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Next generation of network medicine:
interdisciplinary signaling approaches

Tamas Korcsmaros,*ab Maria Victoria Schneiderc and Giulio Superti-Furgade

In the last decade, network approaches have transformed our understanding of biological systems. Network

analyses and visualizations have allowed us to identify essential molecules and modules in biological

systems, and improved our understanding of how changes in cellular processes can lead to complex

diseases, such as cancer, infectious and neurodegenerative diseases. ‘‘Network medicine’’ involves unbiased

large-scale network-based analyses of diverse data describing interactions between genes, diseases,

phenotypes, drug targets, drug transport, drug side-effects, disease trajectories and more. In terms of drug

discovery, network medicine exploits our understanding of the network connectivity and signaling system

dynamics to help identify optimal, often novel, drug targets. Contrary to initial expectations, however,

network approaches have not yet delivered a revolution in molecular medicine. In this review, we propose

that a key reason for the limited impact, so far, of network medicine is a lack of quantitative multi-

disciplinary studies involving scientists from different backgrounds. To support this argument, we present

existing approaches from structural biology, ‘omics’ technologies (e.g., genomics, proteomics, lipidomics)

and computational modeling that point towards how multi-disciplinary efforts allow for important new

insights. We also highlight some breakthrough studies as examples of the potential of these approaches,

and suggest ways to make greater use of the power of interdisciplinarity. This review reflects discussions

held at an interdisciplinary signaling workshop which facilitated knowledge exchange from experts from

several different fields, including in silico modelers, computational biologists, biochemists, geneticists,

molecular and cell biologists as well as cancer biologists and pharmacologists.

Insight, innovation, integration
Network medicine approaches are inherently interdisciplinary, requiring a combination of computational and biological domain-specific knowledge and
techniques. Despite initial expectations, network medicine has yet to have a major impact due to a lack of communication between the different disciplines
required for success. Through an innovative 5-day workshop we explored and promoted the application of interdisciplinary approaches to the analysis of
signaling networks. This review, inspired by the workshop, discusses literature illustrating the importance of multi-disciplinary approaches to problems of this
kind, and identifies new opportunities for combining disciplines to further promote the impact of network medicine. To help improve access to such
opportunities, we also provide advice and describe best practices for researchers aiming to deliver successful multidisciplinary projects in network medicine.

Introduction

A decade since the first proposal of the concept of network
medicine,1 but except for a few landmark examples,2,3 network

approaches are yet to revolutionize medicine. Despite an overall
increase in both data quality and quantity, the number of
fruitful systems-level projects is growing slowly compared to
the number of newly available techniques. One possible reason
for the delay in delivery of the promise offered by network
medicine is the low number of truly multi-disciplinary projects
and integrative approaches, involving scientists from different
backgrounds.

More than ever, with the advent of high-throughput tech-
nologies and advances in bioinformatics and computational
biology, signaling researchers are able to generate, access,
analyze and interpret a variety of data-sets and integrate them
at a scale not previously possible. This has contributed
to the ‘‘big data problem’’ of signaling research and has led
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to the need of bringing expertise from different disciplines
together. Experimentalists often do not have the necessary
computational or systems biology background to exploit these
new opportunities. Accordingly, they drown in data and
concentrate on selected cases and more traditional analyses.
Conversely, purely computational experts often lack the biolo-
gical knowledge required to identify novel insights or design
optimal studies, and often end up reporting on well-known
phenomena. Involvement of diverse experts on the same
project could help deliver better experimental design, data
evaluation and interpretation.

In this review, we summarize and reflect on the impact of an
interdisciplinary signaling workshop we organized in 2014
(http://2014.signalingworkshop.org) on supporting the promotion

of multidisciplinary approaches to solve questions and problems
in signaling biology. This review synthesizes multiple topics that
are often the focus of dedicated reviews that would be published
in corresponding specialist journal – by integrating these topics
together in the same paper, we aim to help promote cross-
disciplinary approaches and understanding.

Network medicine – a promising
history

Albert-László Barabási1 introduced the term ‘network medicine’
to describe network-based approaches aiming to understand
diseases at the systems-level. Likewise, Lemberger and Liu
envisaged that ‘systems medicine is finally coming of age’.4

These authors suggested that networks can offer solutions for
systems approaches on therapeutic and diagnostic innovation.5

Pawson and Linding extended the concept, and network medicine
was defined as a pharmacological attempt that recognizes both
the network connectivity and dynamics of signaling systems as
components of drug targets.6 Aloy and colleagues identified
protein–protein interactions in networks as suitable targets of
drug-like compounds.7 Later, network medicine was described
as a ‘think globally, act locally’ paradigm to understand disease
phenotypes in order to develop local interventions that may
cure a specific disease, but with a systems-level understanding
of the cells’ global organization.8 Nowadays, network medicine
is considered a resource for a variety of purposes: biomarker
discovery, drug target prediction, drug side-effect analysis, drug
repurposing and a tool to suggest new therapies.9 Recently,
Menche and colleagues demonstrated the power of network
approaches to understand disease pathogenesis.10 There are
slightly different definitions to network medicine, often due to
the diverse disciplines working on this topic. A collection of
current definitions related to network medicine can be find in a
review by Kirschner.11
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Why network medicine requires
interdisciplinary approaches?

Network medicine studies are typically cross-disciplinary as they
require the combination of multiple experimental (in vivo, ex vivo,
or in vitro) and computational (in silico) data and analyses.12

Network medicine datasets are often used for mathematical
modeling and computational simulation approaches, in many
cases integrating one or more levels of complex dynamics
(DNA and epigenetics, RNA and transcriptomics, proteins and
proteomics, interaction networks, organelles, cells, tissues, organs,
etc.).13 The result of these modeling analyses often provide
information that can be used to adapt the process of collecting
biological measurements on the system, with new insights
emerging through a process of iterative proposal of further
new models on the basis of collection of additional data.14 Thus,
successful systems-level network medicine studies require the
combination of expertise from different disciplines. Ideally,
experimental researchers would be able to understand and use
network-based approaches to studying signaling networks, in the
same way they apply diverse experimental approaches to these
studies e.g. FACS and qPCR.15 Multidisciplinary collaborations
provide expertise in information science, computational biology
and mathematics to ensure that patient data collected by
physicians and clinical researchers can readily be assimilated
and processed by other researchers.16 Supporting this, our
automated literature survey pointed out an increase in the
number of disciplines used in signaling network related

publications in the last 6 and previous 10 years (Fig. 1). However,
from more than 22 000 papers, we found only a few dozens
mentioning more than four different approaches indicating a
low though growing number of interdisciplinary studies. Here
we list a few challenges as examples of why network medicine
requires interdisciplinary signaling researchers and multi-
disciplinary collaboration of different experts.

Understanding the evolution, structure and mechanisms
of normal signaling networks can point out components that
play key roles in diseases.17 In many cases, these components
have no direct relation to a particular disease but their stimula-
tion or inhibition can have beneficial systems-level effect on
the cellular network in normal cells, and leading to indirect
benefits. For example, pharmacological modulation of key proteins
of the signaling network can influence the robustness of the cells
for therapeutic purposes, increasing robustness in healthy cells and
decreasing robustness in cancerous cells during chemotherapy.18

In the early era of network biology, hubs (components of the
signaling network having many interactions) received great interest
as key components of the network.19 This was in part because such
hubs, in protein–protein networks, were often well-characterized
proteins. Several systems-level studies highlighted that hubs
could be classified based on key dynamic features, such as
specific binding interfaces or co-expressed interacting partners
within a tissue or cell compartment.20,21 Studies on other, more
global network parameters, such as the betweenness centrality
(the average number of shortest paths going through the
protein) showed the importance of bottleneck proteins, having

Fig. 1 Number of papers with the words ‘‘signalling’’ AND ‘‘network’’ in PubMed abstracts. In January 2017, we measured the co-occurrences of
different disciplines, like structural biology, genomics/transcriptomics, proteomics, modeling, and interactomics. We used 4–5 synonym keywords for
each discipline (see table inset). This is not an exhaustive list but shows a clear trend. Though it is not visible in the figure, four different disciplines were
mentioned in nine papers published between 2001–2010, and 45 papers published after 2011, while all the five disciplines were mentioned in one paper
published between 2001–2010 and in two papers published after 2010.
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sometimes low number of interactors but bridging two
otherwise distinct parts of the network.22 Identification
of key proteins necessitates detailed, well-curated signaling
maps, integrated with dynamic (i.e., cell and context-specific)
expression data and investigated by using advanced network
analysis methods.9 One of the reasons to apply all these
approaches is the fact that many of the post-translational
modifications of proteins are stochastic, complicating the
analysis of functional consequences. Developing and executing
these complex workflows, understanding the structural biology,
cell specificity and data analysis background as well as performing
advanced network analyses are no longer simple protocols that
can be found in a single textbook or learned in one training
course.

Studying diseased signaling networks is also in the major focus
of network medicine. Gene expression and sequencing studies on
pathologically altered signaling networks has uncovered possible
drug targets whose malfunction directly causes a disease. For
example, during tumorigenesis when cells acquire the capability of
continuous division and an often increased mutation rate,23 most of
the (driver) mutations affect a limited number of central pathways.24

The use of network medicine tools and interdisciplinary approaches
are essential if we aim to understand the systems-level change
of the signaling network in later stages of tumorigenesis.25

Such pathological rewiring allows the appearance of other
cancer hallmarks, including sustained angiogenesis and meta-
static tissue invasion capabilities,26 as well as the deregulation of
cellular metabolism and circumvention of immune responses.27

Tumor microenvironment is another key area where network
approaches could offer valuable insights. For example intercellular
networks between surface and secreted proteins have shown how
certain fibroblasts turn into tumor growth helping, cancer asso-
ciated fibroblasts.28 A key challenge for cancer related network
medicine is to overcome the difficulties of therapeutically treating
a pathologically rewired signaling network.29 In contrast to driver
genes, functional analyses of GWAS data or gene enrichment
studies are not enough to identify proteins essential in rewiring.
Several publications have shown that changes in cross-talking
(i.e., multi-pathway) proteins are important for the rewiring of
signaling networks.25,30,31 Mutation even in one multi-pathway
protein can have a systems-level effect as it can significantly
alter the signaling flow, for example, by transducing a ‘death’
signal to a ‘survival’ transcription factor.26,32,33

Identification of multi-pathway proteins is a challenging task,
requiring multi-disciplinary knowledge and detailed systems-
level understanding of the cell type of interest. Accordingly,
numerous drug developmental failures are unfortunately known
where the targeted protein had undiscovered or underestimated
cross-talk effects.34,35 Another challenge is that targeting a
cross-talking protein may have an opposite effect in healthy
cells as their signaling networks behave differently.18 On
the contrary, pharmacological modification of a cross-talking
protein in cancer therapy is not always useful as it may strengthen
the robustness of cancer cells instead of weakening them.18,36

Similarly, targeting proteins in feedback loops can also have
disadvantageous system effects if the signaling circuits of

the target protein are not well explored.37 For example, a drug
suppressing a negative feedback loop could, paradoxically,
activate the targeted pathway.38 In conclusion, uncovering the
systems properties of multi-pathway and feedback-associated
proteins may facilitate the development of efficient, network
pharmacological interventions.8,39 Identification of these promising
target proteins requires the combination of structural biology,
‘omics’ datasets and advanced bioinformatics analyses or
network modeling.

Network medicine of proteins

Enzymes and malfunctions of enzymes (enzymopathies) have
been in the focus of medical biochemistry approaches for a
long time. Recently, systems-level features of enzymes have
been providing data and insight into the changes in signaling
networks.40

Kinases

Kinases are one of the key enzymes in signaling cross-talk,33

and traditionally among the most pharmacologically targeted
proteins of the cellular signaling networks.6 Kinase domains
and their target motifs (i.e., specific aminoacid sequences in
the substrate proteins) are well-known and comprehensively
compiled in resources such as Phosphosite and dbPAF,41,42

computational algorithms, like NetworKIN and NetPhorest43,44

provide in silico resources of phosphorylation-modulated inter-
action networks. A proof-of-concept approach earlier showed
that a complementary effort using both experimental validation
and computational analysis is can successfully refine a phos-
phorylation network by combining linear phosphorylation
motifs with protein–protein interactions, kinase-substrate
co-expression, protein co-localizations and general pathway
databases.43 Combining these in silico models with high-
throughput, phospho-proteomic approaches has been shown
to provide insights into signaling biology not only at a systemic,
high-throughput level qualitatively but also quantitatively.45

Systems-level models of JNK and EphR signaling networks
are examples of two such integrative approaches46,47 among
others. Comparative phospho-proteomics have been connected
to network evolution models to improve our understanding on
the normal development and malignant alterations of signaling
proteins.48,49 Linding and colleagues recently incorporated
genomic sequencing data from next-generation sequencing
(NGS) studies to predict the impact of disease mutations on
cellular signaling networks.50,51

Phosphatases

It is important to highlight that less attention has been taken
on the other player of the phosphorylation system: the protein
phosphatases. As reviewed by Kholodenko and colleagues,52

protein phosphatases can play a dominant role in determining
the spatio-temporal behavior of protein phosphorylation systems
in the cell as both immediate and delayed negative regulators.
Thus, pharmacological targeting of phosphatases can modify the
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signaling network at the systems-level. Despite their promising
effect and high number, only a few protein tyrosine phospha-
tases are currently used as therapeutic targets.53,54 As a
systems-level approach to aid this situation, Cesareni and
colleagues55 compiled a cell specific phosphatome for growth
pathways. They combined high-content siRNA screening that
identified cell state specific phosphatases with pathway knowl-
edge to perform a computational optimization approach based
on the CellNOpt modeling tool.56 This effort resulted in a map
of 41 phosphatases that affect key growth pathways and pointed
out key cross-talking functions.55

Motifs

Kinases, phosphatases and other enzymes post-translationally
modify their substrates based on a specific binding to target
and/or protein regulatory motifs. Such motifs are typically short
(less than ten residues) and often occur within intrinsically
disordered regions.57 The ELM database collects and stores the
most comprehensive repository of experimentally characterized
peptide motifs.58 Prediction of binding motifs at the proteome
level can be performed by using in silico tools like ANCHOR,
which analyzes the sequence of a disordered region and esti-
mates the energy of interaction of such a region with a general
interaction partner.59 Combining interaction prediction, dis-
ordered region analysis and cancer related expression studies
showed the importance of these approaches in examining the
role of heat shock protein in signaling networks.60 Site-specific
mutation analysis can provide validation of the functionality of
predicted linear motifs.57 As linear motif-based interactions are
sensitive to the expression of their binding partners, careful
choice of experiments is necessary to avoid incorrect inferences
about their functional relevance.61 The importance of short
linear motifs from a network medicine perspective has been
shown by Uyar et al. where the number of interactions
mediated by a linear motif correlates with the likelihood that
a mutation affecting that motif will be disease-related.62

Scaffold proteins

Scaffold proteins determine signaling flows and regulate cross-
talks between pathways by binding and co-localizing with at
least two members of one or more signaling pathways.63 Scaf-
folds can be efficient active members of a signaling circuit (i.e.,
a feed-back or feed-forward loop) by changing their own con-
formation upon repeated signaling events or allosterically
modifying the enzymes binding to them.63,64 The effect of these
modifications can range from small fine-tunings to significant
changes in the signaling flow that activates different down-
stream events.65 It is not surprising that many scaffold proteins
were found to be involved in the oncogenic rewiring of the
signaling network66 and their mutation is implicated in differ-
ent cancers, like colorectal cancer as in the case of AXIN.67

Despite the growing number of specific examples of the impor-
tance of scaffolds proteins in cellular networks,68,69 the scale
and complexity of the current experimental approaches are not
sufficient to explore the systems-level role of scaffold proteins
in different disease states.70

Omics in network medicine

In the last two decades, omics technologies have made a great
impact on medical research, turning biological research into a
data-intensive science.71,72 These high-throughput methodolo-
gies are now routinely used to provide a top-down approach for
understanding biological systems.73,74 The power of an omics
approach in network medicine is due to its ability to detect
context (e.g., cell, disease or treatment) specific data associated
with signaling systems. The challenge of these approaches is
that they often require either a computational biology expert or
familiarity with sophisticated computational software solutions
to extract biological insights from these data sets.75 A further
complication is that genomic or transcriptomic data are often
best interpreted in the context of the heterogeneous large-scale
data sets that have already been deposited in publicly available
repositories.75 Omics technologies can be found in an increasing
number among the top-down approaches.76 Here, we present
briefly genomics and lipidomics as selected examples of these
approaches demonstrating their multi-disciplinary nature. We
note that there are other relevant approaches that we are not
highlighting here, such as metabolomics and phenomics, while
proteomics has been mentioned in the previous section.

Genomics

Genomic approaches provide the highest number and variety of
datasets on human diseases. These approaches include (1) whole-
genome or exome sequencing identifying genetic mutations or
copy number variations; (2) genome-wide association studies
(GWASs) used to identify genetic variants associated with a
disease; (3) microarray or RNAseq techniques for measuring the
mRNA or miRNA expression of cells, comparing levels between
states (transcriptomics); and (4) epigenomics analyses focusing
on, for example, DNA methylation and its change during differ-
entiation, ageing and cancer progression.75 Network medicine
provides a highly effective framework to analyze genomic datasets
and better understand complex diseases. Disease related genes
may differ among affected individuals, but the affected pathway
or network region is likely to be shared.75

Nowadays, next-generation sequencing on the single-cell level
provides an opportunity to analyze networks in cancer cells based
on data obtained from individual clones.71 To acquire the benefits
of noise reduction, and incorporation on data tumor hetero-
geneity, that can be achieved from such single-cell approaches,
requires sophisticated sample preparations from clinical
researchers, specific sorting and sequencing infrastructures as
well as advanced data evaluation tools, statistics and improved
visualization solutions.77 For example, Bates and co-workers
were able with a systems-level approach to validate a set of
published prognostic biomarkers, and assess their effectiveness
relative to known levels of intra-tumor heterogeneity for a cohort
of clear cell renal cell carcinoma (ccRCC) patients.78

RNA-interference (RNAi) studies can provide valuable insights
into the functional role and relevance of specific genetic variations
or mutation. However, similarly to some compound based
perturbation assays, RNAi experiments are often confounded

Integrative Biology Review Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

6 
Ja

nu
ar

y 
20

17
. D

ow
nl

oa
de

d 
on

 1
/2

8/
20

25
 5

:0
8:

16
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c6ib00215c


102 | Integr. Biol., 2017, 9, 97--108 This journal is©The Royal Society of Chemistry 2017

by ‘‘off-target’’ effects due to signaling cross-talk and feedback
processes.79 A possible solution is to interpret RNAi results in a
network framework instead of focusing on single hits.79,80

Today, genetic engineering using the CRISPR-Cas9 system,
can offer complementary validation strategies.81

Lipidomics

Lipidomics, the large-scale detection of protein–lipid inter-
actions, is a recent and increasingly important ‘omics’ approach
for building knowledge about the structure and function of
signaling networks in healthy and diseased states. This has
revealed the importance of altered lipid–protein interactions in
regulatory circuits in several disorders. These interactions
are attractive targets for pharmaceutical drug development.
Challenges associated with detection of such interactions,
especially at large scales, are being overcome by adopting
chemical biology approaches to characterize in vivo assembled,
stable protein–lipid complexes.82 A recent liposome microarray-
based assay (LiMA) measures protein recruitment to membranes
in a quantitative, automated, multiplexed and high-throughput
manner.82 LiMA was recently used for large-scale testing of the
lipid binding specificity of pleckstrin homology (PH) domains, using
liposome arrays containing 122 different types of liposomes.82,83

Major signaling data repositories contain relatively few protein–lipid
interactions, making network analysis of these interactions
either very challenging, requiring extensive additional experi-
mental work to characterize many additional interactions, or too
simple, due to lack of existing open data on such interactions to
build networks containing enough interactions to provide an
accurate-enough description of cellular networks.84 Despite
these issues, interest remains high in such approaches, as it is
expected that network models for diseases where the actual
change happens on the lipid level may provide many important
insights into disease biology.85 An important success story for
network approaches using lipidomics was recently reported,86

based on perturbation of cell membrane lipid metabolism by gene
inactivation of macrophage enzymes involved in sphingomyelin/
ceramide metabolism and quantitative analysis of 245 lipids.
Network analysis revealed an unsuspected circular network struc-
ture that was reflective and predictive of the ability of mouse
macrophages, and fibroblasts from patients suffering from lipid
storage disorders, to mount an inflammatory response. This
circular network, unprecedented among biological networks of
co-regulated molecules, is evolutionarily conserved and likely to
reflect not only biosynthetic relationships but also rapid homeo-
static adaptation of perturbation. Without network analysis,
these co-regulatory principles of cell membrane lipids would
not have been discovered.

Modeling approaches in network
medicine

Regardless of the focus and scale of the ‘omics’ approach or the
structural and topological details of the signaling network, it is
generally agreed that computational modeling is required to

understand the dynamic behavior of a system. There are numerous
reviews summarizing modeling methods for analyzing signaling
networks (e.g.,15,87–91). Given that this topic is already so extensively
reviewed elsewhere, here we only focus on multi-disciplinary
aspects of the topic, listing a few specific examples of multi-
disciplinary. For more general overviews of this topic, please
refer to the reviews listed above.

Commonly-applied modeling approaches used to analyze
cellular signaling include differential equation modeling, data
driven modeling (such as clustering, principal components
analysis, or partial least squares), modular response analysis,
Boolean networks, and Bayesian inference modeling.87,88 These
approaches have emerged as standard tools for systems-level
research in signaling networks to derive biological insights
from large-scale experiments. The scientists able to make the
greatest impact using these methods typically have experience
both in experimental biology and computational approaches.15

Thus, modeling itself has become a multi-disciplinary approach.
Modeling approaches have the greatest impact when they address
a clear biological question, and where the experimental measure-
ments required for the modeling method can be exploited to
provide valuable feedback on how to deliver the computational
aspects of the work.87 This feedback often involves the optimiza-
tion of experimental methods for data generation to reduce
experimental noise and the number of erroneous signals (e.g.,
false-positives and false-negatives) in large data sets.87

To provide an interface between modeling approaches and
experimental data validation, in the last few years, integrated
and multi-layered databases have been built.92 Databases such
as SignaLink contain manually curated, integrated and pre-
dicted interaction data of signaling pathways, their regulators
(e.g., scaffolds) and modifier enzymes (e.g., phosphatases), as well
as transcriptional and post-transcriptional regulators.68 The Signa-
Link website (http://signalink.org) is specifically designed to be as
accessible as possible for experimental researchers, making it
easier for them to use and develop computational network models.
These resources, due to the non-trivial but biologically meaningful
connections they provide (e.g., miRNA regulating transcription
factors coordinating more than one pathway as master regulators),
are able to drive network medicine projects, focusing on drug
discovery93,94 and novel disease gene identification.10 As multiple
signaling network resources are available with different focuses
and levels of granularity, it is often unclear which should be used,
either alone or in combination. The recently launched OmniPath
gateway (http://omnipathdb.org) contains a systematic analysis of
public resources on literature-curated human signaling interactions
to facilitate to application of these databases.95 OmniPath applies a
duel approach to help both experimental and computational
researchers by providing a ready-to-use integrated dataset and
an interactive Python module for advanced users.95

In pioneering work using Boolean logic models for modeling
of cellular signaling, Saez-Rodriguez and co-workers developed
CellNOpt, a discrete logic modeling approach for analyzing
responses of signaling networks to stimuli (e.g., drugs or
compounds).56 They were able to refine and update the wiring
of a hepatocyte signaling network by training a literature-curated
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network against experimental data. Refined network increased
its predictive power, identifying several new interactions that
improved the match of model to data. Importantly, these novel
interactions were supported by literature or their own follow-up
experiments.56 To further increase the success of building
predictive logic models from prior knowledge, CellNOpt has been
implemented as a Cytoscape plug-in, enabling non-computational
users to access this software, and develop similar models.96

A promising application of logical mathematical models is
to convert them to genetic interaction networks to increase our
understanding in disease network phenotypes.97 Knowledge
of genetic interactions in the context of a disease phenotype
can provide important insights into possible personalized
treatment strategies, particularly in cancer.97,98 Modeling the
dynamics of signalling processes behind regulatory genomics
and systems plasticity features of cancer cells increases our
understanding how they can evolve into different phenotypes,
invade other tissues and evade drug therapies.99 Calzone and
colleagues (2015) suggested a methodology for converting a
logical mathematical model with a set of initial conditions into
the corresponding genetic interaction network characterizing the
behavior of all single and double mutants in terms of phenotype
probabilities.97 The predictive power of this integrative modeling
has recently been experimentally validated through a multi-
disciplinary collaboration.100

To employ complex modeling approaches, a single focused
research group is not enough, as expertise and data from
different disciplines are needed to apply these approaches
effectively. A promising and potent solution may lie in crowd-
sourcing to construct and analyze signaling networks by out-
sourcing the task to a relevant community.101 An already
successful analogy for a community-driven approach has been
carried out with metabolic networks.102 Several groups worked
together to create a consensus reconstruction of a comprehensive
metabolic network (Recon2), which can be used for computational
modeling.102 Using similar approaches for building signaling net-
works will hopefully have a major impact on our understanding
of healthy systems, and their malfunction in diseased states.
Recently, in the context of the HPN-DREAM network inference
challenge, an effective crowdsourcing approach were published
using phosphoprotein data from cancer cell lines as well as
in silico data from a nonlinear dynamical model to score more
than 2000 networks submitted by challenge participants.103

Interdisciplinary research successes in
network medicine

Here we highlight examples where the combination of different
disciplines already proved to be a success in various areas of
network medicine.

Hepatotoxicity is a major cause of drug development
failures in the pre-clinical, clinical and post-approval stages.104

Lauffenburger and colleagues found that hepatic cytotoxicity
responses are regulated by a multi-pathway signaling network
balance.105 Using a systems modeling approach, they explored

the signaling pathways that underlie the connections among
hepatocellular stress, inflammation and hepatotoxicity. Phos-
phoprotein signaling data of human hepatocytes showed that
activity balance of intertwined pro-survival and pro-death path-
ways (AKT and MAPK, respectively) determined the outcome of
the therapy.105 Fortunately, with in silico and in vivo studies,
they found that therapeutic modulation of cross-talks between
these pathways as well as specific pathway inhibitors could
antagonize drug and inflammation-induced hepatotoxicity.105

Upon infection, viral-induced rewiring of host cells is the
result of a highly complex interplay between viral and host
proteins. Due to the limited size of the viral genomes, viruses
hijack and manipulate host proteins to utilize any accessible
host mechanism.106 Superti-Furga and colleagues performed
a systems-level study to identify common and virus-specific
strategies by investigating the host targets of viral proteins.3

Using viral open reading frames (viORF) from 30 viral species
(such as Ebola, human cytomegalovirus, and hepatitis C), they
experimentally identified 579 host targets. Computational and
network analyses of the host targets pointed out clear distinctions
in preferences between the different viral groups: RNA viruses
targeted the JAK–STAT and chemokine signaling pathways, while
DNA viruses targeted cancer related pathways, enriched with
MAPK signaling components.3 They also highlighted and experi-
mentally validated PIK3CA as a multi-pathway protein, controlling
cross-talks between multiple pathways as a key viral target. With a
complex in silico approach and mass-spectrometry measurements,
they classified the viORFs according to their influence on the
host network. This network-based approach identified viral-
specific and general rewiring strategies, thus a rationale for
selecting specific intracellular pathways for pan-viral or virus-
specific antiviral therapies.3

Signaling rewiring is a critical step in tumorigenesis, and
understanding how pharmacological treatments affect the rewired
cellular systems is essential for the development of successful anti-
cancer therapies.9 The team of Mike Yaffe integrated advanced
computational modeling (such as principal component analysis
and partial least-squares regression modeling) with multiple types
of experimental data and found that the most effective strategy
for killing aggressive triple-negative breast cancer cells in vitro
and in vivo is a time- and order-dependent combination of the
EGF receptor kinase inhibitor erlotinib followed by doxorubicin.2

They found that due to an oncogenic rewiring, the active EGFR-
mediated signaling inhibits the apoptotic process through
caspase-8, which minimizes the effect of DNA damage induced
by doxorubicin. Simultaneous inhibition of EGFR (by erlotinib)
and doxorubicin treatment did not modify the rate of cell death
substantially. Computational analyses of signaling networks and
phenotypes of drug-treated cells highlighted that subsequent
addition of the drugs in well-defined intervals could significantly
enhance the treatment efficacy.2 After they validated this in cell
culture and mice experiments, they continued the investigation
to understand the underlying cellular mechanisms. Quantitative
high-throughput reverse-phase protein microarrays and quanti-
tative western blotting were used to measure the levels or activa-
tion states of 35 signaling proteins within multiple signaling
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pathways at 12 time points following exposure to erlotinib and
doxorubicin both individually and in combination. In order to
evaluate the generated data, they constructed a multifactorial
data-driven mathematical model relating signaling inputs to
phenotypic outputs. In total, their data set comprised more than
45 000 measurements of molecular signals and 2000 measure-
ments of cellular responses.2

When previewing the work of Yaffe and colleagues, Erler and
Linding argued that the reason why the drug development field
so far lacked such studies was due to two major reasons: (1) lack of
systems approaches, with most studies focusing on individual
targets and the identification of specific mutations; (2) only in the
last decade has it become technologically feasible to monitor
thousands of molecular signals and to integrate them computa-
tionally to gain biological insight into drug mechanisms and
efficacy.6 We share this opinion, and additionally believe that such
studies have been lacking due to a lack of researchers and research
communities trained to work in multi-disciplinary teams.

The power of interdisciplinarity and
how to achieve it

We are in a moment in history, when there is a shift towards
studying cell–cell interactions in an organ or organs and actual
organisms as well as their contextual ecosystems, rather than the
traditional investigation of individual cells. Such studies require
the integration of a variety of complementary approaches such
as: (1) chemical genetics (random mutagenesis of the genomes
of near-haploid cells); (2) functional analysis by focused gene

inactivation (RNAi and genome editing); (3) mechanistic under-
standing with structural biology approaches (NMR, crystallography,
computational predictions, etc.); (4) genomics and transcriptional
profiling (including miRNA analysis); (5) functional and phospho-
proteomics (affinity purification and mass spectrometry);
(6) lipidomics (isolation and mass spectrometry analysis of
lipid content and protein–lipid interactions); (7) computational
network analysis; (8) in silico modeling of biological processes (logic
modeling, differential equations, etc.); (9) chemical proteomics and
compound screening; and finally (10) integration and validation
with patient data from clinical practice (Fig. 2). Computational
analysis of multi-parametric high-content imaging of cells and
cell–cell interactions, including subcellular structures, shapes,
‘‘social’’ pattern, offers to link molecular data to phenotypic
manifestations. With the combined and integrated use of these
approaches we can identify (1) new targets for known drugs,
(2) previously unknown mechanisms of drug resistance, (3) effector
genes for the compounds (genes required for the drug to exert
its action), (4) mechanisms of synergy between compounds,
(5) mechanisms of drug transport, and in a few cases (6) new
medical use of existing drugs.

A recently established and successful framework to facilitate
interdisciplinary approaches to solve complex biomedical ques-
tions is the concept of Challenges (i.e., collaborative scientific
competitions).107 This is based on crowdsourcing, open innovation
and to foster the creation and dissemination of well-curated data
repositories.107 In agreement with the success of crowdsourcing
and Challenges, a previous study found that teams are 37.7%
more likely than solo authors to insert novel combinations into
familiar knowledge domains (in an analysis of 17.9 million papers

Fig. 2 Scientific approaches that facilitate the understanding of signaling networks and promote network medicine analyses. Combination of methods
used in different approaches could provide a higher level of understanding of systems of interest, compared to analyses conducted using just
one approach.
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spanning all scientific fields).108 Forming interdisciplinary
teams is a challenging task, and several background factors
could help it, for example people with lower H-index or from
lower-tier institutions team up more, and higher tenure and
prior co-authorship increase likelihood of collaboration.109

These data suggest that scientific meetings and networking as
well as a general methodological understanding to each other’s
discipline are needed to establish successful interdisciplinary
teams. Further indicators and general assessment of successful
multi-disciplinary teamworks can be found in the review of
Wooten and colleagues.110

To be able to effectively carry out interdisciplinary research
projects, it is essential that postgraduate (and above) life
science bench researchers are given the training and experience
needed for them to be able to have familiarity in formulating
precise questions that can be tackled computationally. This will
be greatly facilitated by providing opportunities for researchers
to meet and learn from each other, with these encounters
supported by expert facilitation. Accordingly, in July 2014, we
organized a five-day interdisciplinary workshop on signaling
(http://2014.signalingworkshop.org) to bring together, in an
environment designed to promote informal interpersonal inter-
actions, experts from a wide range of backgrounds (in silico
modelers, computational biologists, biochemists, geneticists,
molecular and cell biologists as well as cancer biologists and
pharmacologists). This workshop provided a context for parti-
cipants to discuss the state-of-the-art in their respective fields,
providing a forum for established scientists to share their
perspectives and expertise, as well as enabling early stage
researchers to present their projects, research questions and
large-scale experiments. Experimentalists were asked to submit
a key problem that required interdisciplinary approaches, and
the problem was discussed in subgroups led by senior scientists
with specific relevant expertise.

A key outcome to emerge from these studies and events is the
collecting and mapping of training needs, and the collaborative
definition of training programs that can effectively address the
presented issues, and provide a genuinely supportive environ-
ment for building the interdisciplinarity skills of all scientists. The
increasing number of multi-disciplinary projects showing the
power of interdisciplinary approaches and their translational
success in clinics will hopefully soon change the current funding
environment, which already encourages interdisciplinary research
but consistently provides lower funding to these proposals.111

Together, as a joint effort of researchers of different disciplines,
open to understand and work with others, we will be able to
meet the interdisciplinary requirements of network medicine,
and provide excellent opportunities for the application of such
approaches for the next generation of researchers.
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P. Csermely, T. Korcsmáros and M. Szalay-Bek +o, BMC Syst.
Biol., 2013, 7, 7.

69 F. Ramı́rez and M. Albrecht, Trends Cell Biol., 2010, 20, 2–4.
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