabilities, followed by the
Lubachevsky–Stillinger packings. Zero distance probabilities
for the diluted packings are significantly low, especially for
z 4 7. This sequence corresponds to the ‘‘degree of mechanical
stability’’ of the packings: the Makse packings are mechanically
stable, the Lubachevsky–Stillinger packings are close to being
stable, while the diluted packings have large interparticle gaps
by design. Fluidized bed packings demonstrate even higher ‘‘degree of mechanical stability’’ than the Makse packings

for z 4 9, but there is a crossover in the order of lines between
z = 8 and z = 9. Fig. 8 demonstrates that G1z(h|R) might
therefore be an interesting tool to quantify the proximity to
mechanical stability.

4.3 Insertion probabilities pinsert

Fig. 9 shows the results for pinsert computed with zmin = 4. We
have excluded here the diluted packings, because their average
coordination number is zero.

Two main results are shown in Fig. 9. First, within error bars
the Makse, LS, and fluidized bed packing agree quantitatively
in their pinsert, without any fit parameter. Interestingly, the
agreement between the only approximately stable LS and fully
stable fluidized bed packings is better than with the also fully
mechanically stable Makse packings. We will come back to this
point in Section 4.4. Second, pinsert exhibits a maximum at RLP
and then decays monotonously with increasing j.

Fig. 6 Left: Nakagami growth parameter m vs. the pore radius r1 for different contact numbers z. The data represent 39 combined fluidized bed
packings (Q_150) with an average j of 0.585. We extrapolate mz(r1) to the particle radius r1 = R = 0.5 by averaging the three right-most points of each
plot. Right: Asymptotic Nakagami growth parameters mz(r1 = R) vs. the particles volume fraction j for different contact numbers z. Presented are the data
from the Makse packings.

Fig. 7 The zero-distance probabilities G1z(h|R) for the different contact
numbers z show no systematic dependence on the volume fraction j.
Presented are the data from the Makse packings.

Fig. 8 Zero-distance probabilities hG1z(h|R)ij averaged over the whole
range of volume fractions.
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4.4 Upper bound on the Edwards entropy per particle

With pinsert(j) at hand, we can compute the estimates of the
Edwards entropy per particle sub according to eqn (14). As
discussed in Section 3.1.2, we assume here that s0 becomes zero
at the Glass Close Packing limit jGCP = 0.65. Because the Makse
packings are only defined up to a maximum j of 0.637 and
because the pinsert(j) of the Lubachevsky–Stillinger packings
agrees better with the experimental data in Fig. 9, we will use
the Lubachevsky–Stillinger packings to compute the upper
bound on the Edwards entropy displayed in Fig. 10. At least in
the range 0.570 o jo 0.592, sub can also be computed from the
fluidized bed data, using a corresponding Lubachevsky–Stillinger
value of s at j0 = 0.592 as a reference value s0 in eqn (14). These
results are also shown in Fig. 10, it is within our accuracy
indistguishable from the Lubachevsky–Stillinger derived values.

The values of sub exhibit a maximum at RLP and decay
monotonously with increasing j. This behaviour supports
previous numerical19,112 and experimental34 analyses. It also
agrees with the idea that s drops sharply to zero (in the
canonical ensemble) for j below RLP.

More generally, this method to compute sub will allow for the
first time to test the different protocols that have been suggested
to measure the configurational temperature X.5,10,15–18,20,25,32–34

Moreover, our approach should be extendable to bidisperse
systems, which will allow us to test the idea that segregation
in dense bidisperse systems is controlled by configurational
entropy.7,31,113–116

The origin of the difference between s(j) and sub(j) is
configurations which gain stability only due to insertion of an
additional particle. To account for such configurations, we can
formally rewrite eqn (6) as

C(N + 1,V) = C(N,V)hKia(N,V), (28)

where the a priori unknown function a(N,V) measures how
many configurations of the (N,V) ensemble will become stable
only after adding one more particle. This implies a(N,V) Z 1
with a(N,V) = 1 only in the case that there are no ‘‘fluid’’
configurations which will develop a finite yield stress if a single
particle is inserted.

If we keep the definition for the average insertion probability
into an already stable packing (eqn (7)) the same, eqn (12) will
then be replaced by

SðN;VÞ ¼ S N0;Vð Þ þ
ðN
N0

ln
V

N 0h3
pinserth i

� �
dN 0 þ

ðN
N0

lnðaÞdN 0;

(29)

which corresponds to the statement that

SubðjÞ � SðjÞ ¼ �
ðN
N0

lnðaÞdN 0: (30)

Because a Z 1 and N o N0, this difference will always be
positive and it will increase with decreasing j, i.e. it will be
maximum at the RLP limit.

A qualitative estimate for a might be obtained by investigat-
ing the case of removing a particle from the packing under
consideration. The likelihood that any of the neighbors of this
particle becomes unstable will decrease with increasing distance
to isostaticity, z � ziso, which corresponds to the statement that
packings close to RLP are the most ‘‘fragile’’. By analogy,
configuration close to RLP should therefore also be the most
likely to gain mechanical stability by adding another particle.
Thus, we conclude that a will be maximum at the RLP limit. This
argument should also allow us to measure a numerically and
therefore turn the upper bound into a direct estimate of the
Edwards entropy. To do so one needs to measure the probability
that removing single particles from given mechanically stable
packings will make them lose their stability.

Our analysis does not consider the effects of a finite boundary
pressure and by design we have no access to the degeneracy that

Fig. 9 All the estimates of pinsert(j) decrease monotonously with the
volume fraction j. Results are computed using eqn (20) with zmin = 4.
LS and fluidized bed data points were binned in the main plot. Vertical error
bars represent 95% prediction intervals in bins, horizontal error bars
represent minimum and maximum densities in bins. Data were grouped
to ensure 5, 66, 43, and 17 packings in the bins for the LS, Q_250, Q_167,
and Q_150 lines, respectively. The inset shows all the individual
experiments.

Fig. 10 The upper bounds on the Edwards entropy per particle sub(j)
decrease monotonously with the volume fraction j. Results are computed
using eqn (14) with zmin = 4, pinsert is taken from Fig. 9.
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hyperstatic packings have in the phase space spanned by the
contact forces. However, all our packings were comprised
from hard particles so that particle positions and contact
forces decouple. The numerical packings do so by design,
and the fluidized bed experiments were done under a constant
pressure small enough that the glass spheres can be con-
sidered as perfectly hard: the pressure between two glass
spheres at the bottom of a 1 m high column will deform them
by approximately 10 nm, which is an orders of magnitude
smaller than the vertical surface roughness of typical glass
spheres.117 And the grain column in our fluidized bed experi-
ment was only 0.03 m high.

However, the value of RLP, measured with glass spheres,
does depend on pressure.43 This means that at least close to the
isostatic point also s will show some pressure dependence. This
effect originates in the reduced degeneracy in the contact force
space; the closer to isostaticity a packing is, the fewer con-
figurations will exist to fulfil certain pressure boundary condi-
tions. An analysis of loose packing created at different pressure
levels should provide interesting insights.

Finally, we would like to point out that a generalization of
our method to other particles shapes, such as ellipsoids or
Platonic bodies, seems feasible.

5 Summary

In this paper, we present a method to compute an upper bound
on the Edwards entropy per particle of three-dimensional,
mechanically stable hard-sphere packings within a micro-
canonical ensemble. We modify the Widom insertion method
to be applicable for granular systems and also extend our
method to estimate particle insertion probabilities for hard-
sphere systems using their pore-size distribution to account for
the requirement of mechanical stability of the packing. Then
we supply these insertion probabilities into the master equation
from the Widom method.

We apply this procedure to experimentally obtained and
computer-generated packings covering the volume fraction
range from 0.551 to jGCP E 0.65 (the Glass Close Packing
density, according to some estimates). The experimental pack-
ings are created with flow pulses in a water-fluidized bed, the
numerical packings are prepared using the Lubachevsky–
Stillinger algorithm. One subset, taken from the publication
of Briscoe et al.,18 adds an additional discrete element simula-
tion step to obtain fully jammed configurations.

Starting from a minimum at the Glass Close Packing density
the upper bound on the Edwards entropy grows monotonically
with decreasing volume fraction to reach a maximum around
the Random Loose Packing density jRLP E 0.55. Because there
are by definition no mechanically stable packings below
Random Loose Packing, the Edwards entropy shall drop there
to zero (in the canonical ensemble).

Additionally, we find that the local structure around pores
large enough to fit in another particle does not depend on
the volume fraction. This volume fraction independence was

quantified by computing the probabilities of the inserted
particles to have a given number of contacts.

6 Appendix
6.1 Pair correlation functions for fluidized bed packings

The monodispersity of the particles and the high quality of the
particle detection of fluidized bed experiments are demon-
strated by the pair correlation functions shown in Fig. 11.
The data correspond to individual fluidized bed packings
where we have discarded a layer of one diameter thickness
along the cylinder walls. While the absolute height of the first
peak, which corresponds to particles in contact, depends on the
bin size, its width is a testimonial to the quality of the data.

6.2 Selecting fluidized bed packings

Approximately 34% of the fluidized bed packings were dis-
carded due to the atypical pore-size distributions. Fig. 12 shows
two examples. The experiment in panel (b) behaves atypically as
the tail deviates from the expected Gaussian curve (eqn (23)) towards
higher probability densities. Such a behaviour was neither observed
in the computer-generated Makse, Lubachevsky–Stillinger, and
diluted packings nor was it observed for the force-biased and

Fig. 11 Pair correlation function for fluidized bed packings. The inset
shows the data in a semi-log scale. The bin width is 2 � 10�4D in the
main figure and 2 � 10�2D in the inset, except for the points inside
the 0.99–1.02D interval, where we use the bins from the main plot. D is
the particle diameter.

Fig. 12 Experimentally obtained pore radii probability density functions
(blue lines) and their fits with Gaussian distributions (red lines) for two
reconstructed packings: (a) accepted packing; (b) rejected packing. The
particle diameter is normalized to unity.
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Jodrey–Tory packings studied in our previous paper65 and by
Schenker et al.103 Thus, we assume that this atypical behaviour
stems from reconstruction artefacts and discards such packings
from the calculation of entropies.

Fig. 12 demonstrates also that the pore-size distribution may
serve as an additional indicator of packing reconstruction quality,
besides the pair-correlation function discussed in Section 6.1.
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114, 158001.

50 T. Aste, M. Saadatfar and T. J. Senden, J. Stat. Mech.: Theory
Exp., 2006, 2006, P07010.

51 A. Baule, R. Mari, L. Bo, L. Portal and H. A. Makse,
Nat. Commun., 2013, 4, 2194.

52 A. Baule and H. A. Makse, Soft Matter, 2014, 10, 4423–4429.
53 S. Torquato and F. H. Stillinger, J. Appl. Phys., 2007,

102, 093511.
54 S. Torquato, T. M. Truskett and P. G. Debenedetti,

Phys. Rev. Lett., 2000, 84, 2064.
55 R. D. Kamien and A. J. Liu, Phys. Rev. Lett., 2007,

99, 155501.
56 A. V. Anikeenko and N. N. Medvedev, Phys. Rev. Lett., 2007,

98, 235504.
57 M. Bargieł and E. M. Tory, Adv. Powder Technol., 2001, 12,

533–557.
58 K. Lochmann, L. Oger and D. Stoyan, Solid State Sci., 2006,

8, 1397–1413.
59 C. Radin, J. Stat. Phys., 2008, 131, 567–573.
60 Y. Jin and H. A. Makse, Physica A, 2010, 389, 5362–5379.
61 B. A. Klumov, S. A. Khrapak and G. E. Morfill, Phys. Rev. B:

Condens. Matter Mater. Phys., 2011, 83, 184105.
62 S. C. Kapfer, W. Mickel, K. Mecke and G. E. Schroder-Turk,

Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2012,
85, 030301.

63 N. Francois, M. Saadatfar, R. Cruikshank and A. Sheppard,
Phys. Rev. Lett., 2013, 111, 148001.

64 G. Parisi and F. Zamponi, Rev. Mod. Phys., 2010, 82,
789–845.

65 V. Baranau, D. Hlushkou, S. Khirevich and U. Tallarek,
Soft Matter, 2013, 9, 3361–3372.

66 V. Baranau and U. Tallarek, Soft Matter, 2014, 10, 3826–3841.
67 V. Baranau and U. Tallarek, Soft Matter, 2014, 10, 7838–7848.
68 M. Skoge, A. Donev, F. H. Stillinger and S. Torquato, Phys.

Rev. E: Stat., Nonlinear, Soft Matter Phys., 2006, 74, 041127.
69 W. G. Hoover and F. H. Ree, J. Chem. Phys., 1968, 49,

3609–3617.
70 E. Sanz, C. Valeriani, E. Zaccarelli, W. C. K. Poon,

P. N. Pusey and M. E. Cates, Phys. Rev. Lett., 2011,
106, 215701.

71 E. Zaccarelli, C. Valeriani, E. Sanz, W. C. K. Poon,
M. E. Cates and P. N. Pusey, Phys. Rev. Lett., 2009,
103, 135704.

72 C. Valeriani, E. Sanz, E. Zaccarelli, W. C. K. Poon,
M. E. Cates and P. N. Pusey, J. Phys.: Condens. Matter,
2011, 23, 194117.

73 L. Filion, M. Hermes, R. Ni and M. Dijkstra, J. Chem. Phys.,
2010, 133, 4115.

74 P. N. Pusey, E. Zaccarelli, C. Valeriani, E. Sanz, W. C. K.
Poon and M. E. Cates, Philos. Trans. R. Soc., A, 2009, 367,
4993–5011.

75 G. Y. Onoda and E. G. Liniger, Phys. Rev. Lett., 1990, 64,
2727–2730.

76 G. R. Farrell, K. M. Martini and N. Menon, Soft Matter,
2010, 6, 2925–2930.

77 J. M. Valverde and A. Castellanos, EPL, 2006, 75, 985.
78 L. E. Silbert, Soft Matter, 2010, 6, 2918–2924.
79 G. W. Delaney, J. E. Hilton and P. W. Cleary, Phys. Rev. E:

Stat., Nonlinear, Soft Matter Phys., 2011, 83, 051305.
80 M. Pica Ciamarra and A. Coniglio, Phys. Rev. Lett., 2008,

101, 128001.
81 S. Martiniani, K. J. Schrenk, J. D. Stevenson, D. J. Wales

and D. Frenkel, Phys. Rev. E: Stat., Nonlinear, Soft Matter
Phys., 2016, 93, 012906.

82 B. Widom, J. Chem. Phys., 1963, 39, 2808–2812.
83 D. Frenkel and B. Smit, Understanding Molecular Simulation:

From Algorithms to Applications, Academic Press, San Diego,
2nd edn, 2002.

84 D. J. Adams, Mol. Phys., 1974, 28, 1241–1252.
85 B. D. Lubachevsky and F. H. Stillinger, J. Stat. Phys., 1990,

60, 561–583.
86 B. D. Lubachevsky, J. Comput. Phys., 1991, 94, 255–283.
87 G. A. Mansoori, N. F. Carnahan, K. E. Starling and

T. W. Leland, J. Chem. Phys., 1971, 54, 1523–1525.
88 Z. W. Salsburg and W. W. Wood, J. Chem. Phys., 1962, 37,

798–804.
89 H. Makse, Software and Data|Hernan Makse, http://www-

levich.engr.ccny.cuny.edu/webpage/hmakse/software-and-data/.
90 F. H. Stillinger and T. A. Weber, Phys. Rev. A: At., Mol., Opt.

Phys., 1982, 25, 978–989.
91 F. H. Stillinger, Science, 1995, 267, 1935–1939.
92 R. J. Speedy, J. Chem. Soc., Faraday Trans. 2, 1981, 77,

329–335.
93 W. G. Hoover, W. T. Ashurst and R. Grover, J. Chem. Phys.,

1972, 57, 1259–1262.
94 D. M. Bishop, Group Theory and Chemistry, Dover Publica-

tions, New York, Revised edn., 1993.
95 R. J. Speedy and H. Reiss, Mol. Phys., 1991, 72, 999–1014.
96 V. Baranau and U. Tallarek, J. Chem. Phys., 2016,

submitted.
97 S. Torquato, B. Lu and J. Rubinstein, Phys. Rev. A: At., Mol.,

Opt. Phys., 1990, 41, 2059–2075.
98 B. Lu and S. Torquato, Phys. Rev. A: At., Mol., Opt. Phys.,

1992, 45, 5530–5544.
99 S. Torquato, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.,

1995, 51, 3170–3182.

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
M

ar
ch

 2
01

6.
 D

ow
nl

oa
de

d 
on

 1
1/

10
/2

02
4 

4:
57

:3
5 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c6sm00567e


4006 | Soft Matter, 2016, 12, 3991--4006 This journal is©The Royal Society of Chemistry 2016

100 M. Alonso, M. Satoh and K. Miyanami, Can. J. Chem. Eng.,
1992, 70, 28–32.

101 M. Alonso, E. Sainz, F. Lopez and K. Shinohara, Chem. Eng.
Sci., 1995, 50, 1983–1988.

102 I. Schenker, F. Filser, M. Hutter and L. Gauckler, Granular
Matter, 2012, 14, 333–340.

103 I. Schenker, F. T. Filser, L. J. Gauckler, T. Aste and
H. J. Herrmann, Phys. Rev. E: Stat., Nonlinear, Soft Matter
Phys., 2009, 80, 021302.

104 S. Torquato, Annu. Rev. Mater. Res., 2002, 32, 77–111.
105 D. Stoyan, A. Wagner, H. Hermann and A. Elsner, J. Non-

Cryst. Solids, 2011, 357, 1508–1515.
106 C. B. O’Donovan and M. E. Möbius, Phys. Rev. E: Stat.,
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