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A study of glycaemic effects following acute
anthocyanin-rich blueberry supplementation
in healthy young adults
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The postprandial response to ingested carbohydrate is recognised as a marker of metabolic health.

Postprandial hyperglycaemia is observed in type 2 diabetes mellitus and is a significant risk factor for

cardiovascular disease. Cognitive deficits are also associated with type 2 diabetes. Therefore interventions

which moderate postprandial glucose profiles are desirable. Here we investigated the impact of antho-

cyanin-rich wild blueberries on postprandial glucose response. Seventeen healthy young adults con-

sumed a range of doses of freeze-dried wild blueberry powder, in smoothie form, in both sugar-matched

and no-added-sugar conditions. Plasma glucose was determined by a capillary sampling method at base-

line and at regular intervals up to 2.5 hours postprandially. Blueberries were observed to significantly

extend the postprandial glucose response beyond the period observed for a sugar-matched control,

characteristic of a beneficial glycaemic response. Furthermore, blueberries were observed to reduce peak

postprandial glucose levels, although statistical significance was not achieved. The findings suggest a tem-

pering of the postprandial glucose response in the presence of anthocyanin-rich blueberry, and are dis-

cussed with reference to likely glucoregulatory mechanisms of action and their implications for cognitive

and type 2 diabetes research.

Introduction

The postprandial response to ingested carbohydrate is recognised
as a marker of metabolic health. Postprandial hyperglycaemia is
observed in type 2 diabetes mellitus and has been shown to be a
risk factor for cardiovascular disease.1 Cognitive deficits are also
associated with type 2 diabetes2,3 and hypertension.4 Therefore,
interventions which moderate postprandial glucose by limiting
periods of hyper- or hypoglycaemia are desirable.

Flavonoids are polyphenol phytonutrients found in foods
such as berries, cocoa, and grains. Flavonoid-rich foods have
been observed to influence blood glucose and glucose homeo-
stasis. For example, key mechanisms have been identified
in vitro including inhibition of carbohydrate digestion and
glucose absorption, facilitation of insulin synthesis and
secretion, and facilitation of glucose uptake by cells.5–10 In vivo
animal models have demonstrated that these mechanisms can
impact upon the immediate postprandial period in addition
to longer term glucoregulatory health.11 Epidemiological
data support these findings;12,13 in particular intake of the

flavonoid subgroup anthocyanins is associated with lower
incidence of type 2 diabetes and increased insulin sensitivity.
However few research trials have been conducted in humans
that investigate moderation of the glycaemic response follow-
ing anthocyanin-rich foods,14 or have considered how these
effects may impact on cognitive function and type 2 diabetes.

Human research to date has produced mixed findings.
Attenuated and/or delayed postprandial blood glucose concen-
trations have been observed in healthy adults following antho-
cyanin-rich interventions including cranberry juice,15 mixed
berry puree,16 green tea with mixed freeze-dried fruit
powders,17 and freeze-dried wild blueberry powder.18 In
glucose intolerant subjects, attenuation of peak glucose has
been observed following maqui berry extract.19 Despite these
positive findings, other similar studies have failed to replicate
these effects of anthocyanin-rich foods on glycaemic response.
For example, in healthy adults, fresh strawberries,20 cranberry
juice,21 and fresh blueberries and raspberries22 had no signifi-
cant effect on postprandial blood glucose concentration rela-
tive to control conditions. In overweight adults, freeze-dried
strawberry powder23 and acai fruit puree24 produced no
glucose effects; however, significant benefits for the insulin
response were evident. Methodological limitations were
evident in a number of these studies, for example: low antho-
cyanins levels in the intervention,21,23 no quantification of
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anthocyanins level,15,17,20,22 infrequent blood sampling time
points,24 and an inadequately matched control condition.18 In
the latter case, glucose effects were observed but were attribu-
ted to the fructose content of the intervention rather than any
anthocyanins, other flavonoids, or other polyphenol phyto-
nutrients also present. However, the control condition in the
study was not matched for fructose content making it imposs-
ible to eliminate fructose effects in this case.

Whilst findings are not conclusive, there is enough evi-
dence to suggest that consumption of anthocyanin-rich foods
can modulate the postprandial glycaemic response. The degree
of this response and the associated implications for health
outcomes in humans remain to be determined. A major short-
coming of the current literature is the absence of clearly
defined anthocyanin concentrations, or indeed the concen-
trations of other polyphenol phytonutrients present. Indeed, it
should be noted that anthocyanin-rich foods typically contain
multiple flavonoid subgroups, in addition to a plethora of
other polyphenol phytonutrients, and therefore when conduct-
ing investigations using anthocyanin-rich whole foods it is
impossible to solely attribute bioactive effects to anthocyanins.
Therefore, not surprisingly, knowledge of the specific impact
of anthocyanins on blood glucose remains limited.6 In light of
this, the aim of the current study is to determine postprandial
blood glucose profiles following doses of blueberry, with quan-
tified levels of anthocyanins, in healthy adults. Wild blue-
berries have been selected as they are a rich source of antho-
cyanins for which the rates of absorption and metabolism in
humans are well documented across a range of doses,25 and
for which there are known cognitive26,27 and cardiovascular
benefits.28,29 While there are other polyphenol phytonutrients
present, anthocyanins are the most abundant subgroup
present, therefore we have quantified our doses according to
anthocyanins content. In vitro evidence has specifically related
anthocyanins to glucoregulatory mechanisms of action,5–10

and epidemiological data has associated habitual antho-
cyanins consumption with improved metabolic outcome.12,13

Materials and methods
Ethical statement

All subjects gave informed consent before participating. The
study was conducted in accordance with the Declaration of

Helsinki, and the protocol was reviewed by the University of
Reading PCLS Ethics Committee (SREC 2015-053-CW, May 2015).

Participants

Seventeen young adults (4 male), with a mean age of 24.1 years
(s.d. 4.9) and a mean BMI of 23.7 kg m−2 (s.d. 3.6) were recruited
via email and social media from staff and student populations
at the University of Reading. Participants were required to be
non-smokers, free from diagnosed illness or disease, not preg-
nant, or taking any medication, and free from food allergies.

Design

The study was a double-blind, five-condition, counterbalanced,
crossover design comparing doses of anthocyanin-rich blue-
berry powder containing 0 mg, 310 mg and 724 mg anthocya-
nins in both sugar-matched and no-added-sugar conditions
(see Table 1 for details of drink preparation and composition).
Doses were based on a previous FMD study that used the same
source of blueberry powder; absorption and metabolism data
were previously published alongside FMD data for these exact
doses.25 Blood glucose measurements were recorded using a
clinically approved finger prick test (Roche Accu-Chek Aviva) at
regular intervals (specified below) for 212 hours post ingestion.
A trained researcher carried out the capillary sampling follow-
ing World Health Organisation guidelines.

Procedure

Participants attended the lab a total of five mornings, each
separated by a minimum of 4 days (mean 7.69, s.d. 2.80).
Participants were required to follow a low polyphenol diet for
24 hours prior to each visit and were asked to fast for 2 hours
immediately prior to attending. On arrival, baseline blood
glucose was recorded. Participants then consumed one of five
test condition drinks which were prepared by an independent
researcher in an opaque flask to maintain double blinding.
Drink order was counterbalanced. Participants were asked to
consume the drink as quickly as possible within a maximum
10 minutes period.24,25 Blood glucose measurements were
recorded at pre-consumption, 15, 30, 45, 60, 90, 120 and
150 minutes postprandially.

Data analysis

All data were analysed using IBM SPSS statistics version 22. As
recommended by an independent statistician data were ana-

Table 1 Composition of each experimental condition. All conditions were prepared by dissolving the required quantities of freeze dried blueberry
powder, sugars and ascorbic acid in 500 ml water. Sugar-matched conditions were matched to the naturally occurring sugar content of the highest
dose. Blueberry powder, from the cultivar vaccinium angustifolium, was provided by the Wild Blueberry Association of North America

Condition
Freeze-dried
powder (g)

Approx. fresh blueberry
equivalent (g)

Anthocyanins
(mg)

Vitamin C
(mg)

Fructose
(g)

Glucose
(g)

No-added-sugar control 0 0 0 9.5 0 0
Sugar-matched control 0 0 0 9.5 21 19
No-added-sugar low dose 34 235 310 9.5 9 8
Sugar-matched low dose 34 235 310 9.5 21 19
Sugar-matched high dose 80 555 724 9.5 21 19
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lysed with a linear mixed model (LMM), using an unstructured
covariance matrix for repeated blood glucose measurements.
Time, Dose and Time × Dose interaction were included as
fixed factors in the model. Subjects were included as random
effects and BMI was included as a covariate. Post hoc compari-
sons with Bonferroni corrections were applied to investigate
any significant effects. For each dose response curve, incre-
mental area under the curve (iAUC) was calculated using the
trapezoid rule.30 Incremental analysis, determined by exclud-
ing the area below baseline, has been shown to be a more
representative measure of rapid postprandial changes in gly-
caemic status than total AUC analysis which is strongly corre-
lated with basal blood glucose level.30 Between-subjects differ-
ences in baseline glucose were taken into account during the
calculation. LMM analysis was used to determine the effect of
dose on iAUC, again using an unstructured covariance matrix
for repeat doses. Dose was included as a fixed factor in the
model, and BMI was included as a covariate.

Results

Following publication, data supporting the results reported in
this paper will be openly available from the University of
Reading Research Data Archive at http://researchdata.reading.
ac.uk/. Mean blood glucose concentrations are summarised in
Fig. 1. Mean iAUC values are summarised in Table 2.

Blood glucose effects

All factors were statistically significant: Time [F(7,84.00) =
45.17, p < 0.001], Dose [F(4,59.06) = 15.12, p < 0.001], Time ×
Dose [F(28,84.00) = 4.53, p < 0.001]. BMI was a significant cov-
ariate [F(1,15.99) = 5.64, p = 0.030] with higher BMI predicting
higher glucose levels [β = 0.047]. Post hoc comparisons for the

three sugar-matched conditions revealed that the highest
anthocyanin dose (724 mg) extended the glycaemic response
such that blood glucose remained significantly elevated at
120 minutes compared with baseline levels [p = 0.008]. Blood
glucose remained significantly elevated compared with base-
line at 90 minutes [p = 0.016] following the sugar-matched low
dose (310 mg), and at 45 minutes [p < 0.001] following the
sugar-matched control. The apparent attenuations of mean
peak observed in Fig. 1 for the sugar-matched blueberry doses,
compared with the sugar-matched control condition, were
non-significant at postprandial time points of 15 minutes (p >
0.999) and 30 minutes (p > 0.999). The no-added-sugar control
condition profile confirmed that there was no significant
blood glucose effect (hyper- or hypoglycaemic) associated with
simply consuming a 500 ml sugar-free beverage.

iAUC

Dose was observed to be a significant predictor of iAUC
[F(4,17.12) = 14.02, p < 0.001]. BMI did not reach significance
as a covariate [F(1,17.88) = 0.07, p = 0.795]. Post hoc compari-
sons revealed no significant difference in iAUC between any of
the three sugar-matched conditions [p > 0.1]. Other compari-
sons are summarised in Table 2.

Discussion

The results demonstrated that anthocyanin-rich blueberry sig-
nificantly extended the postprandial glycaemic response com-
pared to the equivalent sugar dose in the absence of blueberry.
Indeed, blood glucose levels remained significantly elevated
above baseline for 2 hours following a blueberry dose contain-
ing 724 mg anthocyanins, and for 1.5 hours following a lower
310 mg dose. These post-peak elevations were in the range of
0.5–1.5 mmol l−1 above fasting baseline which is well within
the healthy postprandial blood glucose range31 and is meta-
bolically beneficial through the avoidance of reactive hypo-
glycaemic episodes32 where glucose level falls close to or below
fasting levels. Additionally, the level of blueberries required to
elicit this effect is easily achievable within the normal diet,
requiring the equivalent of 235–555 g fresh blueberries.

The findings of the current study are consistent with pre-
vious human research15,16 where extension of the postprandial

Fig. 1 Mean blood glucose concentration recorded at baseline, and fol-
lowing each dose at fixed postprandial time points. Values are estimated
marginal means adjusted for BMI. Error bars represent standard error of
the mean. Horizontal bars indicate the final time point at which blood
glucose remained significantly elevated compared with baseline for
each dose, **(p < 0.01), *(p < 0.05).

Table 2 Mean iAUC values for each intervention condition. Values are
estimated marginal means adjusted for BMI. Means not sharing a
common superscript are significantly different from each other
(Bonferroni-corrected, p < 0.05)

Condition
iAUC (mmol min l−1)

Mean SE

No-added-sugar control 34.38a 8.66
No-added-sugar low dose 78.47ab 15.73
Sugar-matched control 119.00b 17.38
Sugar-matched low dose 140.03b 16.73
Sugar-matched high dose 138.14b 16.34
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glycaemic response was observed for mixed berry and cran-
berry interventions respectively. Here we have demonstrated an
effect for blueberries, and have shown that the effect is not
due to the presence of fructose as previously reported,18 but is
likely related to anthocyanin content, or other similar poly-
phenol phytonutrients also present. Although the study did
not analyse the full polyphenol profile of the blueberry inter-
vention, or record metabolomic data following consumption,
doses were matched to a previous study that reported post-
prandial increases in polyphenol metabolites following blue-
berry consumption,25 thereby notionally supporting this
assumption.

Unlike many previous studies,15–17,19 we did not observe a
statistically significant attenuation of peak glucose during the
immediate postprandial period of 15–30 minutes, despite the
apparent differences in peak height shown in Fig. 1. A possible
explanation is that the intervention drinks were consumed
after a 2 hours fast period in the absence of any starchy food.
Previous studies included additional food items, therefore
attenuation of peak glucose may be more noticeable in the
presence of a high sucrose16 or more complex carbohydrate
load.17,19 Our findings may, in part, also be due to the mediat-
ing effect of BMI on postprandial glucose response, as
reflected by the significance of BMI as a covariate in this ana-
lysis. Postprandial glucose response has been shown to be
associated with BMI33,34 and the issue of individual variability
in glucose response has been previously highlighted.21,33

Future studies should consider whether the effects of antho-
cyanin-rich foods on postprandial metabolism are mediated by
BMI; it is possible that overweight adults with high levels of
subcutaneous fat may show a greater reduction in peak
glucose following an anthocyanin-rich intervention relative to
healthy normal weight adults; however this hypothesis could
not be tested in our small sample of healthy young adults.
Additionally, individual differences in the time taken to
consume the drink may also have influenced the outcome. Ten
minutes were allowed, but some participants consumed the
drinks considerably faster than this (range 0.5–10 minutes).
Peak glucose may have occurred prior to the onset of postpran-
dial testing, or between the earlier testing time points for
some of the participants, particularly following rapid absorp-
tion of glucose in the sugar-matched control which contained
free sugars not bound with other nutrients. Thus, mean
glucose peak may not have accurately reflected the true value
for the control condition. Future studies should impose
tighter control over the time taken to consume an intervention,
and consider the use of continuous glucose monitoring to
identify true peaks.

In order to minimise the influence of habitual polyphenol
consumption, participants were required to follow a low poly-
phenol diet for 24 hours prior to each test session, however
they were only required to fast for 2 hours immediately before-
hand. Future research should consider including further
dietary controls such as a standardised evening meal and a
minimum 8 hours fast prior to baseline measures of blood
glucose.

Another important consideration here is that the drinks
were not matched for fibre content. Fibre is known to influ-
ence postprandial glucose response. For example, guar gum
and sugar beet fibre (both non-starch polysaccharides) have
been observed to attenuate peak postprandial blood glucose
levels and reduce overall glucose AUC.35 However, the mainten-
ance of raised glucose over a longer postprandial period, as
observed in the current study, has not been previously associ-
ated with a high fibre intervention. It has been posited that it
is predominantly soluble fibre that attenuates postprandial
glucose through viscosity effects.16 As berries are typically low
in soluble fibre and no significant attenuation of peak glucose
was observed, the extended postprandial response following
blueberry supplementation observed here is unlikely due to
fibre confounds. Alternatively, anthocyanins have been
observed to inhibit intestinal alpha-amylase and alpha-glucosi-
dase activity in vitro,11,17,36,37 thereby slowing the rate of carbo-
hydrate digestion. Furthermore, anthocyanins and other berry
polyphenols have also been associated, in vivo, with inhibition
of glucose transport from the intestine to blood plasma.11

Specific mechanisms, identified in vitro, include delayed intes-
tinal absorption of glucose through inhibition of the sodium
glucose co-transporter SGLT1,19,38 and the glucose transporter
GLUT2.39,40 Therefore, any combination of these mechanisms
is likely to underlie the immediate postprandial effects
observed here and these potential mechanisms of action
warrant further investigation in future studies.

There are a number of important implications for this
work. Numerous cognitive benefits of flavonoid-rich foods,
including foods rich in anthocyanins, have been previously
documented including reduced risk of neurodegenerative
disease, and short term improvements to cognition during the
immediate postprandial period. It is possible that previously
observed cognitive effects, following acute intervention with
anthocyanin-rich foods, are mediated by variations in blood
glucose levels rather than, or in addition to, other hypo-
thesised mechanisms of action such as increased cerebral blood
flow (CBF).41 Increased glucose availability in the late post-
prandial period following ingestion of anthocyanin-rich foods
may convey a cognitive advantage, given that low circulating
glucose levels are often correlated with cognitive deficits.
Indeed, it has been demonstrated that foods which elicit a
favourable glycaemic response are beneficial for cognition,42

and such effects may even extend beyond the first postprandial
response period, continuing to influence cognition after sub-
sequent food intake.43 Therefore, it is possible that circulating
anthocyanin metabolites may also induce 2nd meal effects,
which is an important consideration for intervention studies
where a standardised meal is provided prior to extended cogni-
tive testing time points. Further work is needed to confirm
whether effects on glycaemic response, such as the effects fol-
lowing anthocyanin-rich blueberry observed here, correlate
with changes in cognitive performance.

The present data may also have implications for type 2 dia-
betes where regulation of postprandial glucose response is
important in the prevention and treatment of the disease, and
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in the reduction of associated risk factors such as cardio-
vascular disease.1 Glucoregulatory effects similar to the
current study have been reported following the consumption
of low glycaemic index foods, which are reported to reduce
incidence of hypoglycaemia and type 2 diabetes.32 It should be
noted, however, that no hypoglycaemic episodes were observed
following the control intervention in the current study,
suggesting that these benefits may only be relevant in subjects
with pre- or type 2 diabetes, rather than in healthy young
adults. Nevertheless, anthocyanin-rich blueberries have been
positively associated with multiple health outcomes including
enhanced cognition,26,27 decreased blood pressure,44 and
improved vasoreactivity,25 all of which are compromised in
type 2 diabetes.2,3 Furthermore, anthocyanins, and particularly
blueberry consumption, are significantly associated with lower
type 2 diabetes mellitus risk.12,13 In addition to the regulatory
mechanisms described previously, anthocyanins have also
been reported, in vitro, to further inhibit alpha-glucosidase
activity in synergy with Acarbose,45 a common anti-diabetic
drug. Other reviewed blueberry effects on metabolic syndrome
include evidence of a lowering of leptin concentrations thereby
decreasing the tendency towards obesity, improved pancreatic
beta cell function facilitating insulin secretion,46 and sub-
sequent improved insulin sensitivity.9 Other flavonoid sub-
classes have also been observed, in vitro, to regulate tissue and
cell specific isoforms of glucose transporters (GLUTs1–5),5 the
rate determining step for glucose uptake by all cells including
transport of glucose across the blood–brain barrier.47

Additional evidence also suggests that anthocyanin-rich
berries may inhibit glycative activity, where glucose interacts
with proteins and lipids in both exogenous food sources and
endogenous body tissue.48 The reactive products of such
activity (AGEs) have been linked with both hyperglycaemia and
cognitive decline. Cognitive outcomes have not been assessed
in the current study, however these mechanisms would
support enhancement of cognition in type 2 diabetes following
anthocyanin-rich intervention. The combined evidence
suggests there is clear potential for a diet-based blueberry
intervention to benefit the risk factors and co-morbidities
associated with type 2 diabetes.

In conclusion, anthocyanin-rich blueberry influenced the
postprandial glucose response by extending the availability of
blood glucose in a dose-dependent manner. Possible mecha-
nisms of action have been discussed alongside possible impli-
cations for cognitive and clinical research.
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