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Population-balance description of shear-induced
clustering, gelation and suspension viscosity in
sheared DLVO colloids†

Marco Lattuada,*a Alessio Zaccone,*b Hua Wuc and Massimo Morbidelli*c

Application of shear flow to charge-stabilized aqueous colloidal suspensions is ubiquitous in industrial

applications and as a means to achieve controlled field-induced assembly of nanoparticles. Yet, applying

shear flow to a charge-stabilized colloidal suspension, which is initially monodisperse and in quasi-

equilibrium leads to non-trivial clustering phenomena (and sometimes to a gelation transition),

dominated by the complex interplay between DLVO interactions and shear flow. The quantitative

understanding of these strongly nonequilibrium phenomena is still far from being complete. By taking

advantage of a recent shear-induced aggregation rate theory developed in our group, we present here a

systematic numerical study, based on the governing master kinetic equation (population-balance) for

the shear-induced clustering and breakup of colloids exposed to shear flow. In the presence of

sufficiently stable particles, the clustering kinetics is characterized by an initial very slow growth,

controlled by repulsion. During this regime, particles are slowly aggregating to form clusters, the

reactivity of which increases along with their size growth. When their size reaches a critical threshold, a

very rapid, explosive-like growth follows, where shear forces are able to overcome the energy barrier

between particles. This stage terminates when a dynamic balance between shear-induced aggregation

and cluster breakage is reached. It is also observed that these systems are characterized by a cluster

mass distribution that for a long time presents a well-defined bimodality. The model predictions are

quantitatively in excellent agreement with available experimental data, showing how the theoretical

picture is able to quantitatively account for the underlying nonequilibrum physics.

Introduction

Aggregation of colloidal suspensions is a physical phenomenon
with a widespread range of applications in nanotechnology,
materials science, food science, biomedical science and waste-
water treatment.1 While for some systems aggregation is highly
deleterious and must be avoided at all costs, in self-assembling
nanoparticles it is a crucial step.2–4 It is therefore not surprising
that in order to better design colloidal dispersions, the fundamental
understanding of aggregation phenomena has been and still
is the subject of many investigations, both experimental and
theoretical.5–10 The number of studies on aggregation has
increased exponentially in the last three decades. In spite of

the enormous progress made to fill the knowledge gap, some
phenomena are still poorly understood. In particular a bottom-up
approach connecting the physics and chemistry of colloidal
particles with the time-dependent clustering behavior and the
macroscopic rheology is currently missing.11

Two situations have been systematically investigated. Quies-
cent colloidal dispersions have been the subject of the majority
of experimental and theoretical work, culminated with the discovery
of two universal aggregation regimes: diffusion-limited aggregation,
where particles only experience short range attractive interactions,
and reaction-limited aggregation, where particles also experience
repulsive interactions, typically of electrostatic origin.5 These two
regimes differ substantially not only in terms of kinetics, but also of
aggregate structures.6,12 The second system that has been often
considered, for its practical relevance, is aggregation of colloidal
dispersions in the presence of shear forces.8,9,13–28 Shear-flow
has a strong accelerating effect on the aggregation kinetics, and
a considerable influence on the structure of the clusters formed,
but it also affects cluster size by breaking them up.8

Shear-induced aggregation has been investigated in the past
with fully destabilized suspensions.14,15,17–25,27,28 A much more
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complex and physically rich scenario, with enormous practical
implications, is the behavior of colloidal suspensions subject to
shear forces and simultaneously stabilized by repulsive electro-
static interactions.7,9,13,16,26,27,29–32 These systems have competing
interactions (attractive van der Waals at short-range, repulsive
double-layer at larger separation), a situation often encountered
also in protein systems.33–35 In the absence of external fields,
and at sufficiently dilute conditions, strongly charge-stabilized
systems are well described by equilibrium statistical mechanics.
If the electric double-layer repulsion is substantial, aggregation
is extremely slow, and for quite a long time the radial distribution
function goes approximately as predicted by equilibrium
statistical mechanics, g(r) = exp[�U/kT], where U is the repulsive
part of the DLVO pair-potential. Application of shear flow
allows the particles to explore the van der Waals attractive
minima of the DLVO interaction, and perturbs this initial
quasi-equilibrium state. Detailed-balance in the collisions
between particles is broken (due to most flow-induced collisions
being de facto irreversible, for which the reverse rate, breakup, is
practically zero), and the constant injection of energy into the
system brings it far away from thermodynamic equilibrium.36 It
is a fundamental question of statistical physics to elucidate the
time-evolution of such a strongly driven system, and to determine
which nonequilibrium steady-states act as attractors for the
dynamics at long times. Hence, making predictions about the
time-evolution of such strongly nonequilibrium systems represents
a major challenge in modern statistical physics.37

At the colloid-particle level, these systems have a unique
behavior, since the presence of repulsive interactions stabilizes
particles against shear forces as long as the latter are not providing
sufficient energy to overcome the repulsive barrier.30–32 In this
event, the aggregation rate becomes very high, reaching levels
comparable to those observed for particles in the absence of
repulsive interactions. This peculiar effect, which has been
addressed both theoretically30,31 and experimentally,32 manifests
itself with an explosive-like, runaway behavior in the growth rate
of the cluster size. Initially, the system appears to undergo an
almost negligible aggregation, which is however followed by a
regime where an exponentially fast, auto-catalytic cluster growth
is observed.30

The objective of this work is to present a bottom-up quantitative
description of the time-dependent evolution of DLVO colloids in
shear flow, starting from an initial equilibrium state (stable
colloidal suspension) and predicting the nonequilibrium cluster
size evolution under account of both shear-induced cluster
aggregation and breakup. This task is achieved by numerically
solving the governing master equation (population balance)
with physically justified microscopic kernels for aggregation
and breakup. The simulations shed light on the resulting cluster
mass distribution, focusing in particular on the development of
a marked bimodality, confirmed by experiments. Such bimodality
has important implications, because it implies that only two distinct
populations of clusters can survive at steady-state: primary particles
with very small clusters, on one end of the spectrum, and very
large clusters, at the other end, whose size is determined by
breakage. Finally, the obtained cluster size distribution as a

function of time can be used to estimate the time-evolution of
the steady shear viscosity of the suspension, for the first time in
quantitative agreement with experiments, and to predict the
occurrence of gelation at long times. Gelation is a possible
outcome provided that the initial colloid concentration is such
that the final fractal-cluster volume fraction reaches close packing.

Simulation methodology

All simulations performed in this work have been carried out by
solving the governing master equation which we will refer to as
population balance equations (PBEs), in the following discrete
form:38,39

dNm

dt
¼ 1

2

Xiþj¼m
i; j¼1

KA
ij NiNj �Nm

X1
i¼1

KA
imNi � KB

mNm þ
X1

i¼mþ1
KB

i GimNi

(1)

In eqn (1), Nm is the number concentration of clusters with
mass m, K A

ij is the aggregation rate or aggregation kernel
between two clusters with masses i and j, respectively; K B

i is
the breakage rate of a cluster with mass i and Gim is a fraction of
fragments with mass m produced by a breakage of a cluster
with mass i, with i Z m + 1. All information about the physics
of the aggregation and breakage processes are contained in
the kernels. The following expression, based on the analytical
solution to the Smoluchowski (advection-diffusion) equation
with shear for arbitrarily interacting Brownian particles developed
in ref. 30–32, has been used to model the rate of shear-induced
aggregation between two clusters with masses i and j

Kij ¼ min

2kT

3ZW
i
1
df þ j

1
df

� �
i
� 1
df þ j

� 1
df

� �
e2aPe

a
4

3
_gRp

3 i
1
df þ j

1
df

� �3

8>>>><
>>>>:

(2)

where W is the colloidal stability ratio, _g is the shear rate, Z the
viscosity of water, k the Boltzmann constant, T the temperature,
df is the cluster fractal dimension, Rp the primary particle
radius, i the mass of the ith cluster, a = 1/3/p and a is the
collision efficiency. The Fuchs stability ratio is given by the
following eqn (1):

W ¼ 2

ð1
2

exp
UðlÞ
kT

� �

GðlÞ � l2 dl (3)

where U(l) is the interaction energy between a pair of particles
located at a dimensionless distance l (i.e., the particle center-to-
center distance normalized by the primary particle radius) and G(l)
is a hydrodynamic resistance function accounting for the reduction
in diffusivity when two particles are moving towards one another.
Quite often, the Fuchs stability ratio is simplified as follows:

W ’ 1

2kRp
exp

UMax

kT

� �
(4)

where UMax is the interaction energy barrier height and k the
inverse Debye length. The collision efficiency has been evaluated
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according to the model developed by Bäbler.40 The functional
form of the kernel is basically identical to the one proposed in
ref. 30 and 32.

The Peclet number is defined as follows:

Pe ¼
3pZ _gRH;iRH;j RH;i þ RH;j

� �
2kT

; (5)

where RH,i is the hydrodynamic radius of the ith cluster, which
has been computed using correlations developed in our
group.41 The minimum in eqn (2) signifies that the kernel is
equal to the traditional shear kernel when the first part containing
the exponential term in eqn (2) becomes higher than the shear
kernel. The viscosity used in eqn (5) is the viscosity of water. The
peculiar form of the aggregation kernel, eqn (2), comes from the
thermally-activated Arrhenius-like competition between shear
forces and repulsive interactions (stemming from the analytical
solution to the Smoluchowski equation with shear26), which
gives rise to the exponential term. The physical consequence of
the initial exponential dependence of the aggregation rate on Pe
in eqn (2) is a very strong sensitivity of the aggregation kernel on
the cluster size. Depending on the strength of electrostatic
repulsion among particles, which is contained in the Fuchs
stability ratio W (see for example eqn (4)), the rate of aggregation
between small clusters might be insensitive to shear and
dominated by repulsion as in a reaction-limited aggregation
process. On the contrary, the aggregation of large clusters is
insensitive to repulsive interaction and is purely controlled by
shear.26 The exponential transition between the two regimes is
the key for the interpretation of the experimental data and for
the peculiar form of the cluster mass distribution discussed in
detail in the following.

The rate of breakage of clusters has been modelled using a
power-law model proposed in ref. 28:

K B
i = c1(Z _g)n Rm

g,i. (6)

In eqn (6) Rg,i is the radius of gyration of a cluster with mass i,
while c1, n and m are parameters depending on the flow field,
on the primary particle size and above all on the cluster fractal
dimension. The values of these parameters for the general case
are reported in the literature.28 However, the value of the
prefactor c1 in this work for the cluster fractal dimension value
equal to 2.7 has been set to 2.38 � 10�10. The fragment mass
distribution has been assumed to be binary and symmetric.
In all simulations, it has been assumed that the breakage
mechanism is only active for clusters with a mass larger than
1000 particles, while the breakup rate is zero for all clusters
with mass smaller than 1000. This condition, which clearly
breaks detailed balance in the master equation eqn (1), is
consistent with the observation made several times in the
literature that clusters below a critical mass are not subject to
breakage, especially when considering the narrow range of
shear rates analyzed in this work.28,42 The power-law depen-
dence of the breakup rate on the fractal cluster size, with an
exponent which is a function of the fractal dimension, can be
analytically justified with the framework of Conchuir and
Zaccone by solving the Kramers escape rate problem for the

breakup of inner bonds inside the aggregate under the action of
shear.42 The competition between shear force and colloidal
binding force in the thermally-activated Kramers rate gives rise
to a criterion to establish that breakup becomes a fast process
when the shear energy exactly balances the binding energy.
Since the shear energy depends on the cluster size with a power-
law which is a function of df and of the stress-transmission
through the cluster, the criterion justifies eqn (6).

The solution of PBEs (1) has been carried out by means of
the Kumar–Ramkrishna method, which allows one to cover a
broad range of cluster masses.38 Three hundred pivots have
been used to cover an interval of cluster masses going from one
to 1010 particles. Unfortunately, the form of the aggregation
kernel (2), combined with a breakage mechanism, leads to an
extremely stiff system of ordinary differential equations, the stiffness
of which increases with increasing the Fuchs stability value.

The viscosity of the suspension undergoing aggregation has
been simulated by using the equation proposed by Van de Ven
and Takamura, which has the following form:43

Zs ¼ Z
1� f

fc

1� k0fc � 1ð Þf
fc

� �
0
BB@

1
CCA
� 5fc
2 2�k0fcð Þ

(7)

where k0 is a parameter accounting for second order hydro-
dynamic interaction between particles, as well as for secondary
electro-viscous effect and for shear thinning behavior. The
expression for k0 used in this work, which is rather involved,
is reported in the original publication.43 The critical volume
fraction is set to fc = 0.59. The volume fraction used is the one
occupied by the clusters, which is a function of time:

fðtÞ ¼ 4

3
p
X1
i¼1

NiðtÞ � Rg;i
3 (8)

In all simulations carried out in this work, unless stated
otherwise, the initial condition is an equilibrium population
of monodisperse spherical particles.

Experimental data

The experiments used to obtain the data discussed in this work
have already been partially presented in a previous publication.32

Briefly, the colloidal system used is a surfactant-free colloidal
dispersion of styrene-acrylate copolymer particles in water,
supplied by BASF AG (Ludwigshafen, Germany) and produced
by emulsion polymerization. The particles are nearly mono-
disperse with mean radius, a = 60 � 1 nm, as measured by
both dynamic light scattering (Nano-ZS Malvern, UK) and small-
angle light scattering (Mastersizer 2000 instrument, Malvern,
UK). The particles have been cleaned by mixing with ion-exchange
resins, and the surface tension of the suspension has been
measured by means of the Wilhelmy plate method with a
DCAT-21 tensiometer (Dataphysics, Germany). Only suspensions
with surface tension Z71.7 mN m�1 have been used in the
experiments. For the shearing experiments, a small amount of
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electrolyte NaCl (17 mM) was added to make up the ionic
background. This ionic strength is much lower than the critical
coagulation concentration (50 mM). The electrolyte has been
added in such a way as to avoid uncontrolled aggregation, and
to make sure that the particles would always be in contact with
electrolyte solutions at a concentration substantially smaller
than the critical coagulation concentration. The original poly-
styrene particles suspension, which has a much higher particle
volume fraction than the one used in the experiments, has been
mixed with a pre-dilute solution of NaCl in MilliQ water (Merck
Millipore, DE), so as to reach the desired volume fraction and
ionic strength.

A strain-controlled rheometer (Rheometric Scientific) in Couette
mode was used to shear the samples. The gap between the
outer cylinder and the inner one is 1 mm and the length of the
latter is 34 mm. The outer cylinder is temperature controlled at
T = 298 � 0.1 K and a solvent trap has been fixed on the outer
rotating cylinder to limit evaporation. The latex suspensions
and NaCl solutions have been properly mixed so as to avoid
heterogeneities in the concentration, which would cause
irreproducible aggregation phenomena. The shearing was switched
on exactly 7 min from the time of mixing between latex and
background NaCl solution.

In order to confirm experimentally the bimodality of the
cluster mass distribution, samples were taken from the suspension
subject to stirring at defined time points, and filtered by means
of a 5 mm cut-off filter, in order to remove the larger cluster
and determine the fraction of particles and small clusters in
the system, thus permitting the determination of the conversion
to large clusters.

Results and discussion

We will start by discussing the results of the calculations
obtained by solving eqn (1) in combinations with the aggregation
and breakage kernels (2) and (6), respectively. In Fig. S1 (ESI†)
we show the dependence of aggregation kernel (2) on the Pe
number, in the case of aggregation between equal-sized clusters,
for three different values of the Fuchs stability ratio W, reported
in the legend. One should note that the Pe number is a function
of the cluster size, as eqn (5) indicates. It can be observed how
the aggregation rate is almost cluster-mass independent for
sufficiently low Pe values. This regime is then followed by steep
exponential increase of the aggregation rate around a critical Pe
value, which increases with W, before finally growing linearly
with Pe, indicating a shear-controlled aggregation, completely
independent of W. This peculiar trend has one clear consequence.
If, during the aggregation process, one starts with particles that
are sufficiently electrostatically-stable under a given shear rate,
the initial stages of aggregation will be rather slow. However,
the formation of clusters with larger size (and corresponding
larger Pe) will lead to a progressive increase in the aggregation
rate, until the critical Pe value is reached. At this time point, the
aggregation will suddenly speed up, with an ‘‘explosive’’ behavior,
due to the transition to auto-catalytic shear-controlled regime.

However, the breakage rate will oppose the effect of aggregation
more and more strongly for larger clusters, and will lead to a
stable size.

Cluster size evolution

In order to better analyze this qualitative picture, in Fig. 1 the
dimensionless time evolution of the normalized average cluster
radius of gyration is shown for four different values of W, from
103 to 106. The dimensionless time t is defined as follows:

t ¼ 8kTN0

3ZW
t (9)

where N0 is the initial number concentration of primary particles
and t is the physical time. The dimensionless time defined in
eqn (9) can be used to collapse all experimental and simulated
data of aggregation processes obtained under stagnant conditions
on a single mastercurve.6 In fact, the quantity used to make the
physical time dimensionless in eqn (9) is the initial aggregation
rate of particles, which provides the correct time scale to describe
aggregation under stagnant conditions.

The calculations are carried out both with (continuous lines)
and without (dashed lines) breakage. One can observe that the
behavior qualitatively discussed above on the basis of the
collision physics, is well reflected in the PBE calculations.
The average cluster size initially grows very slowly, and the
slow growth is then followed by an explosive growth, which
continues until the entire mass of the system accumulates in
the last bin of the cluster mass distribution in the absence of
breakage. The latter regime is the shear controlled aggregation.
In the presence of breakage, instead, the size reaches a plateau
after the explosive growth, which is due to the dynamic balance

Fig. 1 Dimensionless radius of gyration evolution as a function of
dimensionless time, for four different stability ratio values W, indicated in
the legend, when the aggregation is modeled by kernel (2). Both calculations
with breakage (wb, modeled using kernel (6)), and without breakage (nb) are
reported. The calculations have been carried out for a particle diameter
equal to 120 nm, particle volume fraction equal to 21% and shear rate equal
to 1700 s�1.
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between aggregation and breakage. By increasing the value of
the Fuchs stability ratio, the explosive regime is shifted to
higher physical times t. Nevertheless, when plotted against
the dimensionless time defined by eqn (9), the various curves
do not overlap, as it would happen in the case of stagnant
aggregation, because the dimensionless time values where the
explosive growth takes place decrease as W increases. This
indicates that the initial aggregation rate is not the correct
time scale to describe the entire aggregation process. Additionally,
the explosive growth rate becomes steeper as W increases, while
the plateau reached in the presence of breakage is unaffected
by the value of W. All these information suggest that, as
the height of the DLVO repulsive energy barrier increases,
the crossover from slow to fast aggregation kinetics becomes
sharper and more abrupt.

Cluster mass distribution evolution

In order to explain the behavior of the time evolution of the
average cluster size, it is particularly informative to look at the
time evolution of the cluster mass distributions. The results are
showcased in Fig. 2a and b for W = 105. The dimensionless time
values have been chosen such as to show the CMDs before,
during and after the explosive growth. In the absence of breakage
(Fig. 2a), the cluster mass distribution becomes progressively
broader as larger clusters are formed, while primary particles
are depleted. The shape of the CMD is drastically altered by the
presence of breakage (Fig. 2b). In the slow, pre-explosive growth
phase we have a similar time evolution of the cluster mass
distribution, since breakage is not very active. However, during
the explosive growth, when larger clusters begin to form, the
breakage process stops their growth, and the cluster mass
distribution develops a peak, corresponding to the average size
of the clusters for which the dynamic balance between aggregation
and breakage is reached. This means that, for some time, the
aggregation process leads to a bimodal cluster mass distribution:
on one end of the size spectrum there are primary particles and
very small clusters, only. In the intermediate cluster mass range,
the concentration of clusters present is negligibly low, because
their aggregation rate is fast enough to be rapidly consumed by
the aggregation, while the breakage process of larger clusters is
not fast enough to lead to their accumulation. Instead, the largest
clusters can accumulate, because beyond a critical size the rate of
aggregation can be effectively counterbalanced by the breakage
process. After a sufficient amount of time, the small clusters are
completely consumed, so that the cluster mass distribution
becomes monomodal again, with only the large clusters peak
surviving. This implies that the competition of shear forces and
electrostatic repulsions can lead to the formation of very large
clusters, which coexist with small ones, without clusters in the
intermediate size range. Two additional sets of CMDs are shown,
for stability ratio values W = 104 and W = 106, in Fig. 3a and b,
respectively. The trend is similar to the one shown in Fig. 2b and
even more pronounced in the case of W = 106, while for W = 104

the bimodality develops later on, and is less pronounced. This
shows that, whenever the stability ratio is small, the explosive
growth is less prominent and the cluster mass distribution first

develops a broad monomodal shape, followed only later on
by the consumption of the intermediate-size clusters. All these
observations provide a hint on the reason why, as shown in
Fig. 1, the dimensionless explosion times decrease as the
stability ratio increases. High stability ratios promote the rapid
development of a bimodal distribution, which induces the
explosive growth, because there is a large difference between
the rates of aggregation of primary particles and of large clusters,
which is independent of the stability ratio.

Fig. 2 (a) Cluster mass distribution as a function of the cluster mass
(expressed as the number of primary particles), for four dimensionless
times indicated in the legend, in the case where the aggregation is
modeled by kernel (2). The calculations have been carried out for particle
diameter equal to 120 nm, W = 105, particle volume fraction equal to 21%
and shear rate equal to 1700 s�1. The prefactor in the breakage rate
constant in eqn (6) is equal to c1 = 0 (i.e., no breakage). (b) Cluster mass
distribution as a function of the cluster mass (expressed as the number
of primary particles), for four dimensionless times indicated in the legend,
in the case where the aggregation is modeled by kernel (2). The
calculations have been carried out for particle diameter equal to
120 nm, W = 105, particle volume fraction equal to 21% and shear rate
equal to 1700 s�1. The prefactor in the breakage rate constant in eqn (6) is
equal to c1 = 2.38 � 10�10.
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Effect of breakage rate and fragment mass distribution

The solution of population balance equations with the combination
of aggregation kernel (2) and breakage kernel (6) represents
a significant numerical challenge, because the differential
equations exhibit high numerical stiffness. We decided to
devote some efforts in investigating the role played by the
different parameters on the solution of the population balance
equations. To this purpose, the effect of both the breakage rate

and the form of the fragment mass distribution has been
analyzed. The effect of changing the breakage rate is shown
in Fig. 4, where the time evolution of the average cluster radius
of gyration is shown for W = 105, and five different values of the
breakage rate. The breakage rate has been varied over a few
orders of magnitude by adjusting the value of the prefactor c1 in
eqn (6). The effect of increasing or decreasing the rate of
breakage is quite interesting, and somehow counterintuitive.
As the breakage rate increases, the plateau reached by the
average size is lowered, which is consistent with the expectation
of a faster breakage process shifting the balance between
aggregation and breakage towards smaller sizes. However, a
faster breakage also leads to a reduction in the time required
to reach the explosive growth. This rather counterintuitive
behavior is caused by the breakage process promoting the
formation of fragments in the size range corresponding to the
critical Pe number for the slow-to-fast kinetic crossover. The higher
the concentration of such clusters, the faster and steeper will be
the explosive behavior of the system. This fact, however, also
affects the numerical stiffness of the problem, which increases
with the breakage rate.

In Fig. S2–S4 (ESI†), instead, a comparison between the
cluster mass distributions is shown in the case of W = 105, a
fixed value of the breakage rate and three different fragment
mass distributions: binary symmetric, binary asymmetric (erosion
type, with a ratio between the masses of the two fragments
equal to 1/10), and a broader fragment mass distribution,
obtained by extrapolating to large clusters the results obtained
from Stokesian Dynamic simulations.28 The results show that a
variation of the fragment mass distribution has a strong effect
on the functional form of cluster mass distribution. Switching from
symmetric breakage to asymmetric breakage causes a broadening of
the peak corresponding to large clusters, which is not unexpected,

Fig. 3 (a) Cluster mass distribution as a function of the cluster mass
(expressed as the number of primary particles), for four dimensionless
times indicated in the legend, in the case where the aggregation is
modeled by kernel (2). The calculations have been carried out for particle
diameter equal to 120 nm, W = 104, particle volume fraction equal to 21%
and shear rate equal to 1700 s�1. The prefactor in the breakage rate
constant in eqn (6) is equal to c1 = 2.38 � 10�10. (b) Cluster mass
distribution as a function of the cluster mass (expressed as the number
of primary particles), for four dimensionless times indicated in the
legend, in the case where the aggregation is modeled by kernel (2). The
calculations have been carried out for particle diameter equal to 120 nm,
W = 106, particle volume fraction equal to 21% and shear rate equal to
1700 s�1. The prefactor in the breakage rate constant in eqn (6) is equal to
c1 = 2.38 � 10�10.

Fig. 4 Dimensionless radius of gyration evolution as a function of
dimensionless time, in the case where the aggregation is modeled by
kernel (2). for five different values of the breakage rate constant prefactor
c1 in eqn (6) indicated in the legend. The calculations have been carried out
for particle diameter equal to 120 nm, W = 105, particle volume fraction
equal to 21% and shear rate equal to 1700 s�1.
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because a larger number of small clusters will be produced as a
result of the breakage process. When moving to an even broader
fragment mass distribution, the entire shape of the cluster mass
distribution is modified, and the bimodality disappears almost
entirely, substituted by a continuous very broad cluster mass
distribution, similar to that found in the absence of breakage.
This is an important observation, implying that the shape of the
CMD could provide valuable information about the details of
the breakage mechanism.

Due to practical limitations, the experimental data available
to test this kernel have been obtained with particles having a
high colloidal stability. The values of Fuchs stability ratio W are
close to 108. This means that the PBEs with the two afore-
mentioned kernels are too stiff to be solved numerically.
Therefore, a different approach has been used. We have intro-
duced a simplified but effective pseudo breakage mechanism,
in order to compare the results of our simulations with experi-
mental data. Since the breakage rate predicted by eqn (6)
increases strongly with the cluster mass, it has been assumed
that, instead of a power-law dependence over the entire cluster
mass, the breakage rate is infinitely high, in practice, above a
critical cluster mass. This is modelled by effectively imposing a
zero rate of aggregation of clusters above the same critical
cluster mass, together with a finite breakage rate of clusters,
to prevent their unphysical accumulation. This allows one to
simulate a fast breakage mechanism above a certain mass
threshold. Since the steady state size for a given stability ratio
depends on the shear, the scaling of the steady state size as a
function of the applied shear rate has been determined for
a few low values of the stability ratio by solving the full
model. The dependence has then been extrapolated to the high
stability ratio values, where the solution of the full model
was impossible. From a physical point of view, setting the
breakage rate to infinity above a threshold is justified: fractal
clusters become less and less dense, hence less and less
mechanically stable, as they grow, because the mechanical
stability is controlled by the inter-particle connectivity, which
decreases upon decreasing the inner density of the cluster.
Eventually, a maximum mechanically-stable size is reached for
which the breakup rate has a vanishing activation energy
and breakup is a fast process for all cluster sizes above the
threshold.42

Some tests were performed to see under which conditions
the predictions of this approach could match that of the
rigorous solution of the PBE, with kernels (2) and (6) applied
over the entire CMD. Fig. S5 (ESI†) shows this comparison.
Fig. S5a (ESI†) shows the time evolution of the average cluster
radius of gyration, while Fig. S5b (ESI†) shows a comparison of
viscosity profiles as a function of time. One can observe that, by
properly selecting the critical size above which breakage is
instantaneous, the two approaches lead to similar results, in
terms of average cluster size and evolution of viscosity in time.
In Fig. S5c and d (ESI†) it is also shown that the shape of CMDs
remains qualitatively similar, even though some quantitative
differences are observed. Therefore, for the comparison with
experimental data, this simplified approach will be used.

Comparison with experimental data

1. Viscosity and cluster radius of gyration. The comparison
of PBEs-based calculations with experimental data, some of
them already published by Zaccone et al.,32 is discussed in the
following. Fig. 5 presents the time evolution of the viscosity
profiles as a function of time, for a few conditions, with particle
volume fraction values ranging from 19 to 23% and a few shear
rates, as indicated in the legend. In all cases, the viscosity of the
suspension remains almost constant and equal to the initial
viscosity for a certain lag time, followed by a very rapid growth.
Using just one single fitting parameter, i.e., the Fuchs stability
ratio W, the values of which have been judiciously fixed within
the range expected from DLVO theory, to 1.38 � 108, 108 and
6.5 � 107 at volume fractions of 19, 21 and 23%, respectively, all
the time evolution profiles can be well predicted by the PBE
calculation. The stability ratio values have been obtained by
fitting the viscosity evolution profiles for the following cases:
19% particle volume fraction and a shear rate of 1700 s�1, 21%
particle volume fraction and a shear rate of 1700 s�1 and 23%
particle volume fraction and a shear rate of 1300 s�1. The small
decrease in W with increasing the particle volume fraction can
be justified on the basis of the colloid concentration effects on
the colloidal stability of the dispersion. Given the high values of
W obtained from the fitting, it appears impossible to proceed
with determining W independently, for example by measuring
initial aggregation kinetics under stagnant conditions, since
the kinetics would be too slow to be detectable.

In Fig. S6 (ESI†) the time evolution of the occupied volume
fraction by the clusters computed from eqn (8) is shown, for the
same set of data shown in Fig. 5. One can observe how the
occupied volume fraction shows the same trend as the viscosity,

Fig. 5 Suspension viscosity evolution profiles as a function of time, for
four different shear rates and particle volume fractions, as indicated in the
legend. The points are experimental data, the lines the corresponding
model predictions, in the case where the aggregation is modeled by kernel
(2). The calculations have been carried out with the following stability ratio
values: W = 1.38 � 108 for particle volume fraction equal to 19%, W = 108

for particle volume fraction equal to 21% and W = 6.5 � 107 for particle
volume fraction equal to 23%.
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and tends to reach the critical threshold of 1 for the same time
value where the viscosity diverges. The value of 1 is critical
for the volume fraction, because it is indicative of clusters
occupying the entire volume available, thus causing percolation
and gelation. One should notice that gelation is usually reached
when the tail of the cluster mass distribution appears, described
by a power-law, causing a divergence in the average cluster
mass.44 In the present case, instead, such tail in the cluster
mass distribution is absent, and gelation is instead the result of
the progressive accumulation of large clusters until random
close packing is reached.

For one specific condition, i.e., 21% and a shear rate of
1700 s�1, some data about the size evolution (average cluster
radius of gyration measured by static light scattering) as a
function of time are available, and shown in Fig. 6. The first
striking feature of these data is that the rapid growth in the
average cluster size occurs at a time of about 1500 s, while the
viscosity explosive increase occurs at about 7200 s. The mismatch
is due to the strong sensitivity of light scattering data to the
presence of clusters compared to viscosity. While a few clusters
are sufficient to be detected by SLS, viscosity starts to be affected
only at a much higher conversion of particles into clusters. One
should note that inside the rheometer, the shear rate is never
perfectly uniform. Therefore, a few large clusters could have been
created in those small regions where the shear rate is higher
than the average value. In addition to the experimental data,
the numerical predictions of population balance equations
calculations are shown in the same figure. The maximum size
reached by the clusters is a quantity that depends on the
dynamic balance between breakage and aggregation. With the
simulation approach used for these calculations, this value has
been set by the limiting cutoff value of mechanically-stable

cluster mass beyond which no aggregation occurs (because of
instantaneous breakage of the mechanically-unstable large
aggregates). The results of the calculation indicate that the
model captures only qualitatively the experimental trend. While
the model captures the existence of a delay in the observed
explosive growth of the viscosity compared to the size, it
significantly underestimates such delay. The model predicts
the explosive growth in the average cluster size at a time of
about 5000 s, while the prediction of the viscosity growth time
is accurate. The mismatch between model predictions and
experimental data for the actual values could have several
explanations. First of all, the presence of clusters generated
in higher shear regions of the rheometer could explain the early
explosion of the cluster size. Such clusters cannot be predicted
by simulations. Additionally, simulations have been carried out
with a constant cluster fractal dimension, while experimental
data indicate that the first clusters have a lower fractal dimension,
which increases because of shear forces quickly to the asymptotic
value of 2.7.45 More open clusters have a higher collision radius,
which could increase the overall rate of aggregation and reduce the
time to explosion. However, an implementation in the population
balance equations of time-dependent fractal dimension requires
the knowledge of a law describing the time evolution of the
cluster structure, which is somehow elusive and usually semi-
empirical.45 Such simulations would also be extremely time-
consuming. Additionally, the mismatch could also be caused by
overestimating the rate of aggregation of larger clusters with
small particles, possibly as a result of neglecting many-body
hydrodynamic interactions. Finally, the aggregation models
developed so far apply to dilute conditions, while the experi-
mental data available have been obtained at quite high volume
fraction. Simulation results obtained in stagnant conditions
indicate that the increase in concentration has strong effects on
the aggregation mechanism.46

2. Conversion of primary particles to clusters. Fig. 7 shows
data on the conversion of particles to clusters, together with
model predictions. One can observe that the conversion of
particles into clusters is relatively slow at the beginning, and
undergoes a rapid acceleration approximately at the same time
as the viscosity. This is consistent with the overall picture that
the formation of large clusters, which are responsible for
causing the explosion in the average cluster size, only involves
a relatively small fraction of the total initial number of primary
particles. The viscosity changes only when the conversion increases
substantially. Two model predictions are shown. The first one
has been obtained by considering the conversion of particles
to clusters of any size, including dimers, while the second
prediction is the conversion to clusters containing three particles
or more. The large difference between the two predictions
indicates the sensitivity of conversion to clusters, and shows
how important the contribution of dimers is to the overall
conversion. Since the two model predictions are bracketing
the experimental data, it can be concluded that the model
can capture the conversion profile well, given the difficulty
of experimentally separating primary particles and oligomers
from larger aggregates.

Fig. 6 Radius of gyration evolution as a function of time, for particle
volume fraction equal to 21% and shear rate of 1700 s�1. The points are
experimental data, while the line is the corresponding model predictions,
in the case where the aggregation is modeled by kernel (2). The calculations
have been carried out with the stability ratio value W = 108.
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3. Analysis of cluster mass distribution. It is also instructive
to look at the computed CMDs at different time points, in order
to observe its evolution at: (i) before the size explosive growth,
(ii) at a time point after the size explosive growth but before the
viscosity explosive growth, and (iii) after the viscosity explosive
growth. These results are shown in Fig. 8. The size explosion
time is about 5000 s, while the viscosity explosion time is about
7200 s. One can observe that, for time values lower than the size
explosion time, the CMD is monomodal, with primarily
primary particles and very few small clusters. As soon as the
size explosion time is reached, a second cluster population
appears, with masses close to the cutoff values. From that point
on, the second population of cluster grows substantially in
number, consuming the small particles. For time values above
the viscosity explosion time, the small particles are rapidly
consumed, before disappearing completely. One should further
highlight how clusters with intermediate size, comprised
between the two populations, keep having exceedingly low
concentrations, since their formation is rapidly compensated
by their consumption to generate larger clusters, for which
further growth is prevented by the presence of cluster breakage.
In order to compare model predictions with experimental data,
In Fig. 9a and b the experimentally measured scattering structure
factors are reported for the same experimental condition already
discussed in Fig. 6 and 7. Fig. 9a shows the full scattering
structure factors evolution as a function of time, where it appears
that size of the clusters grows rapidly to a steady state, after
which remains almost unchanged, while the progressive growth
of the intensity demonstrates the increase in the number of
large clusters. Fig. 9b, instead, shows some examples of structure

factors after filtration with a filter having a 5 micrometers pore
size. The structure factors are relatively flat, consistent with the
presence of only a tiny fraction of small clusters. The same figure
shows the predictions of the model, computed by excluding all
clusters with a size larger than 5 micrometers. The model
predictions are consistent with the experimental data, and
show that only a small fraction of small clusters are present.

Fig. 9c shows on the other hand the model calculations of
the average structure factor evolution as function of time, for
the same conditions shown in Fig. 9a. Note that the time points
for which the structure factor has been calculated are not the
same as the measured ones. The comparison between model
predictions and experimental data for the kinetics of average
cluster size shown in Fig. 6 has already evidenced a mismatch
between measured and predicted size growth. The calculated
times have been chosen in order to show that the main features
of structural evolution of the calculated structure factors are
consistent with the experimental ones. In particular, it is
important to highlight that the growth of the structure factor
predicted by the model presents some unique features. Both
Fig. 9a and c show that the structure factor grows starting from
the low q range, while the intensity in the high q range remains
initially unaffected. Only after substantial growth of the clusters,
the intensity in the high q range will begin to increase. This type
of growth is completely different from the one predicted in the
case of any other aggregation mechanism. As an example, we
showed in Fig. S7 (ESI†) the growth of the scattering structure
factor in the case of diffusion-limited aggregation and shear-
induced aggregation (with and without breakage). In all of these
cases, one can observe that the time evolution of the scattering
structure factor is very different from the one observed in Fig. 9a
and c. In all of the cases shown in Fig. S7 (ESI†) the structure

Fig. 7 Conversion of particles into large clusters for particle volume
fraction equal to 21% and shear rate of 1700 s�1. The points are experi-
mental data, while the lines are the corresponding model predictions, in
the case where the aggregation is modeled by kernel (2). The red line
corresponds to the conversion to all clusters, including dimers, while
the blue line corresponds to the conversion to all clusters, excluding
dimers. The calculations have been carried out with the stability ratio
value W = 108.

Fig. 8 Cluster mass distribution as a function of the cluster mass
(expressed as the number of primary particles), for six times indicated in
the legend, in the case where the aggregation is modeled by kernel (2).
The calculations have been carried out for particle diameter equal to
120 nm, W = 108, particle volume fraction equal to 21% and shear rate
equal to 1700 s�1.
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factor grows uniformly as a function of time over the entire
q range. The only growth mechanism compatible with the
observed growth pattern of the scattering structure factor is
the explosive kernel discussed in this work. This observation
clearly supports the mechanism proposed to explain the set of data.

4. Viscosity explosion (gelation) time at different volume
fractions. Finally, Fig. 10 shows the dependence of the explosion
time (determined from the viscosity profile) on the shear rate,
for three experimentally measured volume fractions. The experi-
mental data are compared to the numerical calculations. In
ref. 32 it was shown that the dependence of the explosion times

as a function of the shear rate have primarily an exponential
dependence, which is the same dependence of particles aggregation
rate on the applied shear in the presence of repulsive interactions.
The numerical model is able to predict quantitatively the explosion
times for all conditions in a slightly more accurate fashion. The
scaling is not a simple exponential dependence, because the
time of explosion is not only affected by the change in shear
rate, but also by the change in the maximum size reached as a
result of the balance between aggregation and breakage.

It is also important to emphasize here that the time at which
the viscosity explodes and seemingly diverges, coincides with

Fig. 9 (a) Experimental average scattering structure factor as a function of the dimensionless scattering wave vector, for the times indicated in the
legend. The data have been collected for a particle volume fraction equal to 21%, and a shear rat of 1700 s�1. (b) Experimental and calculated average
scattering structure factors as a function of the dimensionless scattering wave vector, for the times indicated in the legend. The experimental data have
been obtained after filtering the suspension with a 5 micrometer filter, and the calculated structure factors have been computed by excluding all clusters
with a diameter larger than 5 micrometers, in the case where the aggregation is modeled by kernel (2). The data have been collected for a particle volume
fraction equal to 21%, and a shear rat of 1700 s�1, as well as W = 108. (c) Calculated average scattering structure factors as a function of the dimensionless
scattering wave vector, for the times indicated in the legend, in the case where the aggregation is modeled by kernel (2). The calculations have been
carried out for a particle volume fraction equal to 21%, and a shear rat of 1700 s�1, as well as W = 108.
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the transition of the suspension from liquid-like into a solid-
like gel. This is confirmed by the observation that the runaway
of viscosity leads, in the experimental setup, to the arrest of the
rheometer and the material has all the appearance of a soft gel
with a finite shear modulus and a storage modulus much larger
than the loss modulus. One should further notice that the
formed gels are irreversible, and do not turn back to liquid state
upon ending the application of shear. This rules out any
possibility that the formed jammed state is due to hydroclusters,
as shown by Stokesian Dynamic simulations of stable colloidal
suspensions undergoing shear thickening.47 The gelation
transition is caused by the jamming of the clusters, which
reach close-packing. The phenomenon is made possible by the
fact that clusters are fractal, hence upon growing they occupy
an effective packing fraction which effectively increases and
may reach close-packing, as in our case, if the initial volume
fraction of colloids is larger than a threshold (for the standard
case of DLCA or RLCA gelation in quiescent conditions this is
achieved at vanishing colloid concentration owing to the much
lower fractal dimension of the clusters). Population balance
calculations confirm this effect, as was mentioned in discussing
Fig. S6 (ESI†).

Conclusions

Charge-stabilized suspensions of DLVO-interacting colloidal
particles which are initially monodisperse and in a quasi-
equilibrium state, can be driven into irreversible clustering
upon application of an external steady shear flow. The fundamental
question about the time-evolution of the shear-induced aggregation

process is crucial for many applications (from directed self-
assembly in nanotechnology to many industrial processes)
as well as for our basic understanding of nonequilibrium
irreversible processes. The irreversible dynamics of the process
may in fact reach non-trivial nonequilibrium steady-states
such as gelation, at which point the dynamics arrests and the
viscosity diverges.48,49

As is well known, the main tool to quantitatively study this
type of problems is offered by master kinetic equations, for
which analytical solutions are known only for very few special
cases, while numerical solutions may often be also challenging
due to nonlinearities and numerical stiffness. Here we presented
a numerical solution to the master equation (population balance
equation) governing the shear-induced aggregation of DLVO
colloids at steady-shear, using a physically justified aggregation
rate theory previously formulated by our group that can capture
the essential physics of the process.30 From the numerical
solution to the problem we established that when an electro-
statically stabilized suspension is exposed to shear forces, it will
first undergo a regime characterized by a lag time, the duration
of which depends on the competition between repulsive electro-
static energy barrier between two particles and the shear-
advection forces. In this regime, very limited aggregation is
observed. However, the initially slow formation of clusters,
which are much more sensitive to the presence of shear forces
than primary particles, leads to a progressive acceleration of the
aggregation kinetics (auto-catalytic regime). Such acceleration is
highly non-linear, and typically culminates with an explosive,
runaway behavior of the cluster growth. For sufficiently large
clusters, the electrostatic repulsion becomes negligibly important,
and they aggregate at the same shear-controlled rate as without
repulsion. Experimental data support this picture, and indicate
the existence of an additional lag time between the cluster-size
explosion (as measured by light scattering) and the runaway of
other measurable quantities, less sensitive to the presence of a
few clusters, such as the suspension viscosity. Of great interest
is that the combination of this peculiar aggregation mechanism
with shear induced cluster breakage leads to the emergence
of well-defined bimodal cluster mass distributions, with one
population of primary particles and very small clusters and a
second population of large clusters, whose size is defined by the
dynamic balance between aggregation and breakage. We have
discussed the most important features of the population
balance equations, including the intrinsic stiffness of the
resulting equations and how to circumvent it. The numerical
predictions have been compared with an ample set of experimental
data, from which it emerges that the developed model is able
to account for the unique runaway behavior of viscosity of
electrostatically-stabilized colloidal dispersions subject to shear
forces, with good quantitative agreement. We believe that
the proposed model could have a broad impact in clarifying
previously unexplained phenomena, in particular clogging
phenomena in microfluidics50,51 and contributes significantly
in showing the rich behavior that the application of steady
shear flow induces in ubiquitous colloidal systems such as
those described by DLVO theory.

Fig. 10 Explosion times determined from the viscosity profiles as a
function of the shear rate, for three different particle volume fractions,
as indicated in the legend. The points are experimental data, while the lines
are the corresponding model predictions. The calculations have been
carried out with the following stability ratio values: W = 1.38 � 108 for
particle volume fraction equal to 19%, W = 108 for particle volume fraction
equal to 21% and W = 6.5 � 107 for particle volume fraction equal to 23%.
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