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n of oil/water mixtures with
bioinspired porous membranes
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Hendrik Hölscher * and Maryna N. Kavalenka

Membranes inspired by special wetting properties of aquatic plant leaves enable selective removal of either

oil or water from oil/water mixtures by filtration. Here, we introduce polymeric micro- and nanohair-

covered porous membranes fabricated using highly scalable fabrication methods: hot pulling and

perforation with microneedles. The as-prepared superhydrophobic/superoleophilic oil-removing

membranes are converted into underwater superoleophobic water-removing membranes by argon

plasma treatment. Membrane permeability and breakthrough pressures are analyzed and compared to

theory, and the efficiency of both types of membranes for oil/water separation is demonstrated.
1 Introduction

The enormous worldwide consumption of oil and petroleum
products leads to increased oil exploration, transportation,
storage and processing, which are accompanied by high risk of
oil spillage and aquatic pollution. As accidental oil spills
negatively impact environment and public health, developing
efficient and sustainable methods for cleaning oil spills is of
great signicance.1–4 Existing technologies used for handling oil
spills, including chemical dispersion, oil skimmers and in situ
burning, have limited efficiency, cause secondary pollution, and
are potentially toxic and economically inefficient.2,5 Therefore,
absorbing oil using selective oil sorbents is a dominant method
used in many applications, despite its limited absorption
capacity as well as challenging handling and oil recovery.6–8 A
promising alternative oil/water separation technique to
absorption is membrane-based ltration. Continuous mixture
separation by ltration with high separation capacity and
reduced material consumption is widely used in various
industries.9,10 Effective oil/water ltration requires special
wetting membrane materials with opposite affinities towards
water and oil, which allow only one of the liquids to permeate
while retaining the other.6

Articial special wetting materials are inspired by natural
superhydrophobic surfaces of plant leaves or underwater
superoleophobic surfaces of sh scales.11–13 Efficient oil/water
separation has been recently demonstrated using super-
hydrophobic leaves of water lettuce Pistia and water fern Salvi-
nia, which oil absorption capacities are higher than common
commercial solutions.12 In general, two types of special wetting
titute of Microstructure Technology,
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materials are suitable for oil/water ltration.6 “Oil-removing”
membranes with a superhydrophobic/superoleophilic surface
have high water contact angles (WCA) above 150� and low oil
contact angles (OCA) close to 0�, and separate oil from oil/water
mixtures by selective oil permeation. Such wetting behavior
occurs from a combination of surface chemistry and surface
micro- and nanoscale roughness.5,14,15 Underwater super-
oleophobic “water-removing” membranes, on the contrary,
separate water by retaining oil while water penetrates through
the membrane. Underwater superoleophobicity is a result of
water inltration into the surface structure of the hydrophilic
material and, thus, decrease in oil/solid contact area.6,16 The
selection of the membrane type depends on the application. Oil-
removing lters are typically used for oil purication and
separation of heavy oil/water mixtures, in which water has
higher density compared to oil.6,8,9,16 Water-removing
membranes are advantageous for light oil/water ltration,
wastewater treatment and other water purication processes.
Such membranes are characterized by reduced oil/solid contact
area, which minimizes the risk of fouling and results in
increased membrane lifetime.6,8,16

A wide range of oil-removing and water-removing ltration
materials has been developed in recent years, based on metallic
meshes, textiles, fabrics, polymeric membranes and lter
papers.6 Methods commonly used to achieve special wetting
properties of oil- or water-removing membranes are chemical
modication such as oxidization of the membrane material,
and deposition of coatings on the membrane surface.3 Coating
materials include polymers (polytetrauorethylene, hydrogels),
metal compounds (Cu(OH)2, ZnO, nickel stearate), and various
nanoparticles.3,17–39 In contrast to superhydrophobic oil-
removing membranes and underwater superoleophobic water-
removing membranes, membrane materials with switchable
wetting properties allow selective separation of either oil or
This journal is © The Royal Society of Chemistry 2017
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water from oil/water mixtures. Stimuli-responsive materials
switch their wetting behavior in response to change in external
stimuli such as temperature, electric or magnetic eld.5,40–43

Other membrane materials require prewetting with either oil or
water and change their wetting properties in response to the
prewetting liquid.16,44–46 However, most existing materials can
separate only one of the two liquids (oil or water), and devel-
opment of environmentally friendly porous membranes, which
enable selective separation of both liquids and can be fabri-
cated on large scale, still remains a challenge.6

Here, we present porous polymeric nanofur membranes,
which can separate both oil and water from oil/water mixtures
in a continuous ltration process. Nanofur is a polymeric
surface covered by a dense layer of random high aspect ratio
nano- and microhairs. Its surface topography is inspired by
leaves of aquatic plants Pistia and Salvinia.12 Polymeric nanofur
is fabricated using a scalable hot pulling process, which creates
a layer of dense randomly distributed micro- and nanohairs on
polymer lm surface.47 Pores are then perforated in the nanofur
lms with microneedle stamps or single microneedles. The as-
prepared porous membrane is superhydrophobic/
superoleophilic and allows oil to penetrate through pores
while retaining water, thus, efficiently removing oil from the
mixture in ltration process. Additionally, oil-removing porous
nanofur is converted into an underwater superoleophobic
water-removing lter by plasma treatment, resulting in removal
of water from oil/water mixtures.

2 Experimental

Porous nanofur membranes are fabricated using a hot pulling
technique followed by pore perforation (Fig. 1a). Various
Fig. 1 (A) Schematic of the nanofur membrane fabrication process. Poly
copolymer (COC) as a sacrificial layer. Next, a sandblasted steel plate
roughness of the heated plate and, after plate retraction, micro- and n
a microneedle stamp to create a porous membrane. (B) SEM image of the
average pore diameter is 80 � 25 mm.

This journal is © The Royal Society of Chemistry 2017
thermoplastic polymers can be used as a base material for
membrane fabrication, including biodegradable and shape-
memory polymers.47–50 To fabricate polycarbonate (PC) nano-
fur membrane, PC (Makrolon LED2045, Bayer, Germany) lms
with a thickness of 200 mmwere rst xed to the bottom plate of
a hot embossing machine using a cyclic-olen-copolymer (COC)
sacricial layer.49 A steel plate, roughened by sandblasting with
rough aluminum silicate abrasive and aluminum oxide sand,
serves as mold. During the hot pulling process, the plate is
heated to Tz 215 �C and pressed into the PC lm. Retraction of
the heated plate results in elongation of the soened polymer
and formation of a cratered polymer surface covered with high
aspect ratio micro- and nanohairs.47–51 Aer removing the
sacricial COC lm, nanofur is perforated by manually
punching pores with amicroneedle stamp (Edvers, Germany, 32
microneedles) or microneedles with different diameters (100
mm, 120 mm (SEIRIN Co. Ltd., Japan), 160 mm (Phoenix Medical
Ltd., United Kingdom), 450 mm (B. Braun Melsungen AG, Ger-
many)). SEM images of the porous nanofur membrane are
presented in Fig. 1b and c.

The nanofur surface is superhydrophobic with typical water
contact angle WCA > 150� (Fig. 2a) and superoleophilic with
OCA close to 0�.47 Due to these wetting properties, membranes
fabricated from as-prepared nanofur are oil-removing. In order
to fabricate water-removing membranes, the wetting properties
of as-prepared membranes are inverted to underwater super-
oleophobic by argon plasma treatment, which is performed
using a reactive ion etch system (Sentech GmbH, Germany) at
0.2 mbar and 30 W for 120 seconds. Plasma treated nanofur (p-
nanofur) is stored in water to ensure the long-term stability of
its wetting properties by preventing hydrophobic recovery.47
carbonate (PC) film is fixed to the bottom plate using a cyclic-olefin-
is heated and pressed into PC film. Softened PC penetrates into the
anohairs are pulled from the film surface. Nanofur is perforated with
porous nanofur membrane and (C) detailed view of a single pore. The

RSC Adv., 2017, 7, 32806–32811 | 32807
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Fig. 2 Wetting behavior and water breakthrough pressure (DPB) of
superhydrophobic oil-removing nanofur membrane in air. (A) Water
droplet on nanofur surface with water contact angle WCA z 162�. (B)
Schematic of DPB measurements on porous nanofur. (C) Experimental
DPB as a function of pore diameter. Pores with different diameters
were fabricated using microneedles and a microstamp. Theoretical
DPB for WCA ranging from 120� to 160� is indicated by shaded area.
The fitted curve (dashed line) corresponds to WCA qW ¼ 127�. As
predicted by theory smaller pore sizes result in higher DPB.

Fig. 3 Oil/water separation using oil-removing nanofur membrane.
(A) Nanofur in oil is superhydrophobic with an underoil WCA z 150�.
(B) Schematic of the oil/water separation setup. (C) The membrane is
fixed in the right tube with nanofur surface facing down. Pressure is
applied through the water level. Hexane/water mixture is added under
the membrane using a syringe. Oil penetrates through the pores, while
water is retained. No water is observed in the collected oil.
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3 Results and discussion
3.1 Oil-removing membrane

High water breakthrough pressure DPB is a crucial parameter
for efficient large volume separation of oil from oil/water
mixtures using oil-removing membranes. DPB indicates the
maximum water column height which can be retained by the
membrane.9 To evaluate the ability of porous superhydrophobic
nanofur to retain water, and study the inuence of pore diam-
eter on DPB, wemeasured the breakthrough pressure of nanofur
membranes with different pore sizes. The porous membrane
was sealed between two vertical tubes and pressure was applied
to its surface by continuously increasing the height of a water
column (Fig. 2b). The breakthrough pressure was calculated
from DPB ¼ rghmax, where r is density of water, g is gravitational
acceleration and hmax is maximum height of the water column
the membrane can support.10 hmax was measured for
membranes perforated with microneedles with different
diameters (100 mm, 120 mm, 160 mm, 450 mm) and the micro-
needle stamp. The resulting pore diameters were determined
from SEM images using ImageJ soware.52 Experimental results
shown in Fig. 2c demonstrate the inuence of pore diameter on
DPB. As predicted by the theory, smaller pore diameters result in
higher breakthrough pressures. For example, nanofur with 90�
19 mm pores retains water pressure of 2000 � 186 Pa (n ¼ 4),
whereas pores with 426� 16 mm diameter retain only 477� 158
Pa (n ¼ 4). The average diameter of pores fabricated with the
microneedle stamp is 80 � 25 mm and DPB of these membranes
is 1750 � 197 Pa.
32808 | RSC Adv., 2017, 7, 32806–32811
Next, experimentally measured breakthrough pressures of
porous nanofur membranes are compared to theoretical DPB of
hydrophobic membranes with cylindrical pores. DPB is calcu-
lated using Laplace–Young equation,10,15,53–55

DPB ¼ 2gjcosðqWÞj
r

; (1)

where qW is WCA of the membrane surface, gwater ¼ 72.8 mN
m�1 is the water surface tension of water–air interface.56 As can
be seen in Fig. 2c, the experimental measurements are in good
agreement with the theory. Fitting the experimental DPB values
into eqn (1) results in WCA qW ¼ 127�. The difference between
this value and the measured WCA can be attributed to the
variation in pore diameters and damage of nano- and micro-
hairs at the pore edges. These results conrm that break-
through pressure of nanofur membranes depend on pore
diameters. Limitations for separating oil from oil/water
mixtures in practical applications imposed by insufficient
breakthrough pressure can be overcome by accordingly adapt-
ing pore diameter.9

For effective oil/water ltration by oil-removing porous
membrane, water must be retained by the membrane in air as
well as in oil.57 Superhydrophobic/superoleophilic properties of
nanofur lead to oil being absorbed and retained in micro- and
nanostructures on the nanofur surface. Similarly to a water
droplet on the nanofur surface in air, water droplets placed on
nanofur submerged in oil are repelled with an underoil WCA of
�150� and a roll-off angle below 5� (Fig. 3a). Such underoil
superhydrophobicity ensures selective penetration of oil
through pores and retention of water. DPB measured on the
nanofur membrane fabricated with the microstamp and pre-
wetted with n-hexane is DPB,water/hexane ¼ 754 � 66 Pa. Accord-
ing to eqn (1), the lower value of DPB of the membrane pre-
wetted with hexane compared to the non-prewetted
membrane is due to lower surface tension of the water/hexane
This journal is © The Royal Society of Chemistry 2017
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interface (gwater/hexane ¼ 51 mN m�1) and lower underoil WCA,
compared to g of water/air interface and WCA in air.

To demonstrate oil/water separation with oil-removing
nanofur, porous membrane perforated with the microstamp
was used to separate a n-hexane/water mixture in a ltration
process. To overcome the limitation imposed by the lower
density of hexane compared to water, we built an experimental
setup in which the mixture is applied below the membrane
(Fig. 3b and c). It consists of a U-shaped tube in which the
nanofur faces downwards. The pipe is lled with water and
water column height is used to pressurize the membrane with
a pressure DP ¼ rgDh (with DP < DPB,water/hexame). Then the n-
hexane/water mixture (1 : 1 (v/v)) is added under the
membrane using a syringe (Fig. 3c). Due to its lower density, oil
oats to the top and penetrates through the pores, while water is
retained by the nanofur. The liquid ow stops when all oil is
ltered through the nanofur, and no water is observed in the
collected oil (Fig. 3c). Oil-removing membrane can be reused
aer washing it with isopropanol, which restores its wetting
properties and oil absorption capacity.47 The same quality of oil/
water separation was achieved aer reusing it four times.
3.2 Water-removing membrane

To separate water from the oil/water mixture, we fabricated
a water-removing p-nanofur membrane by argon plasma treat-
ment of the as-prepared nanofur membrane. Comparison of
SEM images of the nanofur before and aer argon plasma
Fig. 4 Surface topography and properties of the plasma treated
nanofur (p-nanofur). (A) SEM images of nanofur before and after
plasma treatment (arbitrarily chosen areas of the same sample) reveal
no changes in surface topography. (B) Demonstration of wetting
behaviour (inset: water droplet on p-nanofur with WCA z 82�) and
water permeability of p-nanofur. The water flow rate through hydro-
philic porous p-nanofur with 83 � 17 mm pore diameter and 168 mm
pore length is in agreement with the flow rate calculated with eqn (2)
(p ¼ 64 micropores, r ¼ 41.5 mm, tm ¼ 168 mm).

This journal is © The Royal Society of Chemistry 2017
treatment did not reveal any changes in surface topography (see
Fig. 4a). Plasma treatment leads to incorporation of hydrophilic
carboxyl groups into the nanofur surface. The resulting increase
in surface energy of the polycarbonate surface causes reduced
WCA and underwater superoleophobicity.47,49 High water
permeability is an important parameter for efficient water-
removing membranes. To characterize the water permeability
of porous p-nanofur membranes, we measured water ow rates
through the membranes sealed between two tubes. The porous
p-nanofur membranes fabricated using the microstamp were
used in this experiment (n¼ 4; 64 micropores with average pore
diameter 83 � 17 mm and pore length tm z 168 mm). The
measured water ow rate linearly depends on the pressure, with
lower pressure resulting in lower ow rate. In Fig. 4b, experi-
mental water ow rates are compared to theoretical ow rates
calculated from

Q ¼ pr4pDP

8htm
; (2)

where r is pore radius, p is number of pores, DP is applied
pressure, tm is pore length and h is water viscosity.58 Experi-
mental and theoretical results are in good agreement. Accord-
ingly to the theory, membrane water ow rates can be further
increased by increasing pore size, pressure or number of
pores.

When p-nanofur is submerged under water, oil droplets are
repelled by the underwater superoleophobic surface with an
Fig. 5 Oil/water separation using the water-removing p-nanofur
membrane. (A) p-Nanofur is underwater superoleophobic with OCAz
152�. (B) Schematic of oil/water separation. Hydrophilic and under-
water superoleophobic p-nanofur allows water to penetrate through
the pores and retains oil. (C) Mixture of crude oil and water (colored
blue) is separated using a p-nanofur membrane. No crude oil is visible
in the collected water.

RSC Adv., 2017, 7, 32806–32811 | 32809
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underwater OCA of �150� and roll-off angle below 5�

(Fig. 5a).47,49 Underwater superoleophobicity of p-nanofur is
a result of reduced contact between oil and solid due to water
trapped in the surface micro- and nanostructures.59 To separate
water from the oil/water mixture, water-removing porous p-
nanofur membrane retains the oil while allowing water to
penetrate through, as schematically shown in Fig. 5b. To
demonstrate this separation, a p-nanofur membrane was sealed
between two tubes, and a mixture of crude oil (MiRO OK 679,
Mineralölraffinerie Oberrhein, Germany) and water (1 : 1 (v/v))
is poured on the membrane. Water permeates through the
porous p-nanofur membrane while oil is retained above (see
Fig. 5c). No visible crude oil is observed in the collected water,
demonstrating the high separation capability of the water-
removing porous p-nanofur membrane. Due to permeation of
water and reduced oil/membrane contact, the p-nanofur
membrane is not contaminated by crude oil and can be
reused several times for this process. The same separation
results were observed aer reusing porous p-nanofur
membrane up to four times.

4 Conclusion

We demonstrated selective separation of both oil and water
from oil/water mixtures with porous nanofur membranes.
Superhydrophobic oil-removing nanofur membranes are fabri-
cated using the hot pulling technique followed by perforation
with microneedles. Underwater superoleophobic water-
removing p-nanofur membranes were produced by additional
argon plasma treatment of the as-prepared nanofur
membranes. Nanofur is one of the few membrane materials
which allows selective separation of both oil and water from oil/
water mixtures, whereas most membrane materials separate
only one of the two liquids. Therefore, porous nanofur
membranes can be used both for oil purication processes and
in wastewater treatment technology. The control over ltration
uid can also help to overcome separation efficiency limitations
imposed by such oil properties as viscosity and density, and to
reduce the membrane fouling by oil. Moreover, we have shown
that smaller pore sizes lead to higher breakthrough pressures,
but decrease the ow rate. The presented fabrication technique,
in which pores are fabricated in the nanofur lms by perfora-
tion with microneedles, allows the selection of the pore diam-
eter and their number accordingly to the specic requirements
of the targeted separation process. Excellent performance,
reusability and adaptable separation properties make porous
nanofur membranes a promising material for large scale
industrial and environmental oil/water ltration applications.
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