RSC Advances

Cite this: RSC Adv., 2017, 7, 15211

Deoxygenation of coal bed methane on $LaCoO₃$ perovskite catalyst: the structure evolution and catalytic performance

Zhenyang Zhao,† Li Wang,† Jian Ma, Yafen Feng, Xiaoming Cao, Wangcheng Zhan, Yanglong Guo, Yun Guo* and Guanzhong Lu

A series of perovskite-type LaBO₃ (B = Fe, Co, Mn, and Ni) materials have been studied as catalysts for coal bed methane (CBM) deoxygenation. Among them, LaCoO₃ shows the best catalytic performance and stability, O_2 could be completely eliminated by CH₄ to produce CO₂ and H₂O in the range of 400– 720 -C, and the complete deoxidization could be maintained at temperatures of 400, 500, 600, and 660 °C for 100 h. Furthermore, the structure of LaCoO₃ could transform from perovskite to Co/La₂O₃ through $La_2CoO_4/LaCoO_3$ and La_2CoO_4/Co_3O_4 during the process of CBM deoxygenation. The results of H₂-TPR and O₂-TPO showed the perovskite LaCoO₃ is like a smart catalyst, whereby the Co species could reversibly move into and out of the perovskite structure depending on the temperature and reaction atmosphere. When Co species exist in an oxidised state ($Co₃O₄$, La₂CoO₄ and/or LaCoO₃), the CH_4 in CBM is completely oxidized by O_2 to produce CO_2 and H_2O , the results of isotopic tracer experiments and pulse reaction demonstrate that the reaction follows the Mars–van Krevelen mechanism. However, the preferred products of the CBM deoxygenation reaction are CO and H₂ on Co/ La₂O₃ through partial oxidation of CH₄. With the structure transforming from Co/La₂O₃ to LaCoO₃ after reoxidation by $O₂$, the activity of CBM deoxygenation could be recovered. PAPER

Decoxygenation of coal bed methane on LaCoO₃

perovskint

perovskite catalyst: the structure evolution and
 $\frac{1}{2}$

Since the act Adv. 2017, 3311

Since the structure evolution and
 $\frac{1}{2}$

Since the struct

Received 17th December 2016 Accepted 13th February 2017

DOI: 10.1039/c6ra28339j

rsc.li/rsc-advances

1. Introduction

Coal bed methane (CBM), also known as coal mine gas, is a kind of flammable gas whose main component is methane.¹ The direct emission of CBM is not only a waste of energy, but also pollutes the environment, because the warming potential of $CH₄$ is over 20 times of $CO₂$ as a greenhouse gas.² At a typical gassy mine, CBM is mainly emitted in three streams: (1) gas drained from the steam before mining, containing 60–95 vol% CH4 and inert gas, which could be directly used or easily used to produce pure CH_4 ; (2) gas drained from the worked areas of the mine, e.g. goaf, containing 30-95 vol% CH₄ and some O_2 (2-6 vol%);^{3,4} (3) CH₄ ventilation air (0.1-1 vol% CH₄).⁵

For the utilization of CBM with high $CH₄$ concentration and low O_2 concentration, it is necessary to remove the O_2 from the mixture, because the existence of $O₂$ could be dangerous in the process of storage and transportation. Usually, two main methods are used in CBM deoxygenation: non-catalytic and catalytic deoxidization. The common non-catalytic methods include the adsorption of O_2 , coke burning and deep freezing

methods.⁶–⁸ Compared with non-catalytic methods, the catalytic deoxygenation of CBM is a convenient and effective method to eliminate O_2 by catalytic combustion of CH_4 ⁹⁻¹¹ However, the catalytic combustion of $CH₄$ is a violent exothermal reaction with a huge ΔH_{298} of -802.7 kJ mol⁻¹, which could induce a severe temperature runaway of the reactor and sintering of the catalyst. Meanwhile, the high reaction temperature could cause CH4 partial oxidation and a reforming reaction to produce CO and H_2 under the conditions of a large excess of CH_4 ¹²⁻¹⁴ Therefore, a desirable catalyst used in catalytic deoxygenation of CBM should not only have high activity to remove $O₂$ at low temperatures, but also avoid the production of $H₂$ and CO through side reactions (partial oxidation, cracking and/or reforming reaction) across a wide temperature range.

Furthermore, the composition of the reaction gas in the CBM deoxidization reaction varies from aerobic conditions to reducing conditions with the consumption of O_2 , which requires the catalyst to maintain high performance under oxidizing and reducing conditions simultaneously. It is another challenge for the deoxygenation catalyst.

Supported noble metal catalysts are widely used in the catalytic combustion of CH₄.¹⁵⁻²⁰ However, the excess CH₄ in the reaction gas would lead to particle oxidation or cracking reactions, and produce \rm{H}_{2} and CO at temperatures as low as 400 $^{\circ} \rm{C}$ while providing high CH₄ conversion.²¹⁻²⁶ Lyubovsky et al.²⁷ prepared Al_2O_3 -supported Pd, Pt and Ru catalysts for CH₄

YAL SOCIETY
CHEMISTRY

Key Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China. E-mail: yunguo@ecust. edu.cn; Fax: +86 21 64253703; Tel: +86 21 64253703

[†] These authors contributed equally to this work.

oxidation under both fuel-rich and fuel-lean conditions. The partial oxidation products of H_2 and CO appeared under fuelrich conditions above the light-off temperature, and their concentration increased with increasing temperature. In addition, the chemical state change of the noble metal in the process of CBM deoxygenation could affect the activity of catalyst. Lu et al.²⁸⁻³⁰ reported CBM deoxygenation on Pd-PdO-NiO/Ni-foam and found the oscillation of $O₂$ conversion to be due to the formation of inert metal Pd under the reducing conditions. The presence of PdNi (alloy) induced by the in situ reaction could eliminate this O_2 oscillation, and O_2 completely oxidized CH₄ to CO₂ and H₂O in the temperature range of 350–500 °C.

Compared with the supported noble metal catalysts, transition metal oxide catalysts (such as Cu, Co Ni etc.) also have attracted great attention.³¹⁻³³ For example, Tao et al.³⁴ prepared a nano-NiCo₂O₄ catalyst via a co-precipitation method, which showed high activity for CH_4 combustion under conditions of excess O_2 in the temperature range of 350–550 $^{\circ}$ C due to the integration of nickel cations, cobalt cations and surface lattice oxygen atoms/oxygen vacancies at the atomic scale.

The perovskite-type oxides $(ABO₃)$ have high temperature stability in hydrocarbon (C_nH_{2n+2}) oxidation^{35,36} and reforming reactions. $37,38$ For example, LaCoO₃ and partially substituted $LaCoO₃$ have been confirmed to have high activities and stabilities for the partial oxidation of CH_4 .³⁹⁻⁴¹ Generally, perovskites prepared with La in the A position, and Co, Mn, Fe or Ni in position B, are used in the catalytic combustion of CH4. ⁴²–⁴⁵ Meanwhile, the temperature of partial oxidation or reforming of CH4 over perovskite catalyst usually exceeds 600 $^{\circ}$ C, which is much higher than that of supported noble metal catalysts and the transition metal oxide catalysts.46,47 For example, Slagtern and Olsbye⁴⁸ studied the partial oxidation of CH₄ to syngas at 800 °C on La–M–O (M = Co, Ni, Rh, and Cr) perovskite catalysts, and found the main product was $CO₂$ on La–Co–O with the main phase of $LaCoO₃, Co₃O₄$, and $La₂O₃$. BSC Advances Species are controlled in the line on 07 March 2017. The measure of the published on 07 March 2017. The controlled on the station of the published on 07 March 2017. The controlled on the station of the common

Furthermore, the structure of perovskite-type oxides could be reversibly changed depending on the composition of the reaction atmosphere. Nishihata et al.⁴⁹ reported that LaFe_{0.57}Co_{0.38}Pd_{0.05}- $O₃$ exhibited high catalytic activity during long term ageing, and the Pd reversibly moved into and out of the perovskite lattice during the cycle between oxidative and reductive atmospheres. Hence, the perovskite type catalyst may be a good candidate as a catalyst for CBM deoxygenation, and may be able to remove $O₂$ from the CBM via CH₄ combustion at a relatively low temperature, and maintain total oxidation across a wide temperature range by prohibiting partial oxidation and other side reactions.

In this work, perovskite-type oxides $LaBO₃$ (B = Co, Mn, Fe and Ni) were prepared, and the activity and stability of $LaBO₃$ for CBM catalytic deoxygenation were investigated. The evolution of $LaCoO₃$ perovskite structure in the reaction and reaction mechanism were also explored.

2. Experimental section

2.1 Catalyst preparation

The perovskite-type oxides (LaBO₃, B = Co, Mn, Fe and Ni) were prepared by the co-precipitation method. A stoichiometric amount of metal nitrate mixture solution and sodium hydroxide solution were simultaneously dropped into a NaOH solution with pH of 9–10 under stirring at 60 $^\circ$ C. The pH value of the mixture solution was kept in the range of 9–10 during the whole precipitation process. The obtained precipitate was aged at 60 \degree C for 2 h. After being washed by deionized water to neutral pH, the precipitate was filtered and dried at 100 $^{\circ}$ C for 12 h then calcined in air at 750 \degree C for 3 h to obtain the LaBO₃ catalysts. The BET surface areas of the prepared $LaBO₃$ are in the range of 12 to 15 m^2 g^{-1} .

2.2 Catalyst characterization

The powder X-ray diffraction patterns (XRD) of catalysts were obtained with a RigakuD/max 2550 VB/PC diffractometer with a Cu K α radiation ($\lambda = 1.54056$, scanning step 0.02°). Spectra were collected in a range of $2\theta = 10-80^\circ$ with a scanning rate of 6° min⁻¹. In order to obtain more details about the structure of the sample after reduction, the mapping of the elements was measured on the JOEL 2100 instrument operating at 200 kV.

The X-ray photoelectron spectroscopy (XPS) spectra were recorded on an AXIS-Ultra-DLD spectrometer with a Al Ka X-ray source (1486.6 eV). The base pressure inside the analysis chamber was 3 \times 10⁻¹⁰ Torr. The XPS spectra of the selected elements were measured with the constant analyzer pass energy of 40 eV. All binding energies (BE) were referenced to the adventitious C 1s peak ($BE = 284.8$ eV).

The specific surface areas of the catalysts were measured using the N_2 adsorption isotherm at -196 °C by using an automatic Micromeritics ASAP 2020 analyzer.

The temperature-programmed reduction of H_2 (H₂-TPR) experiments were carried out by a conventional flow system equipped with a thermal conductivity detector (TCD). 100 mg catalyst was calcined at 400 $^{\circ}$ C for 1 h in air before the TPR reaction, and then cooled to room temperature. The pretreated catalyst was heated in a flow of 5 vol% H_2/N_2 (45 mL min⁻¹) at a heating rate of 10 $^{\circ}\textrm{C}$ min from room temperature to 800 $^{\circ}\textrm{C}.$ After H₂-TPR, the catalyst was maintained at 800 $^{\circ}$ C for 1 h in a flow of 5 vol% $\rm H_2/N_2$ (45 $\rm mL\,min^{-1})$, then purged with pure He for 1 h. After cooling to room temperature in a He flow, the temperature programmed oxidation of O_2 (O₂-TPO) was performed using the same apparatus; 1 vol% O2/He (50 mL $\rm min^{-1})$ was used in O_2 -TPO, and the composition of the outlet gas was monitored by an on-line quadrupole mass spectrometer (IPC 400, INFICON Co. Ltd.).

Isotope tracer experiments were conducted in the quartz tube reactor and the effluent gas was monitored by an on-line quadrupole mass spectrometer (MS, IPC 400, INFICON Co. Ltd.).

The catalyst was pretreated at 700 $^{\circ} \mathrm{C}$ for 2.5 h in pure He at 50 mL min $^{-1}$. 500 mg catalyst was used in the pulse experiments, 517.3 µL of 12 vol% $^{18}O_2/6$ vol% CH₄ was pulsed into the reactor 20 times. 200 mg catalyst was used in the continuous isotope tracer experiments at different designated temperatures, 12 vol% $^{18}O_2/6$ vol% CH₄ was used as the reaction gas.

The reaction orders of O_2 and CH₄ were measured in the temperature range of 340 to 410 $^{\circ}$ C with feed steams of 4.0-12.0

kPa O_2 , CH₄ and N₂. 1.0 kPa CH₄ was used to investigate the catalytic combustion of CH₄, and 50.0 kPa CH₄ was used in the deoxidization of CBM. The O_2 /CH₄ conversion was adjusted to below 15% by varying the space velocity in the range of 6000– 72 000 mL g^{-1} h⁻¹ so as to eliminate the thermal effect and diffusion effect.

 $CH₄$ and $O₂$ pulse experiments were conducted on the same apparatus as that for the isotope tracer experiments. The procedures were as follows: (1) 10 vol% CH₄/He was pulsed into 500 mg catalyst 20 times (CH₄-1st); (2) 20 pulses of pure O_2 was passed through the catalyst bed; (3) step 1 was repeated again (CH₄-2nd). The pulse volume was 517.3 μ L.

2.3 Evaluation of the catalytic performance

The catalytic activities of LaBO₃ ($B = Co$, Mn, Fe and Ni) catalysts for the simulated deoxygenation of CBM were tested in a fixed bed quartz tubular reactor at atmospheric pressure, 300 mg catalyst (40–60 mesh) diluted with 2 g silica sand (20–40 mesh) was used. The feed gas, containing 50 vol% CH₄, 6 vol% O_2 and N_2 to balance, was passed through the catalytic bed at a flow rate of 30 mL $\mathrm{min}^{-1}.$ The temperature of the catalyst bed was measured by a thermocouple inserted in the top of the catalyst bed, and the heating rate was 4 $^{\circ}\mathrm{C}\min^{-1}$. An on-line gas chromatograph (Agilent 7890) was used to monitor the composition of the outlet gas. The catalyst activity was expressed by T_{10} and T_{90} of O_2 , which corresponded to the reaction temperatures required for 10% and 90% O_2 conversion, respectively.

Because the excess $CH₄$ in the feed gas could lead to partial oxidation or the reforming reaction to produce CO and H_2 at high temperature, the temperature range between the lowest temperature of complete conversion (LTCC) of O_2 and the initial temperature of H_2 formation is defined as the operation window of the catalyst for the deoxygenation reaction.

3. Results

3.1 Catalytic activities of $LaBO₃$

The catalytic activities of LaBO₃ (B = Co, Fe, Mn and Ni) for CBM deoxygenation are shown in Fig. 1. The type of transition metal in the B-site shows a significant effect on the catalytic activity of the perovskites. LaFe $O₃$ shows the lowest activity for O_2 elimination, T_{10} and T_{90} are 350 and 450 °C, respectively. Meanwhile, $LaCoO₃$ exhibits the highest catalytic activity, the T_{10} and T_{90} are 300 and 390 °C, respectively. Combined with the results of the BET surface area in Table 1, the activity of the catalyst is not directly related to its surface area.

The excess CH_4 in the feed gas could produce H_2 and CO by the partial oxidation or reforming reaction at high reaction temperature (>700 $^{\circ}$ C). The production of \rm{H}_{2} following the reaction temperature in CBM deoxygenation on different catalysts is shown in Fig. 1b. CO was observed simultaneously but is not shown. The results in Fig. 1b show the initial sequence of H_2 formation is $LaFeO₃ < LaMnO₃ < LaNiO₃ < LaCoO₃$, and the $H₂$ formation on LANiO_3 increases more rapidly than the others when the temperature exceeds 700 $^{\circ}$ C. Combined with the

Fig. 1 The conversion of $O₂$ (a) and production of H₂ (b) in the deoxygenation reaction by $LaBO₃$ catalysts as a function of temperature.

results in Fig. 1a, $LaCoO₃$ shows the widest operation window, where O_2 could be completely eliminated by CH_4 in the temperature range of 400 to 720 $^{\circ}$ C. Continuously increasing the reaction temperature, the amount of H_2 and CO increased rapidly. Therefore, catalyst LaCoO₃ was selected for the further investigation in the following sections.

The stability of $LaCoO₃$ for deoxygenation reaction was investigated at temperatures of 360, 400, 500, 600, and 660 $^{\circ} \mathrm{C}$ for 100 h. The results in Fig. 2 show $O₂$ conversion was maintained at 360 \degree C at about 75% for 100 h, and O_2 could be completely eliminated at 400 and 660 $^{\circ}$ C for 100 h, and H₂ and CO were not detected during the whole experiments. The same results were obtained at 500 and 600 \degree C, which are not shown. After reaction at 660 $^{\circ}$ C for 100 h, the light-off activity of the aged catalyst is nearly consistent with the fresh one (Fig. 2b), which indicates that $LaCoO₃$ has high stability for the deoxygenation reaction in the temperature range of 400–660 $^{\circ}$ C.

3.2 XRD

The XRD patterns of the fresh LaBO₃ catalysts are exhibited in Fig. 3. The prepared $LaBO₃$ (Ni, Mn and Co) show a typical hexagonal perovskite structure. For catalyst $LaFeO₃$, the major phase is orthorhombic perovskite structure, and some weak diffraction peaks corresponding to $Fe₂O₃$ and $La₂O₃$ are also

Table 1 $\,$ The cell parameters a , crystallite size b and BET area of the perovskites

	LaCoO ₃	LaFeO ₃	LaMnO ₃	LaNiO ₃
Spatial group	Hexagonal	Orthorhombic	Hexagonal	Hexagonal
a(A)	5.4358	5.4672	6.0731	5.5953
b(A)	5.4358	6.7968	6.0731	5.5953
c(A)	13.0643	28.8799	13.4010	5.6679
Crystallite size (nm)	39.1	53.72	10.7	26.4
BET area $(m^2 g^{-1})$	11	16	22	14

 a The cell parameters were obtained by Rietveld refinement calculations from the diffractogram of the structures. b The crystallite size was calculated by the Debye–Scherrer formula.

Fig. 2 The stability of LaCoO₃ measured at 360, 400 °C (a) and 660 °C (b). In part (b) the catalytic activity of fresh $LaCoO₃$ (\blacksquare) and after reaction at 660 °C for 100 h (\bullet) are compared.

detected at $2\theta = 33$, 35, 49 and 54 $^{\circ}$ and $2\theta = 26$, 30, 39 and 52 $^{\circ}$, respectively. The cell parameters, crystallite size and BET surface area of the perovskites are list in Table 1.

Fig. 4 shows the XRD patterns of $LaCoO₃$ after stability tests at different temperatures. Compared with the results in Fig. 3, there is no observable difference in the $LaCoO₃$ structure after reaction at 400 and 500 $^{\circ} \mathrm{C}$ for 100 h (Fig. 4a and b), which indicates the stability of the perovskite structure. However, after reaction at 600 $^{\circ} \mathrm{C}$ for 100 h (Fig. 4c), the structure of LaCoO $_3$ transforms from perovskite into a mixture of perovskite $(LaCoO₃, 2\theta = 23, 33, 40, 53 \text{ and } 59^{\circ})$ and perovskite-like $\begin{array}{rcl}\n\text{(La}_2\text{CoO}_4, & 2\theta &=& 24, 32, 43, 47 \text{ and } 65^\circ\text{).} \end{array}$ Continuously increasing the reaction temperature to 660 °C, only perovskitelike La_2CoO_4 and Co_3O_4 crystal phases are detected after 100 h

Fig. 3 XRD patterns of LaBO₃ (\diamond : perovskite; \bullet : Fe₂O₃; \bullet : La₂O₃).

reaction (Fig. 4d). Combined with the results in Fig. 2, it could be concluded that the structure change of $LaCoO₃$ is dependent on the reaction temperature, but this structure evolution does not bring an apparent difference in the catalytic performance of LaCoO₃ for CBM deoxygenation.

When the deoxygenation reaction is finished at 800 $^{\circ}$ C, the perovskite structure of $LaCoO₃$ is completely destroyed, and only La₂O₃ is detected at 26, 30, 39 and 52 $^{\circ}$ (Fig. 4e). The results

Fig. 4 The XRD patterns of the $LaCoO₃$ after reaction at 400 (a), 500 (b), 600 (c), and 660 \degree C (d) for 100 h and 800 \degree C (e), the re-oxidation of sample (e) at 750 °C in air (f) (\diamondsuit : La₂CoO₄; \bullet : Co₃O₄; \bullet : La₂O₃).

in Fig. 1 show the production of H_2 and CO when the reaction temperature was higher than 720 $^{\circ}{\rm C,}$ which could lead to the reduction of LaCoO₃.⁴⁶ The diffraction peaks of Co species cannot be observed, which means Co species are highly dispersed or below the detection limit of XRD. However, it is worth noting that the completely destroyed $LaCoO₃$ could be reverted back to the perovskite structure after reoxidation at 750 °C in air (Fig. 4f).

3.3 XPS characterization

XPS characterization is performed to investigate the surface chemical state of the catalysts. Fig. 5 shows the Co 2p spectra of LaCoO₃ after reaction at different temperatures (400, 500, 600, and 660 $^{\circ}$ C) for 100 h. The resolution of the asymmetrical spectra of Co 2p shows the co-existence of two species at BE of 779.8 and 782.1 eV, which could be ascribable to Co^{3+} and Co^{2+} , respectively.50,51

The surface Co^{2+}/Co^{3+} ratio of LaCoO₃ after reaction is much higher than that of fresh catalyst, and the Co^{2+}/Co^{3+} ratio increases with the increase in the reaction temperature as shown in Table 2, which indicates the partial reduction of $LaCoO₃$ during the reaction, and coincides with the results of XRD shown in Fig. 4. The predominant crystal phase changes from perovskite to a mixture of La_2CoO_4 and Co_3O_4 through the mixed phase of $LaCoO₃$ and $La₂CoO₄$, the average chemical state of the surface Co species is gradually reduced during this process.

3.4 Temperature programmed reaction

In order to further investigate the effects of reaction gas and temperature on structure evolution of $LaCoO₃$ during the reaction, experiments of H_2 -TPR and O_2 -TPO are carried out.

The H₂-TPR profile of fresh LaCoO₃ shows three reduction peaks in Fig. 6a. The peaks in the temperature range of 200– 500 $^{\circ}$ C correspond to the reduction of the oxygen adsorbed on the catalyst surface and reduction of $Co³⁺$ to $Co²⁺$, the high temperature peak at 500–800 °C could be assigned to the reduction of Co^{2+} to $Co^{46,52,53}$ The XRD pattern of Fig. 7a demonstrates that the perovskite structure of LaCoO₃ has been completely destroyed and converted to a mixture of metallic Co

Fig. 5 XPS spectra of fresh LaCoO₃ (a) and aged LaCoO₃ after stability tests at temperatures of 400 (b), 500 (c), 600 (d) and 660 $^{\circ}$ C (e) for 100 h.

Table 2 The surface oxygen content $(\%)$ and Co^{2+}/Co^{3+} ratio of $LaCoO₃$ obtained by XPS analysis

Sample ^{a}	Surface oxygen content $(\%)$	Co^{2+}/Co^{3+}
Fresh	56.75	0.48
400 $^{\circ}$ C	53.72	0.83
500 °C	49.00	1.26
600 °C	49.23	3.29
660 \degree C	52.68	3.59

 a After the stability test at specified temperature for 100 h.

and La_2O_3 after H₂-TPR, which coincides with that of $LaCoO_3$ after reaction at 800 °C (Fig. 4).

After H_2 -TPR, O_2 -TPO of the reduced sample is performed. The result in Fig. 6b shows there are two O_2 consumption peaks: a significant peak is located at the range of $200-300$ °C and a weak peak is observed at near 700 $^{\circ}$ C.

For the sample after H_2 -TPR, XRD results show that the main phases are Co₃O₄ and La₂O₃ after reoxidation at 300 $^{\circ}$ C for 0.5 h (Fig. 7b), which indicates the $O₂$ consumption peak at range of $200-300$ °C in Fig. 6b should correspond to the oxidation of metal Co to Co₃O₄ (Co/La₂O₃ + O₂ \rightarrow Co₃O₄ + La₂O₃). Because the oxidation of metal Co is a strong exothermic reaction, the accumulated heat could result in the direct oxidation of some metallic Co species to $Co³⁺$. When the oxidation temperature is increased to 750 $^{\circ}$ C, the perovskite structure of LaCoO₃ was recovered $(Co_3O_4 + La_2O_3 + O_2 \rightarrow LaCoO_3)$, the main phase of Paper

In Fig. 1 show the published on 12, and Co-han the reaction. Take 2 The surface organ context (3) and Co²²/20²⁵ and or method on the temperature was higher material causals Co-hand common be computed under de

Fig. 6 H_2 -TPR (a) and O₂-TPO (b) profiles of LaCoO₃.

Fig. 7 (a) XRD patterns of LaCoO₃ reduced by H₂ at 800 °C (a); reoxidation by O_2 at 300 °C (b) and 750 °C (c). \bullet , Co₃O₄; \bullet , La₂O₃.

the sample is perovskite with a minor $Co₃O₄$ phase observed at $2\theta = 37^{\circ}$ (Fig. 7c), which corresponds to the O_2 consumption at the high temperature range in Fig. 6b.

3.5 Kinetic analysis

Fig. 8 shows the pressure-dependent reaction rates on the partial pressure of $\mathrm{O}_2\left(P_{\mathrm{O}_2}\right)$ from 4.0 to 12.0 kPa while keeping

Fig. 8 $\,$ ln $r_{\rm O_2}$ as a function of ln $P_{\rm O_2}$ over LaCoO₃: (a) at 420 $^{\circ}$ C, the feed gas consisted of 4–12% O₂ and 1% CH₄ at a space velocity of 30 000 mL g $^{-1}$ h $^{-1}$; (b) at 370 °C, the feed gas consisted of 4–12% O_2 and 50% CH₄ at a space velocity of 48 000 mL g⁻¹ h⁻¹.

the partial pressure of CH_4 (P_{CH_4}) at 1.0 o 50.0 kPa, which corresponds to the catalytic combustion of $CH₄$ and deoxidization of CBM, respectively.

Under O_2 rich conditions, the O_2 reaction rate doesn't change with an increase in P_{O_2} , yielding an order of 0 with respect to O_2 at 420 °C. The fact that reaction order of O_2 is about zero shows the $O₂$ concentration hardly affect the rate of O_2 consumption, which implies the activation of CH₄ is the rate determination step for CH₄ combustion under O_2 excess.^{54,55}

However, under oxygen lean conditions, the $O₂$ reaction rates increases with an increase in P_{O_2} , yielding an order of 0.25 with respect to O_2 at 370 °C, which demonstrates that the activation of $O₂$ is a key factor for CBM deoxygenation reaction. The apparent activation energy (E_a) of deoxygenation reaction on LaCoO₃ is 121 kJ mol⁻¹, as shown in Fig. 9.

3.6 Isotopic tracer experiments

The isotopic tracer pulse reaction results of $^{18}O_2$ + CH₄ are shown in Fig. 10. When the temperature is 600 °C, $^{18}O_2$ (O₂-36) is completely consumed in the 20 pulses on the $LaCoO₃$ (Fig. 10a), and the production of $C^{16}O_2$ ($m/z = 44$) could be observed at the same time. Furthermore, any CO_2 containing ¹⁸O ($m/z = 46$ and 48) are not detected, which indicates CH₄ reacts with the lattice oxygen rather than gas ${}^{18}O_2$. The same results are obtained at the temperature of 700 °C (Fig. 10b).

When the feed gas of 12 vol% $^{18}O_2/6$ vol% CH₄ continuously passes through the catalyst bed at 600 °C, the result in Fig. 11a shows that $C^{16}O_2$ is produced immediately and exists as the dominant product in the first 300 s, then the content of $C^{16}O_2$ obviously decreases with the increase of reaction time. Meanwhile, the content of $C^{16}O^{18}O$ (46) and $C^{18}O_2$ (48) increases gradually. After 40 min, $C^{18}O_2$ becomes the main product, next is $C^{16}O^{18}O$. Similar results are obtained at 700 °C, as shown in Fig. 11b. Combined with the results in Fig. 10, it may be suggested that the deoxidization reaction of CBM may follow the Mars-van Krevelen mechanism: the CH₄ in the feed gas firstly reacts with lattice oxygen and creates oxygen vacancies, which could be replenished by the diffusion of lattice oxygen from bulk to surface and the adsorption and activation of gas O_2 .

Fig. 9 Arrhenius plot of the reaction rate (ln r) vs. $1/T$ for $O₂$ deoxygenation over LaCoO₃.

Fig. 10 The pulses test of catalyst $LaCoO₃$ under the conditions of 12 vol% 18 O₂/6 vol% CH₄ at 600 (a) and 700 °C (b).

Fig. 11 The continuous reaction of 12 vol $\frac{\text{m}}{2}$ T₂ /6 vol% CH₄ balanced with N_2 on LaCoO₃ at 600 (a) and 700 °C (b)

3.7 Pulse reaction

The results in Fig. 4 showed structure transformation of $LaCoO₃$ during the CBM deoxygenation reaction. Separated CH₄ and O_2 pulse reactions on $LaCoO₃$ and pre-reduced $LaCoO₃$ at different temperatures are performed to explore the effects of $LaCoO₃$ structure on the CBM deoxygenation reaction and the formation mechanism of byproducts (H_2 and CO); the results are shown in Fig. 12 and 13.

For the CH₄ pulse reaction on LaCoO₃ at 700 $^{\circ}$ C (CH₄-1st, Fig. 12a), most of the $CH₄$ is consumed in 20 pulses, accompanied by the production of $CO₂$ and $H₂O$ simultaneously. At the same time, weak signals of CO $(m/z = 28)$ are also detected. Based on the standard spectra of $CO₂$, the CO signals may be induced by dissociative ionisation of $CO₂$ in the chamber of mass spectrometer. After the CH₄ pulses, 20 pulses of $O₂$ were passed through catalyst bed, $CO₂/CO$ and $H₂O$ were not detected during this process (not shown).

For the second run of CH_4 pulse reactions (CH₄-2nd, Fig. 12b), the similar results to those in CH_4 -1st are obtained, which indicates $CH₄$ is oxidized by the lattice and/or adsorbed oxygen on LaCoO₃ to produce $CO₂$ and $H₂O$, but insufficient lattice oxygen or limited diffusion rate of lattice oxygen from bulk to surface leads to the residual CH₄.

The signals of CO $(m/z = 28)$ in the pulse reaction are induced by the dissociative ionisation of $CO₂$ in the chamber of mass spectrometer, while not from the reaction production. We have already explained this phenomenon in the $CH₄$ pulse reaction on $LaCoO₃$ at 700 °C. However, the results in Fig. 1 show the production of CO and H_2 in the deoxidization reaction when the temperature is higher than 720 $^\circ{\rm C}.$ It should be noted that the structure of the perovskite $LaCoO₃$ transforms to Co/ $La₂O₃$ in the deoxidization reaction at a temperature higher than 720 °C (Fig. 4).

C (b). Fig. 12 CH₄ pulse reaction at 700 (a, b) and 800 °C (c, d) on LaCoO₃ (a and c are the first run of CH_4 pulse reaction, b and d are the second run).

Fig. 13 CH_4 pulse reaction on Co/La₂O₃ at 700 °C (a: first run, b: second run).

In order to further investigate CBM deoxygenation reaction on $Co/La₂O₃$, the LaCoO₃ with perovskite structure is pretreated with 10% $\rm H_2/N_2$ at 800 °C to obtain Co/La $\rm _2O_3$ (Fig. 7), then the pulse reactions are performed after purging with He for 0.5 h. In the first run of CH₄ pulse reaction on Co/La₂O₃ at 700 $^{\circ}$ C (Fig. 13a), most of the CH₄ is consumed while H₂ and CO is generated, and the amount of H_2 and CO significantly increases with an increase in the number of pulses. Meanwhile, a trace amount of $CO₂$ is detected at the beginning of the pulse reaction, and the amount of $CO₂$ decreases gradually. After 3 pulses, the $CO₂$ could hardly be detected.

During the following O_2 pulse reaction, O_2 is completely consumed in the 20 pulses due to the oxidation of $Co/La₂O₃$. $CO/CO₂$, H₂ and H₂O are not observed during this process, the results are not shown.

After the O_2 pulse reaction, the second run of the CH₄ pulse reaction (CH4-2nd) is performed. Fig. 13b shows the production of $CO₂$, CO and $H₂$, and their amount remains nearly constant during the 20 pulses, which is significantly different from the results in Fig. 13a. It may be induced by the partial $Co/La₂O₃$ oxidation to CoO_x/La_2O_3 by O_2 during the process of the O_2 pulse reaction. The formation of CoO_x/La_2O_3 decreases the amount of $Co/La₂O₃$, which leads to the significant decrease of CO and H_2 .

4. Discussion

The results in Fig. 1 and 2 show $LaCoO₃$ behaves with high activity and stability for CBM deoxygenation across a wide temperature range, O_2 could be completely eliminated by CH_4 to produce CO₂ and H₂O in the range of 400–720 °C, and the activity of $LaCoO₃$ could be maintained after reaction at 400, 500, 600 or 660 °C for 100 h.

Roseno et al.³⁹ investigated the structure change of $LaCoO₃$ in partial oxidation of $CH₄$, and found that high temperature reduction could decompose the perovskite structure of LaCoO₃ to Co/La₂O₃, and metallic Co was oxidized to CoO in O_2 , and further reacted with La_2O_3 to form La_2CoO_4 with spinel structure. During CBM deoxidization reaction, the structure of LaCoO₃ gradually transfers from perovskite to $Co/La₂O₃$ depending on the reaction temperature (Fig. 4). The H_2 -TPR also showed the structure evolution of $LaCoO₃$ induced by the reduction of H_2 in the feed gas. Meanwhile, the destructed perovskite structure could be recovered from $Co/La₂O₃$ by

calcination or reoxidation (Fig. 4 and 7). The structure evolution of $LaCoO₃$ depending on the temperature and reaction gas is shown schematically in Fig. 14, which demonstrates that Co species could reversibly move into and out of the perovskite structure depending on the temperature and reaction atmosphere.

Based on the results in Fig. 7, the $LaCoO₃$ has been reduced by 5 vol% H_2/N_2 (45 mL min $^{-1}$) at 750 °C for 30 min to obtain $Co/La₂O₃$ (LaCoO₃-R), then $Co/La₂O₃$ is reoxidized to perovskite $LaCoO₃$ (LaCoO₃-R-O). The activities of CBM deoxygenation in Fig. 15 show that $LaCoO₃-R$ behaves with much higher activity than LaCoO₃-R-O, and there are no by-products of CO and H_2 before 720 °C, as with LaCoO₃-R-O. Compared with the result in Fig. 1, $LaCoO₃-R-O$ shows nearly the same activity as fresh $LaCoO₃$. Combined with the results in Fig. 6 and 7, the apparently enhanced activity of $LaCoO₃-R$ in the low temperature range may be derived from the oxidation of metallic Co by O_2 . The above results indicate that even if the structure of $LaCoO₃$ with perovskite is completely destroyed when the CBM deoxygenation temperature exceeds 720 $^{\circ}$ C, the structure and activity could be recovered after calcination at 750 \degree C in O₂. Therefore, $LaCoO₃$ like a smart catalyst, its structure could be reversibly transformed between $Co/La₂O₃$, $La₂CoO₄$ and $LaCoO₃$ depending on the temperature and reaction atmosphere. This reversible structure evolution of $LaCoO₃$ could meet the challenge of the shift between oxidative and reductive atmosphere typically encountered in CBM deoxygenation.^{49,56,57} **PSC Arbaness**

Properties Common access Articles. Published on 07 March 2017. The surface are not more than the common access Article is the theoretical the common access Article is likely (α), α) and α and α

 $CH₄$ combustion over metal oxides catalysts is known to follow a redox mechanism, and a variety of kinetic models for the catalytic combustion of methane, such as the Eley–Rideal, Langmuir-Hinshelwood or Mas-van Krevelen mechanism.^{58,59} The results of isotopic tracer experiments in Fig. 10 and 11 confirms the deoxidization reaction of CBM on $LaCoO₃$ following the Mas-van Krevelen mechanism: the lattice oxygen reacts with CH_4 to produce CO_2 , H_2O and oxygen vacancies, and the surface vacancies could be replenished by bulk lattice oxygen and gas O_2 , which indicates the activation of O_2 should be a key factor for CBM deoxygenation reaction. The kinetic data in Fig. 8 also confirmed this. As shown in Fig. 14 , LaCoO₃ could continuously provide lattice oxygen, accompanying the reduction of perovskite structure to $Co/La₂O₃$; meanwhile, $O₂$ gas could be adsorbed and dissociated on the surface, and

Fig. 14 The structure evolution of $LaCoO₃$ depending on the reaction gas and temperature.

Fig. 15 The conversion of $O₂$ (a) and production of H₂ (b) over pretreated $LaCoO₃$ under different conditions.

incorporated into the lattice of the crystal as O^{2-} species.^{60,61} And therefore, the perovskite LaCoO₃ acted as an oxygen pump toward CBM deoxidization reaction.⁶²

The results in Fig. 1 show the $O₂$ could be completely eliminated by CH $_4$ in the temperature range of 400 to 720 $^{\circ}$ C. As shown in Fig. 14, LaCoO₃ could exist as perovskite, $La_2CoO₄/$ $Co₃O₄$ and $La₂CoO₄/LaCoO₃$ in this temperature range, which indicates that the total oxidation of CH_4 by O_2 will take place on the catalyst despite the structure transformation of $LaCoO₃$ from perovskite to La_2CoO_4/Co_3O_4 .

When the reaction temperature exceeds 720 $^{\circ}$ C, the CO and $H₂$ begin to form and their amounts increase significantly with continuously increasing the temperature (Fig. 1). However, the CO and H_2 could not be observed during the CH₄ pulse reaction on LaCoO $_3$ even when reaction temperature is 800 $^{\circ}$ C; the CH $_4$ pulse reaction on reduced $LaCoO₃(Co/La₂O₃)$ only produces CO and H_2 at 700 °C (Fig. 13a). Meanwhile, when Co/La₂O₃ is partially oxidized to CoO_x/La_2O_3 , the co-existence of CoO_x/La_2O_3

and $Co/La₂O₃$ results in the formation of $CO₂$ and a significant decrease of $CO/H₂$.

These results show the products of CBM deoxygenation reaction mainly depend on the structure of $LaCoO₃$. When the Co species exists in an oxidised state, such as perovskite, La_2CoO_4 or CoO_x/La_2O_3 , the CBM deoxygenation only produces $CO₂$ and H₂O by the total oxidation of CH₄. If Co species exists as metal, such as $Co/La₂O₃$, the preferred reaction is partial oxidation of $CH₄$, which would lead to the formation of CO and $H₂$.

Therefore, the CBM deoxygenation reaction on $LaCoO₃$ at different temperatures is shown schematically in Fig. 16. When the reaction temperature is below 720 $\mathrm{^{\circ}C},$ CH₄ reacts with the lattice oxygen to generate $CO₂$ and $H₂O$ despite the structure transformation from perovskite to the mixture of $Co₃O₄$ and $La₂CoO₄$. With further increasing the reaction temperature, the lattice oxygen will be depleted due to the limited amount of $O₂$ in the feed gas and the perovskite structure of $LaCoO₃$ will be completely destroyed. Then, the partial oxidation of $CH₄$ could take place on the surface of metallic Co to produce by-products of CO and H_2 .

5. Conclusions

The catalyst $LaCoO₃$ prepared by the co-precipitation method exhibits high activity and catalytic stability for the CBM deoxidization reaction across a wide temperature range. The $O₂$ could be completely eliminated by CH_4 to produce CO_2 and H_2O in the range of 400-720 $^{\circ}$ C, and complete deoxidization could be maintained in the temperature range of 400–660 \degree C for 100 h.

The perovskite $LaCoO₃$ acts as a smart catalyst during the process of CMB deoxidization; the structure of $LaCoO₃$ gradually transforms from perovskite to $Co/La₂O₃$ through $La₂CoO₄/$ LaCoO₃ and La₂CoO₄/Co₃O₄ with the increasing reaction temperature, and these different structures could be transformed into each other depending on the reaction temperature and reaction gas.

When Co species exists as $Co₃O₄$, La₂CoO₄ and/or LaCoO₃, CH_4 is completely oxidized by O_2 to produce CO_2 and H_2O . The deoxidization of CBM on catalysts follows the Mars–van Krevelen mechanism, and the activation of $O₂$ was a key factor in the deoxidization of CBM. When Co species exist as metal Co (Co/ $La₂O₃$), the preferred reaction in CBM deoxygenation would be partial oxidation, which generates CO and H_2 . However, the complete oxidation of CH_4 could be recovered with the structure transformation of $Co/La₂O₃$ to LaCoO₃ after reoxidation by O₂.

Acknowledgements

This project was supported financially by the National Key Research and Development Program of China (2016YFC0204300), the National High Technology Research and Development Program of China (2015AA034603), NSFC of China (21171055, 21333003, 21571061), the "Shu Guang" Project of the Shanghai Municipal Education Commission (12SG29), and the Commission of Science and Technology of Shanghai Municipality (15DZ1205305).

Notes and references

- 1 L. I. Guo-jun, Procedia Earth Planet. Sci., 2009, 1, 94–99.
- 2 M. N. Debbagh, C. S. M. d. Lecea and J. Pérez-Ramírez, Appl. Catal., B, 2007, 70, 335–341.
- 3 A. Olajossy, A. Gawdzik, Z. Budner and J. Dula, Chem. Eng. Res. Des., 2003, 81, 474–482.
- 4 D. Zhong and P. Englezos, Energy Fuels, 2012, 26, 2098–2106.
- 5 S. Su and J. Agnew, Fuel, 2006, 85, 1201–1210.
- 6 X. Guo, J. Ren, C. Xie, J. Lin and Z. Li, Energy Convers. Manage., 2015, 100, 45–55.
- 7 J. Ren, C. Xie, J.-Y. Lin and Z. Li, Process Saf. Environ. Prot., 2014, 92, 896–902.
- 8 D. W. X. C. W. Peng, Y. Z. X. Z. Keda and D. Yiying, Coal Conversion, 2009, 4, 021.
- 9 C. Ö. Karacan, F. A. Ruiz, M. Cotè and S. Phipps, Int. J. Coal Geol., 2011, 86, 121–156.
- 10 C. J. Bibler, J. S. Marshall and R. C. Pilcher, Int. J. Coal Geol., 1998, 35, 283–310.
- 11 T. Thielemann, B. Cramer and A. Schippers, Org. Geochem., 2004, 35, 1537–1549.
- 12 C. H. Bartholomew, Appl. Catal., A, 1993, 107, 1–57.
- 13 C. H. Bartholomew, Appl. Catal., A, 2001, 212, 17–60.
- 14 F. Yin, S. Ji, P. Wu, F. Zhao and C. Li, J. Catal., 2008, 257, 108– 116.
- 15 D. Kim, S. Woo, J. Lee and O. B. Yang, Catal. Lett., 2000, 70, 35–41.
- 16 R. D. Waters, J. J. Weimer and J. E. Smith, Catal. Lett., 1994, 30, 181–188.
- 17 L. F. Liotta, G. Di Carlo, A. Longo, G. Pantaleo and A. M. Venezia, Catal. Today, 2008, 139, 174–179.
- 18 A. Maione, F. André and P. Ruiz, Appl. Catal., A, 2007, 333, 1-10.
- 19 T. V. Choudhary, S. Banerjee and V. R. Choudhary, Appl. Catal., A, 2002, 234, 1–23.
- 20 M. Cargnello, J. J. Delgado Jaen, J. C. Hernandez Garrido, K. Bakhmutsky, T. Montini, J. J. Calvino Gamez, R. J. Gorte and P. Fornasiero, Science, 2012, 337, 713–717.
- 21 A. E. York, T. Xiao and M. H. Green, Top. Catal., 2003, 22, 345–358.
- 22 Y. H. Hu and E. Ruckenstein, Adv. Catal., 2004, 48, 297–345.
- 23 S. Yang, J. N. Kondo, K. Hayashi, M. Hirano, K. Domen and H. Hosono, Appl. Catal., A, 2004, 277, 239–246.
- 24 H. Y. Wang and E. Ruckenstein, J. Catal., 2001, 199, 309–317.
- 25 V. R. Choudhary, B. Prabhakar, A. M. Rajput and A. S. Mamman, Fuel, 1998, 77, 1477–1481.
- 26 V. R. Choudhary, A. M. Rajput and V. H. Rane, Catal. Lett., 1992, 16, 269–272.
- 27 M. Lyubovsky, L. L. Smith, M. Castaldi, H. Karim, B. Nentwick, S. Etemad, R. LaPierre and W. C. Pfefferle, Catal. Today, 2003, 83, 71–84.
- 28 Q. Zhang, X.-P. Wu, Y. Li, R. Chai, G. Zhao, C. Wang, X.-Q. Gong, Y. Liu and Y. Lu, ACS Catal., 2016, 6, 6236–6245.
- 29 Q. Zhang, Y. Li, R. Chai, G. Zhao, Y. Liu and Y. Lu, Appl. Catal., B, 2016, 187, 38–248.
- 30 Q. Zhang, X.-P. Wu, G. Zhao, Y. Li, C. Wang, Y. Liu, X.-Q. Gong and Y. Lu, Chem. Commun., 2015, 51, 12613– 12616.
- 31 D. Dissanayake, M. P. Rosynek, K. C. C. Kharas and J. H. Lunsford, J. Catal., 1991, 132, 117–127.
- 32 A. C. Ferreira, A. P. Gonçalves, T. A. Gasche, A. M. Ferraria, A. M. B. d. Rego, M. R. Correia, A. M. Bola and J. B. Branco, J. Alloys Compd., 2010, 497, 249–258.
- 33 B. Christian Enger, R. Lødeng and A. Holmen, Appl. Catal., A, 2008, 346, 1–27.
- 34 F. F. Tao, J.-j. Shan, L. Nguyen, Z. Wang, S. Zhang, L. Zhang, Z. Wu, W. Huang, S. Zeng and P. Hu, Nat. Commun., 2015, 6, 7798. **SC Articles: SC Articles Article Commons Articles Articles Articles** Articles. **SC Articles A**
	- 35 A. J. Zarur and J. Y. Ying, Nature, 2000, 403, 65–67.
	- 36 L. Fabbrini, A. Kryukov, S. Cappelli, G. L. Chiarello, I. Rossetti, C. Oliva and L. Forni, J. Catal., 2005, 232, 247– 256.
	- 37 R. Pereñíguez, V. M. González-DelaCruz, J. P. Holgado and A. Caballero, Appl. Catal., B, 2010, 93, 346–353.
	- 38 A. G. Bhavani, W. Y. Kim and J. S. Lee, ACS Catal., 2013, 3, 1537–1544.
	- 39 K. T. C. Roseno, R. Brackmann, M. A. da Silva and M. Schmal, Int. J. Hydrogen Energy, 2016, 41(40), 18178– 18192.
	- 40 M. R. Goldwasser, M. E. Rivas, M. L. Lugo, E. Pietri, J. Pérez-Zurita, M. L. Cubeiro, A. Griboval-Constant and G. Leclercq, Catal. Today, 2005, 107–108, 106–113.
	- 41 R. M. Navarro, M. C. Alvarez-Galvan, J. A. Villoria, I. D. González-Jiménez, F. Rosa and J. L. G. Fierro, Appl. Catal., B, 2007, 73, 247–258.
	- 42 J. Li, L. Zhao and G. Z. Lu, Ind. Eng. Chem. Res., 2008, 48, 641– 646.
	- 43 L. Fabbrini, I. Rossetti and L. Forni, Appl. Catal., B, 2010, 93, 346–353.
	- 44 L. Marchetti and L. Forni, Appl. Catal., B, 1998, 15, 179–187.
	- 45 J. G. McCarty and H. Wise, Catal. Today, 1990, 8, 231–248.
	- 46 R. Lago, G. Bini, M. A. Peña and J. L. G. Fierro, *J. Catal.*, 1997, 167, 198–209.
	- 47 V. R. Choudhary, B. S. Uphade and A. A. Belhekar, J. Catal., 1996, 163, 312–318.
	- 48 A. Slagtern and U. Olsbye, Appl. Catal., A, 1994, 110, 99-108.
	- 49 Y. Nishihata, J. Mizuki, T. Akao, H. Tanaka, M. Uenishi, M. Kimura, T. Okamoto and N. Hamada, Nature, 2002, 418, 164–167.
	- 50 C. V. Schenck, J. G. Dillard and J. W. Murray, J. Colloid Interface Sci., 1983, 95, 398–409.
	- 51 Z. Gao and R. Wang, Appl. Catal., B, 2010, 98, 147–153.
	- 52 B. Białobok, J. Trawczyński, W. Miśta and M. Zawadzki, Appl. Catal., B, 2007, 72, 395–403.
	- 53 J. A. Villoria, M. C. Alvarez-Galvan, S. M. Al-Zahrani, P. Palmisano, S. Specchia, V. Specchia, J. L. G. Fierro and R. M. Navarro, Appl. Catal., B, 2011, 105, 276–288.
	- 54 Y. Han, L. Chen, K. Ramesh, E. Widjaja, S. Chilukoti, I. Kesumawinatasurjami and J. Chen, J. Catal., 2008, 253, 261–268.
	- 55 J. Xu, Y. Q. Deng, Y. Luo, W. Mao, X. J. Yang and Y. F. Han, J. Catal., 2013, 300, 225–234.
- 56 N. Guilhaume, S. D. Peter and M. Primet, Appl. Catal., B, 1996, 10, 325–344.
- 57 H. Tanaka, I. Tan, M. Uenishi, M. Taniguchi, M. Kimura, Y. Nishihata and J. i. Mizuki, J. Alloys Compd., 2006, 408– 412, 1071–1077. Paper

So Article. Published on 07 March 2017. Downloaded on 4/23/2025 9:36:55 PM. Downloaded on 4/23/2025 9:36:55 PM. This article is licensed under a Creative Commons Appl. Downloaded a Creative Commons Appl. Downloaded
	- 58 N. Bahlawane, Appl. Catal., B, 2006, 67, 168–176.
	- 59 V. Belessi, A. Ladavos, G. Armatas and P. Pomonis, Phys. Chem. Chem. Phys., 2001, 3, 3856–3862.
- 60 S. Royer, H. Alamdari, D. Duprez and S. Kaliaguine, Appl. Catal., B, 2005, 58, 273–288.
- 61 G. Saracco, G. Scibilia, A. Iannibello and G. Baldi, Appl. Catal., B, 1996, 8, 229–244.
- 62 R. Hammami, S. B. A¨ıssa and H. Batis, Appl. Catal., A, 2009, 353, 145–153.