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ental chemical science:
properties and processes from statistical and
computational modelling

Paul G. Tratnyek,*a Eric J. Bylaskab and Eric J. Weberc

Quantitative structure–activity relationships (QSARs) have long been used in the environmental sciences.

More recently, molecular modeling and chemoinformatic methods have become widespread. These

methods have the potential to expand and accelerate advances in environmental chemistry because they

complement observational and experimental data with “in silico” results and analysis. The opportunities

and challenges that arise at the intersection between statistical and theoretical in silico methods are

most apparent in the context of properties that determine the environmental fate and effects of

chemical contaminants (degradation rate constants, partition coefficients, toxicities, etc.). The main

example of this is the calibration of QSARs using descriptor variable data calculated from molecular

modeling, which can make QSARs more useful for predicting property data that are unavailable, but also

can make them more powerful tools for diagnosis of fate determining pathways and mechanisms.

Emerging opportunities for “in silico environmental chemical science” are to move beyond the

calculation of specific chemical properties using statistical models and toward more fully in silico

models, prediction of transformation pathways and products, incorporation of environmental factors into

model predictions, integration of databases and predictive models into more comprehensive and

efficient tools for exposure assessment, and extending the applicability of all the above from chemicals

to biologicals and materials.
Environmental impact

Computational models are used in all aspects of environmental science, including assessment of the environmental fate and effects of chemical substances. In
these applications, the prediction of missing property data is the main motivation, but prediction of pathways (e.g., products from contaminant degradation) is
becoming feasible and should soon be available for use in research and regulation. The degree to which substance impact assessment can be done in silico will
continue to increase, but incorporation of environmental factors (i.e., conditions) is a continuing challenge.
Introduction

Progress in environmental chemical science is limited by the
availability of data even more than most domains of science.
The complexity of environmental conditions, combined with
the diversity of substances (chemical, biological, and material)
that are of environmental concern, mean that direct measure-
ments will never be sufficient to meet the data needs of envi-
ronmental scientists or regulators. Therefore, predicting
chemical properties is a long-standing challenge that has
received extensive study for many applications (chemical
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engineering, green chemistry, environmental chemistry, toxi-
cology, pharmacology, etc.). Fortunately, advances in computer-
based methods are making it increasingly feasible to estimate
substance properties, evaluate their fate-determining processes,
and predict their effects. These methods and their applications
comprise the domain we refer to herein as “in silico environ-
mental chemical science”. The scope of this domain includes
theoretical and statistical methods for calculating substance
properties, fate, and effects. The theoretical and statistical
methods used to calculate substance properties are rooted in
very different disciplines, so the recent trend toward combining
these approaches poses some novel challenges for developers
and users of these models. One goal of this perspective is to
show how these challenges become opportunities when
methods are combined in a complementary way. To encourage
this, we provide an overview of some core concepts, key devel-
opments, and opportunities, with emphasis on the properties
that are the most fundamental determinants of chemical fate
This journal is © The Royal Society of Chemistry 2017
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Fig. 1 Conceptual model for the process of calibration, validation, and
prediction using statistical models such as quantitative structure–
activity relationships (QSARs). Only one response and one descriptor
variable is represented by this 2-D scatter plot, but multivariable
models work similarly.
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and effects. Another perspective in this issue1 takes a similar
approach, but focuses on biological effects, especially toxicity,
and their regulatory implications.

We framed the introduction to this perspective in terms of
prediction of substance properties because that is by far the
most familiar rationale for work in this area. For example,
comprehensive exposure assessment models for chemical
contaminants that are used for regulatory decision making
(EXAMS,2 EUSES,3 FOCUS,4 etc.) require dozens of chemical
properties, for which measured values oen are not available,
hence the widely-recognized need for methods of estimating the
missing data.5,6 The demand for methods that estimate envi-
ronmental substance properties has mostly been met with
statistical models, including “quantitative structure–activity
relationships” (QSARs) and variations thereof.7–10 This eld is
mature enough to have already engendered several generations
of compilations of predictive models.6 Prominent early exam-
ples are the Handbook of Chemical Property Estimation
Methods compiled by Lyman et al.,11 and a similarly structured
volume edited by Mackay and Boethling.12 Since then, there has
been a growing number of reviews and databases of QSARs,13–17

comparative analyses of QSAR accuracy,18–20 and efforts to codify
methods of calibration and validation.21–25 Many QSARs have
been incorporated into soware that facilitates their use for
property prediction.6 Currently, the two main examples of this
are the estimation program interface (EPI Suite) by the U.S.
Environmental Protection Agency (EPA)26,27 and the QSAR
Toolbox by the Organization for Economic Cooperation and
Development (OECD),28 but others are under development.

However, the approach taken in this perspective is broader
in that it recognizes that property prediction models, and the
processes and methods of developing these models, have
additional benets. Besides prediction, another major benet is
“diagnostic”, as in the diagnosis of mechanisms, categories, or
other structures that provide greater understanding of the
processes at issue. In chemistry, this process is generically
referred to as correlation analysis,29,30 and it oen takes the
specic form of linear free energy relationships (LFERs).31,32 A
third benet, which sometimes is neglected, is for the valida-
tion of data (or models). The process of developing QSARs
involves analysis of correlations, which should be simple if the
variables are closely related, so scatter and outliers may be
indicative of errors or bias.

Formulation of statistical models

In the past, and even now, almost all property prediction
models have been based on empirical/statistical correlations
between data for the response (target, dependent, y) variable
and descriptor (independent, x) variable(s), as illustrated in
Fig. 1. For training the model, the response variable is usually
measured data (e.g., toxicity) and the descriptor variable may be
measured or determined in other ways (e.g., various fragment
types such as Hammett substituent constants). The statistical
model usually is relatively simple (linear, with one or a few
descriptor variables) and is derived through calibration: i.e.,
regression of available property data for a series of related
This journal is © The Royal Society of Chemistry 2017
compounds with one, or several, convenient descriptor vari-
ables. Usually, a subset of the training data set, or entirely new
data, are used to validate the model. The resulting relationship
can be used in reverse to predict values of the property for
compounds that were not included in the original data set. The
general paradigm represented in Fig. 1 still applies for more
complex systems and models.

In practice, the response variable is dened by external
considerations (e.g., constants required for modelling parti-
tioning or degradation of contaminants) and the development of
the predictive model involves mostly the identication of
descriptor variables and calibration of the relationship between
them. With respect to the selection of descriptor variables for
chemical processes, there are three general types: (i) substituent
constants such as the s constants that are dened and used with
correlations in the form of the Hammett equation, (ii) molecular
descriptors such as pKa the way they are used in the Brönsted
equation, and (iii) reaction descriptors such as in the correlation
of rate or equilibrium constants in one medium with those in
another (i.e., “cross-correlations”, see below). These three cate-
gories of descriptors are illustrated in Fig. 2, using as an example
rate constants (ki) for a reaction of substituted phenols with an
environmental agent E. The environmental agent E could be O3,
MnO2, a (co)metabolizing microorganism, etc. The distinction
made in Fig. 2 between substituent, molecular, and reaction
descriptors could be generalized for application to other types of
environmental processes (e.g., volatilization, sorption, bioavail-
ability, and toxicity).

The three types of descriptors represented in Fig. 2 have
complementary advantages and disadvantages. The main
Environ. Sci.: Processes Impacts, 2017, 19, 188–202 | 189
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Fig. 2 Summary of the relationship between three major types of
descriptor variables for chemical reactions. The three shades of col-
oured ovals represent substituents (dark), molecules (medium), and
reactions (light). E represents the controlling environmental factor in
the reaction (e.g. irradiance in photolysis, pH in hydrolysis, ozone
concentration in disinfection, etc.), and is similar to the y-axis in Fig. 6.

Fig. 3 Continuum of system scales encompassing the whole potential
scope of predictive/diagnostic modelling for in silico environmental
chemical sciences. Left column: The physical–chemical categories are
similar to those in multi-scaling models of geochemical processes.34

Right column: The biological–chemical categories are adapted from
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advantage of the substituent approach is that constants for
a limited number of substituents can be combined to provide
values of the descriptor variable for new, more complex
substrate molecules. However, not all substances can be
adequately represented as the sum of independent substitu-
ents, due to proximity effects, etc. Correlations based on
molecular properties are not limited by uncertainties over the
additivity of substituent effects because values of their
descriptor variables are determined on whole molecules,
thereby incorporating the effects of interacting substituents.
Correlations based on substituent or molecular properties do
not include information about the reaction pathway or prod-
ucts, whereas this information may be incorporated in
descriptor variables based on reaction properties. Again, there
are advantages and disadvantages to the alternatives: if path-
ways or products are unresolved in the response variable data
(e.g., using overall k's or K's measured in environmental
media), there may not be sufficient information to select
descriptor variables that correspond to specic reactions, but
selection of substituent or molecular property descriptors
does not require that information. On the other hand, if there
is a need to resolve different pathways and products (e.g., to
distinguish environmentally benign and harmful outcomes),
then correlations based on descriptors that include informa-
tion about reactions and products (i.e., the whole reaction) are
required.

A variation on the model represented by Fig. 2 is the format
sometimes called “cross-correlation analysis” where two vari-
ables that typically would be response variables are related
directly (e.g., rate constants for reaction with one oxidant vs. rate
constants for reaction with another).13,14,33 Cross-correlations
can be used for prediction, validation, and classication, just
like conventional QSARs.
190 | Environ. Sci.: Processes Impacts, 2017, 19, 188–202
Matching response and descriptor
variables

The potential scope of in silico environmental chemical science
includes phenomena ranging in scale from angstroms to kilo-
meters. This continuum is illustrated in Fig. 3 with represen-
tative categories for both physical–chemical (le column) and
biological–chemical (right column) systems. At the molecular
end of this continuum, the system characteristics are relatively
simple, in that they are fundamental and homogeneous (e.g.,
rate constants for electron transfer between donor and acceptor
molecules in solution). At the environmental end of this
continuum, system characteristics are relatively complex and
heterogeneous (e.g., toxicity to a diverse community of organ-
isms). All of these systems' characteristics are legitimate targets
(as response variables) for predictive and/or diagnostic in silico
modelling, depending on the context or purpose, such as
whether the application is ranking of contaminants for regu-
lation or tuning a treatment technology to produce less harmful
by-products.

Just as different response variables correspond to different
positions on the scale continuum in Fig. 3, a similar classi-
cation applies to descriptor variables. So, for example, the redox
potential of reactants corresponds to molecular scale processes,
its octanol–water partition coefficient corresponds to
membrane/grain scale processes, and its toxicity corresponds to
a multi-scaling diagram by Damborsky.35

This journal is © The Royal Society of Chemistry 2017
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Fig. 4 Summary of computational chemistrymethods, with respect to
their theoretical rigor, and therefore potential accuracy, versus the
complexity of systems they can address, and therefore relevance to
environmental chemistry issues at different scales.

Perspective Environmental Science: Processes & Impacts

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

4 
Fe

br
ua

ry
 2

01
7.

 D
ow

nl
oa

de
d 

on
 7

/1
9/

20
25

 1
1:

04
:2

6 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
the cell or community scales. As with the selection of response
variables, valid descriptor variables may come from anyplace on
the scaling continuum. However, the most easily justied and
interpreted models are formulated with response and
descriptor variables from similar scales. Thus, redox potential is
a well-matched descriptor for response variables involving
redox reaction rates and partition coefficients are well matched
for modelling bioavailability.

This principle of matching the physical scale of response and
descriptor variables also applies to scale in the more abstract
sense, as in the distinction made in Fig. 2 between substituent,
molecular, and reaction level descriptors. As noted in the
discussion of that gure, the three types of descriptors can be
more or less effective depending on the type (scale) of descriptor
that they are matched with. A specic and even more funda-
mental example of matching as a criterion on selecting
response and descriptor variables can be found in the discus-
sion of descriptors for oxidation of phenols and anilines by
Pavitt et al.36 There the distinction was between descriptors that
are properties measured in solution vs. descriptors that are
calculated from theory assuming an elementary reaction step.
The latter is more precisely dened, but may not fully match the
solution chemistry that determines the response variable. In
contrast, measured descriptor variables usually are less
precisely dened, but this imprecision can make them more
effective in QSARs, if the source of the imprecision is in some
way shared by (covariant between) the descriptor and response
variables.

Toward the larger-scale end of the continuum represented in
Fig. 3, response variables for more complex or heterogeneous
processes oen are best described with multivariate “poly-
parameter” models comprised of combinations of descriptors
for smaller scale steps that comprise the overall process. In
these cases, the key consideration for descriptor selection is not
so much matching but rather balancing the smaller scale
processes represented by each descriptor. The classic example
of this is the Hansch–Fujita model, which represents biological
effects with a linear combination of descriptors for partition
and reaction processes.37–39 A more recent example is the
Abraham model, which represents partitioning effects in terms
of descriptors for all of the factors that inuence the parti-
tioning process.40–43 For balance, these descriptors should
represent distinct, largely-independent (i.e., not overlapping or
covariant) factors. In a case like the Abraham equation, the
descriptors are also balanced by representing similar scale
effects; for models representing more complex effects, like the
Hansch–Fujita equation, a balanced set of descriptors may
represent effects over a range of scales.

For complex, large-scale processes and effects, statistical
predictive/diagnostic models must be based on correlations
between empirical data. However, for molecular scale processes
and effects, an alternative to empirical data for descriptor vari-
ables is calculation from molecular structure theory (i.e.,
computational chemistry). While this approach has great appeal
because of the potential to alleviate the need for eld or labora-
tory measurement, and for the high “precision” of theoretically
calculated descriptors discussed above, the computational
This journal is © The Royal Society of Chemistry 2017
chemistry approach comes with other complications and limi-
tations that limit its potential as an alternative to statistical
correlation analysis.

Modelling from computational
chemistry

Computational chemistry involves molecular modelling based
on theory.44 Starting from quantum mechanics, all chemical
phenomena can—in principal—be calculated from theory,45 but
solving the exact equations directly is infeasible except for very
small systems. To overcome this obstacle, many methods have
been developed for approximating the difficult equations of
quantum mechanics, so that they can be solved for molecular
systems. The most promising of these methods rely on
sophisticated combinations of two general strategies: (i) use of
compact models that capture the key many-particle effects by
construction and (ii) efficient stochastic sampling of many-
dimensions. There are many variations on these methods,
which collectively make up the toolbox of computational
chemistry (Fig. 4). Some of these methods are easily performed
on modern computers, and therefore are available to most
environmental chemists, but other methods require advanced
computers and applied mathematical techniques, and therefore
remain the domain of computation chemistry specialists.

The simplest computational chemistry models are based on
molecular mechanics, in which the forces between the atoms
are calculated using empirical interatomic potentials or
molecular mechanical force elds.46,47 The computational effi-
ciency of these models makes it practical for them to simulate
the dynamics and coupled interactions of tens of thousands of
molecules over time-scales of milliseconds,48 which makes it
possible to study molecular behaviour in complex environ-
mental phases. For example, molecular mechanics models have
been used to investigate the structure of natural organics
Environ. Sci.: Processes Impacts, 2017, 19, 188–202 | 191
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matter,49–51 and interactions of contaminants with mineral–
water interfaces.52–54 A major limitation to the use of molecular
mechanics modelling, however, is that the required force eld
parameters are not very accurate for effects that are relevant to
environmental conditions, such as the strong polarization and
other chemical interactions of surrounding water molecules
near highly charged ions and complex mineral surfaces.55,56

Moreover, current molecular mechanics models typically are
not designed to simulate chemical reactions (i.e., the making
and breaking of chemical bonds) or phenomena that are
kinetically limited over time frames that exceed a few micro-
seconds.46 Solutions to these limitations are active areas of
research in computational chemistry and applied mathematics
(e.g. ReaxFF57 and “accelerated sampling” techniques46,47,58) and
recent advances in computational algorithms allow the inte-
gration over time to be parallelized, thereby allowing for
increased simulation time-scales.59,60

Semi-empirical methods are more complex than molecular
mechanics models, and include simplied approximations of
quantum mechanics that are sufficient to allow simulation of
the making and breaking of bonds during chemical reactions.
These methods oen use an simplied Hamiltonian to model
organic systems,61,62 although more general Hamiltonians have
been developed to model other parts of the periodic table.62,63

Unlike the more rigorous computational models discussed
below, semi-empirical methods are heavily parameterized with
experimental data (or data from higher level models). This
allows semi-empirical models to efficiently achieve useful
accuracy for large molecules (>10 000 atoms with O(N) algo-
rithms64), although for small molecules or reaction energies the
more rigorous models usually are more accurate. There are
many examples of using semi-empirical methods in the early
applications of computational chemistry to environmental
systems, mostly for descriptor variables in calibration of
QSARs.65–71

Currently, the most popular approximation to quantum
mechanics for chemistry is Density Functional Theory
(DFT),72–74 which is based on approximations to the exact
exchange–correlation functional73 (e.g. LDA, GGA, hybrid GGA,
meta-GGA) that are relatively computationally efficient. DFT's
success and popularity can be attributed to several advantages it
has over other contemporary computational chemistry
approaches: the Hohenberg–Kohn theorem75 and Kohn–Sham
formulations74 give it a well-established theoretical basis, many
of the most popular exchange correlation functionals are con-
strained by formal theoretical constraints, it is competitive in
accuracy for many interesting chemical phenomena, and it is
computationally much less expensive than higher-level alter-
natives such as quantum Monte-Carlo methods and traditional
many-body theory (discussed below). DFT has been used
extensively in many research domains, including environ-
mental chemistry.

While the DFT level of approximation is suitable for many
applications, it is also becoming clear aer many years of active
development that there are limits to its accuracy. For example,
the DFT calculated free energies of reaction for reactions
involving bond breaking can have uncertainties of several kcal
192 | Environ. Sci.: Processes Impacts, 2017, 19, 188–202
mol�1 or more.76,77 If the reaction occurs in aqueous solution,
popular models of solvent effects (i.e. implicit solvent models)
will contribute at least a few more kcal mol�1 of uncertainty,44

so overall errors of 5 kcal mol�1 (�20 kJ mol�1) or more are to be
expected. This level of accuracy is not satisfactory for some
purposes (e.g., direct calculation of absolute values of specic
rate constants for contaminant degradation78), but it may be
satisfactory for triaging among possible chemical reaction
pathways or for descriptor data in QSAR development.79,80 In
addition, the overall accuracy of DFT calculations can be
improved by using methods that make use of empirical addi-
tivity rules for molecular properties, where various properties of
larger molecules can be thought of as being made up of additive
contributions of atoms, bonds, or collections of atoms and
bonds (i.e., functional groups) of the molecule.81,82 These
approaches have proven to be effective for small organic
molecules,83–90 and recently they have been used in advanced
computational algorithms that can be used to simulate
extremely largemolecules, even including complex proteins and
DNA chains.91,92

Compared with DFT, the higher level theory used in wave
function and quantum Monte-Carlo methods93 can give signif-
icantly more accurate results, if the underlying electronic
structure is well understood. For small molecules, higher level
wave function methods, such as coupled cluster theory and its
variants94,95 are currently considered the most accurate many-
body methods in use today. However, the computational cost
of these methods increases very steeply with molecular size,
such that only molecules containing a few atoms can be
handled currently. Despite their high computational cost,
many-body methods have the potential to considerably increase
the accuracy of the study of manymolecular phenomena (except
for a few well-known exceptions96,97) and there has recently been
signicant progress made at accelerating and parallelizing
these methods.98 For systems composed of numerous small
molecules that are difficult to study by experiment—as is oen
the case in environmental chemistry—modelling with many-
body methods is feasible and attractive (because a large
number of benchmark studies have shown that the errors of
many-body methods are considerably smaller than for DFT,
ranging from <1 kJ mol�1 to up to 3 kJ mol�1, depending on the
species86,99�101).

An approach that combines some of the advantages of the
methods summarized above—and is especially useful for
describing chemical reactivity in large-scale, complex environ-
ments—is the quantum mechanical/molecular mechanical
(QM/MM) methodology. In this approach, the system is divided
into two parts: a localized QM region surrounded by a MM
region. In many applications, this allows for a small chemically
active region to be modelled quantum mechanically, while the
long-range effects (such as solvent or a protein backbone) can
be represented by classical MM interactions. This is a compu-
tationally efficient and theoretically powerful method, but
uncertainties in how best to divide the QM and MM regions of
the model make it the domain of “expert” users, for now.
Applications of QM/MM methods to environmental chemistry
are still relatively few.102–105
This journal is © The Royal Society of Chemistry 2017
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Empirical calibration of computational
chemistry data with experimental data

While few properties that directly impact the environmental fate
and effects of substances can be calculated directly from
molecular structure theory, properties that can be calculated
from theory can be useful in the development of statistical
models. Usually, these calculated properties are used as
descriptor variable data in correlations with measured response
variable data, so the resulting relationship hasmany of the same
characteristics as traditional LFERs and QSARs (Fig. 1). These
calculated descriptor variables can be substituent, molecular, or
reaction properties (as in Fig. 2), they generally are computa-
tionally feasible only for molecular size-scale properties, and
their selection is subject to the same considerations of matching
and balance discussed above for traditional QSARs (Fig. 3). The
major advantages of computationally derived descriptor vari-
ables are that they can be programmed to calculate in large
batches and they include only the effects they are programmed
to model. The latter is also their major disadvantage: they do not
include any effects that are not already known to be relevant, or
effects that are not practical to calculate from theory.

This mixture of advantages and disadvantages can be seen in
the growing body of research done on QSARs using descriptors
from computational chemistry. One such class of descriptors
includes physico-chemical properties (solubility, Henry's law
constants, partitioning constants) calculated using the
conductor-like screening models COSMO-RS,106–108 COSMO-
therm,109,110 and COSMO-SAC.111–113 These are poly-parameter
statistical models40 using combinations of parameters that are
balanced (i.e., mechanistically complementary and indepen-
dent) and calculated based (partly) on theory.

Another class of descriptors that are obtained from computa-
tional chemistry calculations includes one-electron oxidation or
reduction potentials (E1), which are used in QSARs for rates of
contaminant degradation by redox reactions.79,80,114,115 In this case,
the calculated potentials require calibration using experimental
data, and the experimental calibration data can be measured by
several methods, including electrochemistry and pulse radiolysis.
The electrochemical measurements can be confounded by non-
ideal behaviour, such as irreversibility, which are not included in
the theoretical calculations, so there is a mismatch between these
two variables that might result in less accurate calibrations.116,117

Alternatively, E1 measured by pulse radiolysis,114,115,117–119 is a better
estimate of reversible redox potentials, and therefore is better
matched to potentials calculated from computational chemistry.
However, E1 from pulse radiolysis is not necessarily more closely
matched to the processes that are controlling solution-phase
oxidation kinetics, so they may not provide the most useful, or
even the most accurate, structure–activity relationships for oxida-
tion reactions of environmental interest.36

In principle, this approach could be extended to “fully in
silico” calibration of QSARs: i.e., statistical correlations cali-
brated with descriptor and response variable data calculated
from molecular modelling. This was the original goal in a study
of the hydrolysis and reduction of nitro aromatic
This journal is © The Royal Society of Chemistry 2017
compounds78,80 and oxidation of their corresponding aromatic
amines.79 However, complexity and uncertainty in the mecha-
nism of the hydrolysis and oxidation reactions made it infea-
sible to calculate their rates entirely from theory, and even the
comparatively well-dened and simple mechanism of reduction
proved challenging to model for more than a few compounds.80
Pathway as opposed to property
prediction

A relatively new challenge that has emerged in recent years is the
ability to predict transformation pathways as a function of envi-
ronmental conditions. This is partly due to growing recognition
that the resulting transformation products can be of more
concern than the parent compound with respect to ecological and
human toxicity. Our understanding of the process science
underlying abiotic and biologically-mediated transformations has
progressed to the point that it is now feasible to construct reaction
libraries that “encode” the process science that is described in the
peer-reviewed literature or publicly available government regula-
tory documents. The resulting libraries represent reactions as
single-step transformations of functional groups, and can include
purely chemical reactions (e.g., hydrolysis, reduction, and
photolysis) and biologically-mediated processes (i.e., aerobic and
anaerobic biodegradation and human metabolism).

The development of reaction libraries is accomplished by the
use of reaction transform languages such as SMIRKS and
SMARTS,120 in conjunction with cheminformatics soware
tools. The execution of these reaction libraries predicts the
major transformation pathways and their products. Although
well-developed tools that execute reaction libraries for human
metabolism are commercially available, currently only one tool
is available for executing reaction libraries that predict envi-
ronmental fate (enviPath121–123), and this tool currently contains
rules only for aerobic biodegradation. Additional soware and
libraries for predicting contaminant pathways and products are
under development, such as for ozonation of micropollutants
under water treatment conditions.124,125

A common challenge to developers of tools to predict
transformation pathways is to minimize the prediction of
irrelevant transformation products, sometimes referred to as
the “combinatorial explosion”, which has been dened as the
prediction of many irrelevant transformation products when
transformation pathways are iteratively applied to predict
consecutive transformation reactions.126 Strategies that have
been used to minimize the problem of combinatorial explosion
include assignment of likelihoods to the generalized trans-
formation pathways in a dened reaction library,126 a relative
reasoning approach,126 a combined absolute and relative
approach,127 a hybrid knowledge and machine learning-based
approach,121 and an approach based on the development of
reaction rules for selectivity, reactivity, and exclusion.

Fig. 5 provides an example of a reaction scheme for the
hydrolysis of halogenated aliphatics (RX) containing vicinal
halogens through HX elimination, and shows how this reaction
scheme can be pruned by use of rules for selectivity as well as
Environ. Sci.: Processes Impacts, 2017, 19, 188–202 | 193
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Fig. 5 Example of pathway prediction with rules for reactivity and
selectivity, showing initial steps for dehalogenation of 1,2-dibromo-3-
chloropropane (DBCP) by elimination. Four products are predicted by
the generalized reaction scheme, but pruning with reactivity and
selectivity rules predicts only one major product, 2-bromo-3-
chloropropene.
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reactivity. In this example, the reaction scheme predicts that
hydrolysis of 1,2-dibromo-3-chloropropane (DBCP) could yield
four products; however, only one hydrolysis product (2-bromo-3-
chloropropene) is predicted when rules for selectivity are
included, which is consistent with experimental results.128 The
reactivity rule states the order of removal of halogens (labeled
reactant atom 3 in the reaction scheme) is inverse to their atomic
number (i.e., I > Br > Cl > F), because the carbon–halogen bond
strength is greatest for the most electrophilic halogen.129 Execu-
tion of this selectivity rule—which states the hydrogen attached
to the b-carbon having the fewest hydrogen substituents is pref-
erentially eliminated130—predicts that elimination of the
hydrogen in the 2-position of DBCP is the only major pathway.

An additional challenge to the developers of these tools is the
need to incorporate the effect of environmental conditions on
rates and pathways for many classes of chemicals. For example, it
has beenwell documented how changes in pH can have signicant
effects on both the rates and hydrolysis pathways of organophos-
phorus triesters in aquatic ecosystems.129 This need to account for
environmental conditions is discussed in greater detail below.
Fig. 6 Conceptual model for 3-dimensional QSARs with response
variable on the z-axis, substance property on the x-axis and environ-
mental properties on the y-axis. Traditional QSARs correspond to
a cross-section of the surface in the x–z plan. The drawing is not based
on any particular data so the surface shape is arbitrary and the axes are
not numbered.
Incorporating environmental
conditions

In so far as the ultimate goal of in silico environmental chemical
science is describing the fate/effects of substances in real/
194 | Environ. Sci.: Processes Impacts, 2017, 19, 188–202
outdoor environments, it is not always sufficient to model
only response variables that are formulated as fundamental
properties with the effects of environmental conditions largely
factored out. However, leaving too many environmental effects
factored into the response variable will limit the applicability of
the model to environments with different conditions. Concep-
tually, the ultimate solution to this dilemma is to incorporate
both substance and environmental properties into the model as
descriptor variables of the overall response variable. These three
types of variables correspond to the x, y, and z in the conceptual
model shown in Fig. 6.

An example that clearly ts the conceptual model shown in
Fig. 6 is the overall bioavailability (response variable, z) of a class
of contaminants of soil and sediment that comes in complex
mixtures (e.g., PCBs, PCDDs, PAHs). In this example, one inde-
pendent variable axis (x) represents the range of properties of the
family of congeners (e.g., Koc of different PCBs) and the other
independent variable (y) represent the range of environmental
conditions (e.g., quantity and composition of sorptive phases in
the sediment across a site). An application of the conceptual
model in Fig. 6 to degradation of contaminants is exemplied by
work on the natural attenuation of chlorinated hydrocarbon
(CHC) solvents in groundwater.131,132 In that case, the overall
response is the decrease in total contaminant load (in terms of
concentration, equivalent toxicity, etc.); the environmental
descriptor is the type and quantity of reducingmaterials that can
dechlorinate the contaminants (iron oxides, suldes, microor-
ganisms, etc.) and the contaminant descriptor is the reactivity of
each contaminant with the various reductants (i.e., specic rate
constants). The area under the surface could be the overall
decrease in contaminant concentration at a site, or rate of
decrease in concentration, change in equivalent toxicity, etc.
depending on exactly how the response variable is formulated.

A traditional 2-D QSAR corresponds to a cross section
through Fig. 6 in the x–z plane, for a particular y. In principle,
a QSAR through the y–z plane can be dened at a particular x
This journal is © The Royal Society of Chemistry 2017
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(e.g., dechlorination of one CHC by environmental phases with
different reduction potentials), but this is a challenging frontier
with few examples at this time. Ultimately, it would be desirable
to fully dene whole response surfaces such as those shown in
Fig. 6, but this also is impractical with current methods. Prog-
ress toward the ultimate goal of QSARs that represent both
substance and environmental properties has been limited, and
the relatively few attempts to do that illustrate the challenges
that arise. For example, rates of contaminant reduction in
anoxic sediments have been described with a polyparameter
QSAR that includes descriptors of both contaminant properties
and sediment conditions,133 but there is too much uncertainty
over how to parameterize the environmental factors in such
models for them to predict absolute rates of contaminant
reduction in sediments with condence.

While the full conceptual model represented by Fig. 6 is
difficult to parameterize with specic data, general consider-
ation of the model can provide some useful insights into the
process of QSAR formulation. An example of this involves the
fungibility of factor allocation among the three types of vari-
ables, which is a key aspect of the “art” of formulating
successful QSARs, and a manifestation of the principles of
matching and balancing described above. By fungibility, we
mean that one arrangement of factor allocations sometimes can
be replaced by another with similar results. For a specic
example of this, consider the strategy of developing QSARs
using response variables that are normalized to data for
a reference substance in order to remove variability in the data
due to experimental or environmental conditions.14,79,134 This
strategy effectively collapses the surface in Fig. 6 into
a conventional 2-D QSAR by moving the information about
environmental conditions from the y into the z axis. However,
implicit in this strategy is the assumption that environmental
effects are uniform across the range of QSARs based on
substance descriptor variables (i.e., that the relationship in
Fig. 6 is a at plane not curved surface), and this is not always
true.79
Integration of databases, pathway
prediction systems, and chemical
property predictors

The primary role of chemical exposure assessment models used
for regulatory decision making is to provide estimated envi-
ronmental concentrations (EECs) of the chemical of interest
and its potential transformation products in environmental
media. Examples of models that calculate EECs for pesticide
exposures include FIRST (FQPA Index Reservoir Screening
Tool), GENEEC2 (GENeric Estimated Environmental Concen-
tration), and SWCC (Surface Water Concentration Calculator).
The parameterization of these models requires chemical prop-
erties and knowledge of the dominant transformation products
formed from the environmental transformation of the parent
chemical as a function of environmental conditions. The data
submitted for the chemical registration process prescribed by
environmental laws—such as the Toxic Substances Control Act
This journal is © The Royal Society of Chemistry 2017
(TSCA); Federal Insecticide, Fungicide, and Rodenticide Act
(FIFRA); and the Registration, Evaluation, Authorization and
Restriction of Chemicals (REACH) regulations—are typically
measured in media specic systems. For example, the rates and
transformation product formation for chemically-mediated
transformation processes such hydrolysis and photolysis are
measured in water under pH controlled conditions and
biologically-mediated processes such as aerobic and anaerobic
biodegradation are measured in soils and sediments. In reality,
transformation pathways such as hydrolysis and abiotic
reduction in anoxic sediments, photolysis and hydrolysis in
aquatic ecosystems, and aerobic biodegradation and hydrolysis
in aerobic soils, will occur simultaneously.

The parameterization of exposure assessment models
requires the development of integrated tools that reect this
reality (i.e., have the ability to provide the data required for the
estimation of environmental concentrations as a function of
environmental conditions).135,136 The hallmarks of an integrated
tool for predicting environmental transport and transformation
include (i) seamless connection to databases of measured and
calculated chemical properties and chemical pathway predic-
tion systems; (ii) calculation of chemical properties based on
the execution of multiple property calculators and prediction of
transformation pathways based on environmental conditions;
(iii) simultaneous execution of multiple reaction libraries based
on specic transformation pathways; (iv) parameterization and
execution of QSARs for the calculation of transformation rate
constants; (v) high through-put analyses (i.e., run in batch
mode), and (vi) open access to the general public.

Movement towards web-based databases and tools, and
development of the soware technologies that will enable
seamless calls to these systems through web-based services, is
accelerating the development of integrated computational
systems. This ability for seamless linkage will reduce the need
for duplicative efforts, resulting in signicant savings of
resources and time. Examples of databases and pathway
prediction systems that are currently web-based, or are
currently being updated as web-based tools include EPA's ICSS
Chemistry Dashboard,137,138 CEFIC's AMBIT,139 OECD's
Toolbox,28 and EAWAG's enviPath.121,122 The ICSS Chemistry
Dashboard is a web-based data base for �700 000 chemicals
that maps curated physicochemical property data associated
with chemical substances to their corresponding chemical
structures. EnviPath is an aerobic biodegradation reaction
library based on 332 biotransformation descriptions for 249
biotransformation rules. Web services are currently being
developed for enviPath.

To address the need for a fully integrated tool, EPA's Office of
Research and Development is currently developing the Chem-
ical Transformation Simulator (CTS), with release to the general
public planned for late 2017. The primary components of the
CTS are a Physico-Chemical Property Calculator (PPC) and
a Reaction Pathway Simulator (RPS) (Fig. 7). The PPC will allow
the user to compare properties generated by a variety of calcu-
lators that take different approaches to estimating specic
physicochemical properties. The calculators currently imple-
mented include EPI Suite, which uses a fragment-based
Environ. Sci.: Processes Impacts, 2017, 19, 188–202 | 195
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Fig. 7 Major components of the Chemical Transformation Simulator
including Chemical Editor, the Reaction Pathway Simulator. Links to
enviPath provide the ability to generate transformation products
resulting from aerobic biotransformation. Links to the ICSS Chemistry
Dashboard provide additional calculated and measured chemical
properties, as well as curated chemical structures.
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approach; TEST (Toxicity Estimation Soware Tool), which uses
QSAR-based approaches; and ChemAxon plug-in calculators,
which use an atom-based fragment approach. The output
derived from these calculators will enable the user to compare
the calculated data with measured data extracted from readily
accessible web-based databases (e.g., ICSS Chemistry
Dashboard).

The RPS allows the user to select individual or multiple
reaction libraries dependent on the environmental media of
interest. The beta version of the CTS has reaction libraries for
hydrolysis, reduction, and human metabolism. A reaction
library for photolysis is currently under development and will be
available for the fully functional version of the CTS. This
updated version of the CTS will have the ability to execute
a reaction library of aerobic biodegradation through seamless
linkage to the EAWAG PPS using web services that are currently
being developed for this tool.

A Reaction Rate Calculator (RRC) is also under development
for the fully functional version of the CTS. The RRC will provide
for the parametrization and subsequent execution of QSARs for
the prediction of transformation rates. Currently, rate constants
for transformation processes represent a signicant data gap
for the parameterization of models used for estimating envi-
ronmental concentration. The RRC will be limited by the
availability of existing QSARs and the ability to construct new
QSARs for this purpose.
Future prospects

The scope of this perspective reects the maturity of traditional
statistical QSAR methods for predicting the environmental fate/
effects determining properties of chemicals; the great potential
of theoretical/computational chemistry methods for improving
the prediction of chemical properties or characterization of
transformation pathways; and the transformative impact of
196 | Environ. Sci.: Processes Impacts, 2017, 19, 188–202
integrating QSAR and molecular models, with informatic and
internet tools, to make predictive modelling more accessible,
efficient, and comprehensive. The emphasis on chemical
contaminants reects the balance of focus of most work on
development and application of in silico models in environ-
mental chemical science to date. However, some of the methods
and results developed for modelling chemical fate and effects in
the environment should also apply to other substances. This is
evident in the still young but rapidly developing application of
QSARs to materials, especially nanoparticles.140–145 An even
greater challenge lies in the extension of QSAR methods to
biological properties like virulence (i.e., virulence factor activity
relationships, VFARs).146–148 The challenges involved in imple-
menting useful VFARs are considerable, but may eventually
succumb to the combination of advances from computational
toxicology1 and omic sciences.149
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