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anide nitride-oxides: NPrO and
NPrO� complexes with N^Pr triple bonds†

Shu-Xian Hu,ab Jiwen Jian,c Jing Su,b Xuan Wu,c Jun Li *b and Mingfei Zhou *c

The neutral molecule NPrO and its anion NPrO� are produced via co-condensation of laser-ablated

praseodymium atoms with nitric oxide in a solid neon matrix. Combined infrared spectroscopy and

state-of-the-art quantum chemical calculations confirm that both species are pentavalent

praseodymium nitride-oxides with linear structures that contain Pr^N triple bonds and Pr]O double

bonds. Electronic structure studies show that the neutral NPrO molecule features a 4f0 electron

configuration and a Pr(V) oxidation state similar to that of the isoelectronic PrO2
+ ion, while its NPrO�

anion possesses a 4f1 electron configuration and a Pr(IV) oxidation state. The neutral NPrO molecule is

thus a rare lanthanide nitride-oxide species with a Pr(V) oxidation state, which follows the recent

identification of the first Pr(V) oxidation state in the PrO2
+ and PrO4 complexes (Angew. Chem. Int. Ed.,

2016, 55, 6896). This finding indicates that lanthanide compounds with oxidation states of higher

than +IV are richer in chemistry than previously recognized.
Introduction

Due to the vital role of lanthanide elements in modern tech-
nology, which includes their applications in rare-earth catal-
ysis, electronics, wind power and magnets, etc., lanthanide
chemistry has attracted intensive attention over the past few
decades.1 Although high oxidation states of +VIII and even +IX
have been reported for some main group and transition metal
elements in the periodic table,2 the oxidation states of f-
elements are much more complicated.3 The chemistry of
lanthanides is dominated by the low-valent +III or +II oxida-
tion states due to the chemical inertness of the 4f valence
electrons.4 Until recently the highest known oxidation state of
the whole lanthanide series had been +IV, as is found
commonly in Ce as well as in Pr, Nd, Tb and Dy. Among all of
the elements in the lanthanide series, it has been postulated
since the early 1900s that praseodymium, with ve valence
electrons and the lowest h ionization energy, could be
oxidizable beyond the +IV oxidation state.5 It had been re-
ported that Y2O3 could promote the oxidation of praseo-
dymium to the +V oxidation state by forming the compound
YPrO4.6 However, the claimed Pr(V) state in oxide solids was
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rmly refuted in 1950.7 About 50 years later, the Pr(V) oxida-
tion state was again suggested to exist in the gas-phase PrO3

�

anion,8 but a later theoretical study indicated that PrO3
� is in

fact a highly multi-congurational Pr(IV) species with a bir-
adical feature.9 Besides the oxides, praseodymium penta-
uoride, PrF5, was predicted to be unstable toward
dissociation into PrF4 and PrF3 in the gas phase, and was not
formed in the reaction of laser-ablated praseodymium atoms
with F2 in solid noble gas matrices.4d No pentavalent lantha-
nide compounds with +V oxidation states had been experi-
mentally conrmed until recently when the praseodymium
oxide species PrO4 and PrO2

+ were prepared in the gas phase
and in solid noble-gas matrices.10 Combined infrared spec-
troscopy and advanced quantum chemistry studies revealed
that these praseodymium oxide species feature the unprece-
dented Pr(V) oxidation state, thus demonstrating that the +V
oxidation state is viable for lanthanide elements in a suitable
coordination environment.10 So far, no other lanthanide
compounds have been found to possess the Ln(V) oxidation
state.

Herein, we report a combined experimental and theoretical
study on the neutral NPrO molecule and its anion NPrO� in
solid neon. Combined matrix-isolation infrared absorption
spectroscopy and sophisticated quantum chemistry studies
reveal that both species are linear pentavalent compounds with
Pr^N triple bonds and Pr]O double bonds, and that the
neutral NPrO molecule, which is isoelectronic to the PrO2

+

cation, is also a pentavalent praseodymium species with a Pr
center in the highest +V oxidation state. The NPrO species thus
provides additional evidence that lanthanides can form
complexes with oxidation states higher than IV.
Chem. Sci., 2017, 8, 4035–4043 | 4035
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Fig. 1 Infrared spectra in the 950–600 cm�1 region upon co-depo-
sition of praseodymium atoms with 0.025% NO in neon. (a) After
30 min of sample deposition at 4 K, (b) after annealing at 10 K, (c) after
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Experimental details and
computational methods

Praseodymium nitride-oxide species were prepared by reactions
of praseodymium atoms and nitric oxide in solid neon, and
were studied by infrared absorption spectroscopy as described
in detail previously.11 A fundamental 1064 nm Nd : YAG laser
(Continuum, Minilite II; 10 Hz repetition rate) was used to
evaporate praseodymium atoms from a rotating praseodymium
metal target, which were co-deposited with NO reagent gas in
excess neon onto a cryogenic window maintained at 4 K by
means of a closed-cycle helium refrigerator. NO/Ne mixtures
were prepared in a stainless steel vacuum line using a standard
manometric technique. NO (Dalian DT, >99.9%) and isotopic-
labeled 15NO (Cambridge isotope laboratories Inc, 98%) were
used without further purication. The as-deposited samples
were subjected to annealing and photolysis experiments to
initiate diffuse and photo-induced reactions. The infrared
absorption spectra of the products were recorded in the mid-
infrared region (4000–450 cm�1) using a Bruker Vertex 80V
spectrometer at a resolution of 0.5 cm�1 using a liquid nitrogen
cooled HgCdTe (MCT) detector.

Quantum chemical calculations were performed at the
density functional theory (DFT) and wavefunction theory (WFT)
levels to gain insight into the geometries, electronic structures,
bonding and oxidation states of the observed species. The
hybrid B3LYP functional12 implemented in the Gaussian 09
program13 and the ab initio single-reference WFT method of
coupled-clusters with singles, doubles and perturbative triples
(CCSD(T))14 implemented in the MOLPRO15 program were used
to optimize the geometry structures and to calculate the
harmonic vibrational frequencies. Considering the relatively
strong relativistic effects on Pr, the ECP28MWB pseudopoten-
tial and ECP28MWB_ANO basis set for the Pr atom and the
Dunning’s correlation consistent basis set with polarized triple-
zeta plus diffuse functions (aug-cc-pVTZ) for the N and O atoms
were employed.16

In addition, multi-congurational complete active space self-
consistent-eld theory and complete active space with second-
order perturbation theory (CASSCF/CASPT2) methods17 imple-
mented in the MOLCAS 8.0 soware package18 were also
employed to check whether the systems had unexpected multi-
reference character and to obtain the correct ground electronic
states for the observed compounds. In the CASSCF/CASPT2
calculations, scalar-relativistic effects were taken into account
through the use of the second-order Douglas–Kroll–Hess
(DKH2) approximation.19 Relativistic all-electron ANO-RCC-
VDZP basis sets20 were used for all elements in the CASSCF
and CASPT2 calculations.

Electronic structure and bonding analyses were performed at
the B3LYP level using the ADF 2013 program.21 Herein, relativ-
istic effects were taken into account through the zero-order
regular approximation (ZORA).22 Slater basis sets with the
quality of triple-z plus two polarization functions (TZ2P)23 were
used with the frozen core approximation and applied to the
inner shells of [1s2–4d10] for Pr, and [1s2] for O and N. Kohn–
4036 | Chem. Sci., 2017, 8, 4035–4043
Shammolecular orbital (MO) analysis and calculations of Mayer
bond order indexes24 were also carried out using this program.
Natural bond orbital analysis was carried out using NBO 6.0 in
the Gaussian 09 program.25
Results and discussion

The reaction products from the co-deposition of laser-ablated
praseodymium atoms with nitric oxide in excess argon were
previously studied using Fourier transform infrared absorption
spectroscopy, which indicated the formation of NPrO and
NPrO� species in a solid argon matrix but did not address their
oxidation states.26a A recent investigation indicated that the
praseodymium dioxide cation is able to coordinate ve noble
gas atoms and form noble gas complexes in solid noble gas
matrices,10 which is similar to what is observed for early tran-
sition metal and actinide elements.27 In order to minimize the
matrix effect, the much more inert element neon is used as the
matrix in the present study. The infrared spectra in selected
frequency regions of the co-deposition of laser-ablated praseo-
dymium atoms with 0.025% NO in neon are shown in Fig. 1 and
2. Besides the NO, (NO)2, (NO)2

+ and (NO)2
� absorptions,28

which are common for laser-ablated metal atoms reacting with
nitric oxide, the as-deposited sample exhibits a praseodymium-
dependent absorption at 828.3 cm�1. This band can be attrib-
uted to diatomic PrO absorption, which is observed at 817.0
cm�1 in solid argon and at 826 cm�1 in the gas phase.8,29 Weak
absorptions at 730.9 and 623.9 cm�1 were also observed upon
sample deposition, sharpened and decreased upon sample
annealing at 10 and 12 K, and diminished under l > 800 nm
light irradiation. Three additional groups of absorptions were
produced when the sample was annealed at high temperatures
(10 and 12 K) at the expense of NO absorption. The rst group
involves two doublet absorptions at 926.2/918.5 and 762.2/755.9
cm�1, which slightly decreased under l > 800 nm irradiation.
The second and third groups each involve three absorptions at
1862.6, 886.6 and 751.6 cm�1 and 1825.2, 1720.6 and 826.3
annealing at 12 K, and (d) after 15 min of l > 800 nm light irradiation.

This journal is © The Royal Society of Chemistry 2017

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c7sc00710h


Fig. 2 Infrared spectra in the 1900–1700 cm�1 region upon co-
deposition of praseodymium atoms with 0.025% NO in neon. (a) After
30 min of sample deposition at 4 K, (b) after annealing at 10 K, (c) after
annealing at 12 K, and (d) after 15 min of l > 800 nm light irradiation.
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cm�1, respectively. The latter two groups of absorptions were
destroyed upon l > 800 nm light irradiation, during which
absorption at 747.3 cm�1 was produced, which can be assigned
to the antisymmetric OPrO stretching vibration of the weakly
perturbed PrO2 complex, as this absorption shows no shi with
15NO with a band position very close to that of PrO2.8,29 The
experiments were repeated under the same conditions using the
15NO and 14NO + 15NO samples. Selected regions of the isotopic
spectra are shown in Fig. 3 and the product absorptions are
listed in Table 1 and S1 of the ESI.† For comparison, argon
matrix experiments were also performed. The spectra are shown
in Fig. S1–S3,† and are quite similar to those previously
reported.26a

The 926.2/918.5 and 762.2/755.9 cm�1 absorptions are
assigned to the NPrO molecule trapped in solid neon in two
trapping sites. The upper doublet shied to 903.9/896.6 cm�1
Fig. 3 Infrared spectra in the 960–700 cm�1 region upon co-depo-
sition of praseodymium atoms with isotopic-labeled NO in excess
neon. The spectrum was recorded after annealing at 12 K. (a) 0.025%
14NO, (b) 0.025% 15NO, and (c) 0.025% 14NO + 0.025% 15NO.

This journal is © The Royal Society of Chemistry 2017
with 15NO. The observed quite large 15N-isotopic shi indicates
that this mode is mainly a Pr–N stretching vibration. The low
doublet shied to 757.0/750.7 cm�1 with 15NO, and the quite
small 15N-isotopic shi implies that this mode is largely due to
a Pr–O stretching vibration. Analysis of the spectrum obtained
from the experiment using the mixed 14NO + 15NO sample
conrms the involvement of only one N atom and one O atom in
this molecule. The two stretching vibrational modes of NPrO
were observed at 900.8 and 742.0 cm�1 in solid argon,26a and
these were red-shied from those in solid neon by 25.4 and 20.2
cm�1, respectively, thus indicating signicant argon matrix
effects that are non-negligible. The Pr–N stretching frequency of
NPrO is higher than that of diatomic PrN, which was reported at
857.9 cm�1 in solid argon.26b In contrast, the Pr–O stretching
frequency of NPrO is lower than that of diatomic PrO (828.3
cm�1 in Ne and 817.0 cm�1 in Ar). The NPrO absorptions
increased markedly upon annealing in both neon and argon
matrices, indicating that the ground state praseodymium atoms
can insert into the N–O bond of nitric oxide spontaneously with
negligible activation energy required.

The rather weak 730.9 and 623.9 cm�1 absorptions observed
right aer sample deposition correspond to the absorptions
observed at 718.2 and 612.3 cm�1 in solid argon, which were
attributed to the NPrO� anion species.26a The 623.9 cm�1

absorption shows almost no shi with 15NO, thus indicating
that this band is a pure Pr–O stretching mode. In contrast, the
730.9 cm�1 band shied to 709.2 cm�1 with 15NO, and the
isotopic 14N/15N frequency ratio of 1.0306 implies that it is a Pr–
N stretching mode. The argon-to-neon shis of 12.7 and 11.6
cm�1 are only about half of those of the neutral NPrO, thus
suggesting that the NPrO� anion is less affected by the noble
gas atoms. The NPrO� anion is presumably formed via electron
capture of the neutral NPrO molecule during the co-
condensation process. It is well-known that laser ablation of
a metal target can produce not only neutral metal atoms but
also metal cations and electrons.30 The adiabatic electron
affinity of NPrO is calculated to be 7.1 kcal mol�1 at the CCSD(T)
level of theory (overestimated as 26.9 kcal mol�1 with B3LYP),
which is consistent with the experimental observation that the
NPrO� anion is photobleached upon l > 800 nm light
irradiation.

The 1862.6, 886.6 and 751.6 cm�1 absorptions are assigned
to an NPrO(NO) complex. The upper mode shied to 1829.8
cm�1 with 15NO, with the band position and isotopic shi
indicating a terminally bound nitrosyl stretching vibration. The
886.6 and 751.6 cm�1 bands are assigned to the Pr–N and Pr–O
stretching modes, respectively, which are slightly red-shied
from those of the NPrO molecule. The 1825.2, 1720.6 and
826.3 cm�1 absorptions are assigned to an NPrO(NO)2 complex,
with the two upper absorptions corresponding to N–O stretch-
ing vibrations. The spectrum of the mixed 14NO + 15NO sample
indicates that two equivalent NO subunits are involved in these
two modes. The 826.3 cm�1 absorption exhibits less 15N-
isotopic shi (9.1 cm�1) than the Pr–N stretching mode of
NPrO (22.3 cm�1), thus implying that the 826.3 cm�1 absorption
can instead be assigned as an antisymmetric NPrO stretching
Chem. Sci., 2017, 8, 4035–4043 | 4037
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Table 1 Comparison between the observed and calculated vibrational frequencies (cm�1) of NPrO and NPrO�

NPrO NPrO�

Pr–N stretch Pr–O stretch Pr–N stretch Pr–O stretch

Experimental Ne 926.2/918.5a 762.2/755.9a 730.9 623.9
Ar 901.0 742.2 718.2 612.3

B3LYP b 1021.1(378) 822.1(194) 813.9(593) 636.9(440)
CCSD(T) 960.1 788.5 767.8 613.7
CASPT2 b 896.8(401) 735.6(97) 813.9(213) 645.7(303)

a Two site absorptions. b The IR intensities are listed in parentheses in km mol�1.
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mode. Calculations also suggested that the symmetric stretch-
ing is too weak to be observed.

Theoretical calculations were performed to elucidate the
structure, oxidation states and bonding of the observed species.
Geometry optimizations were performed at both the B3LYP and
CCSD(T) levels of theory on the neutral NPrO molecule with
spin multiplicity of 1, 3 and 5, and the results are listed in Table
2. Calculations at both levels of theory show that the singlet and
triplet electronic states are linear while the quintet state is bent.
Both levels of theory show that the quintet state is much higher
in energy than the other two spin states. The triplet state is
predicted to be 7.5 kcal mol�1 lower in energy than the singlet
state at the B3LYP level, but is 10.0 kcal mol�1 higher than the
latter at the more accurate CCSD(T) level. Both the quintet and
triplet states can thus be ruled out as they are clearly excited
states. The calculated Pr–N and Pr–O stretching vibrational
frequencies are compared to the experimental values in Table 1.
While the calculated harmonic frequencies are in general
higher than the experimental anharmonic frequencies,31 the
noble-gas matrix effect of neon,32 which is not considered here,
is another factor that contributes to the difference between the
matrix experimental and computed values. Table 1 shows that
the vibrational frequencies calculated at the B3LYP level are
slightly higher than those calculated at the CCSD(T) level. The
calculated values for the singlet state match the experimental
Table 2 Calculated relative energies (kcal mol�1), geometries (bond len
cm�1) and intensities (km mol�1) of the neutral NPrO molecule at the B3

B3LYP

Pr(V) Pr(IV) Pr(III)

DE 0.0 �7.5 54.7
State 1S� 3F 5A0

Electron
conguration

f0s2p4 ff
1s1p4 f2s1p3

Pr–O 1.765 1.805 1.829
Pr–N 1.677 1.767 2.361
:OPrN 180.0 180.0 127.4
n Pr–N stretch 1021.1(378) 826.8(284) 330.5(73)

Pr–O stretch 822.1(194) 736.2(59) 784.6(300)
NPrO bend 157.0(78) 168.4(74) 63.4(54)

S2 0.0 2.01 6.02
T1
D1

4038 | Chem. Sci., 2017, 8, 4035–4043
values, whereas the calculated frequencies for the triplet state
are too low to t the experimental values. Therefore, the
experimentally observed NPrO molecule in solid neon can be
condently assigned to have a singlet electronic ground state.

Similar to the isovalent uranyl ion (UO2
2+) and the PrO2

+ ion,
the neutral NPrOmolecule in the singlet ground electronic state
also prefers a linear structure in order to optimize the overlap of
the Pr 5d and 4f orbitals with those of the N and O atoms. The
Pr–N and Pr–O bond lengths are predicted to be 1.677 and 1.765
Å, respectively, at the B3LYP level of theory, and CCSD(T)
calculations give slightly higher values (1.697 and 1.775 Å). The
Pr–N bond length is about 0.14 Å (B3LYP) or 0.12 Å (CCSD(T))
smaller than the sum of the triple-bond covalent radii of Pr and
N proposed by Pyykkö et al.33 The Pr–O bond distance is also
shorter than the sum of the triple-bond covalent radii of Pr and
O,33 but is about 0.08 Å longer than that of the triple bonded
PrO2

+ calculated at the same level of theory.10 The predicted
bond distances suggest that both Pr–N and Pr–O are multiply
bonded. Indeed, the Mayer bond orders of 3.1 for Pr–N and 2.1
for Pr–O calculated at the B3LYP level of theory (Table 3) are
consistent with the strong multiple Pr–N and Pr–O bonding
interactions observed in the neutral NPrO molecule.

The 1S singlet ground state of NPrO is isoelectronic to PrO2
+

and has a ground electronic conguration of [cor-
e](1p)4(1s)2(2p)4(2s)2(4f5d)0. As shown in Fig. 4, the 1s and 1p
gths in Å, bond angles in degrees), vibrational frequencies (unscaled,
LYP, CCSD(T) and CASPT2 levels of theory

CCSD(T) CASPT2

Pr(V) Pr(IV) Pr(III) Pr(V) Pr(IV)

0 10.8 43.4
1S� 3F 5A0 1S� 3F

f0s2p4 ff
1s1p4 f2s1p3 f0s2p4 ff

1s1p4

1.775 1.810 1.828 1.794 1.811
1.697 1.779 2.242 1.723 1.769
180.0 180.0 117.1 180.0 180.0
960 819.3 402.1 896.8(401) 818.4(231)
788.6 723.1 776.9 735.6(97) 784.1(64)
125.7 164.9 119.6

0.056 0.046 0.032
0.167 0.123 0.091

This journal is © The Royal Society of Chemistry 2017
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Table 3 Mayer bond orders and atomic charges of NPrO and NPrO�

calculated at the B3LYP/TZ2P level of theory

Distance (Å) Bond order

Charge

Atom Mulliken Natural

NPrO Pr–O 1.765 2.1 Pr 1.49 1.49
Pr–N 1.677 3.1 O �0.70 �0.76
N–O 3.442 0.1 N �0.78 �0.73

NPrO� Pr–O 1.933 1.9 Pr 1.29 1.14
Pr–N 1.790 3.0 O �1.08 �1.10
N–O 3.722 0.1 N �1.20 �1.05

Fig. 4 Upper occupied canonical Kohn–Sham valence MO envelopes
of the linear singlet NPrO molecule. The 1p orbitals are distributed
more on the O atom while the 2s and 2p orbitals are distributed more
on the N atom. The value of the contour envelopes is 0.02 a.u.

Fig. 5 Qualitative energy-level diagram illustrating the correlation of
the MOs of PrO2

+ and NPrO in terms of O2� and N3� with PrO3+.
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MOs are composed of Pr 5d/4f and O (and minor N) 2p atomic
orbitals, while the 2s and 2p MOs are formed by Pr 4f/5d
orbitals with N (and minor O) 2p atomic orbitals. All of these
six MOs are fully occupied, with both Pr–N and Pr–O bonding
characteristics. The wavefunction analyses clearly indicate that
the Pr center has a (f0d0) conguration and that Pr–N is triple
bonded and Pr–O is double bonded, which is consistent with
the Lewis electron-pair model. Accordingly, the linear singlet
NPrO neutral molecule can be classied as a pentavalent
praseodymium species with an oxidation state of +V as the
PrO2

+ cation. Natural bond orbital (NBO) analyses (see Table
S3†) conrm the Pr^N and Pr]O multiple bonding in NPrO
with two sets of localized s2p4 bonds. The Pr–N s bond is
composed of 60.9% Pr and 36.8% N character, with a Pr 5d : 4f
contribution of 21 : 74 and an N 2s : 2p contribution of 13 : 87.
The two degenerate p bonds are each composed of 32.5% Pr
and 67.5% N character, with a Pr 5d : 4f contribution of 41 : 58.
The Pr–O s bond is composed of 30.9% Pr and 67.3% O char-
acter, with a Pr 5d : 4f contribution of 26 : 71 and an O 2s : 2p
contribution of 13 : 87. Each of the two degenerate Pr–O p

bonds that represent one covalent and one dative bond are
composed of 17.1% Pr and 82.8% O character, with a Pr 5d : 4f
contribution of 44 : 55. These bonding analyses clearly show
that the Pr–O bonding interaction is much more strongly
polarized than the Pr–N bonding interaction, which is consis-
tent with the electronegativity difference and the lower Pr]O
bond order. The greater covalency of the Pr–N interaction
results in a shorter Pr–N bond (1.677 Å at B3LYP and 1.697 Å at
This journal is © The Royal Society of Chemistry 2017
CCSD(T)) than the Pr–O bond (1.765 Å at B3LYP and 1.775 Å at
CCSD(T)), albeit the atomic radius of oxygen is slightly smaller
than that of nitrogen. As has been discussed before,10 the
signicant covalent bonding interactions of the radially less
contracted Pr 5d orbitals with the N and O 2p atomic orbitals in
NPrO play an important role in stabilizing the high oxidation
state of Pr in these PrO2

+ and NPrO species. In contrast, our
preliminary calculations show that the analogous protactinium
nitride-oxide NPaO species is a Pa(V) complex with a slightly
bent structure because of the signicant participation of Pa 5f
orbitals in addition to the 6d/7s ones in the chemical bonding.

Fig. 5 demonstrates a qualitative orbital interaction diagram
that shows the correlation of the MOs of PrO2

+ and NPrO, in
terms of O2� and N3�, with PrO3+. In this diagram, only the 2p
atomic orbitals of the N and O atoms are shown, with the 2s
ones omitted for clarity. The bonding interactions in these two
isoelectronic species are in general quite similar. The interac-
tions of the three 2p atomic orbitals of O2� or N3� with the
highest fully occupied 1p and 1s MOs of PrO3+ lead to the six
highest fully occupied MOs of PrO2

+ and NPrO (Fig. 4 in ref. 10
for PrO2

+ and Fig. 4 for NPrO), all of which possess Pr–O and Pr–
N bonding character. The Kohn–Sham energy levels of the three
2p atomic orbitals of N3� are very close to those of the 1p and 1s
MOs of PrO3+, whereas the energy levels of the three 2p atomic
orbitals of O2� are lower than those of the 1p and 1s MOs of
PrO3+. The better match between the interacting orbital energy
levels together with the greater radial extension of the N3�

atomic orbitals over that of O2� results in better orbital overlap
and a Pr–N bond in NPrO that is less polarized than the Pr–O
bond in PrO2

+.
The NPrO� anion is predicted to have a doublet 2F ground

state with a linear structure (Table 4). The Pr–O and Pr–N bond
lengths are predicted to be 1.933 Å and 1.790 Å at the B3LYP
level of theory and 1.951 and 1.808 Å at the CCSD(T) level of
theory, respectively. The Pr–N and Pr–O stretching vibrations
are predicted to be 813.9 and 636.9 cm�1 at the B3LYP level, and
at 767.8 and 613.7 cm�1 at the CCSD(T) level. The calculated
Chem. Sci., 2017, 8, 4035–4043 | 4039
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Table 4 Calculated relative energies (kcal mol�1), geometries (bond lengths in Å, bond angles in degrees), and vibrational frequencies (unscaled,
cm�1) of the NPrO� anion

B3LYP CCSD(T) CASPT2

DE 0.0 7.6 15.4 0.0 7.0 43.3
OS Pr(IV) Pr(IV) Pr(III) Pr(IV) Pr(IV) Pr(III) Pr(IV)
State 2F 2D 4H 2F 2D 4H 2F

Electron conguration ff
1 fd

1 fd
1ff

1s1 ff
1 fd

1 fd
1ff

1s1 ff
1

Pr–O 1.933 1.922 1.834 1.951 1.940 1.855 1.950
Pr–N 1.790 1.780 1.794 1.808 1.799 1.826 1.796
:OPrN 180.0 180.00 180.0 180.0 180.0 180.0 180.0
S2 0.82 0.94 3.76
n Pr–N stretch 813.9 821.8 740.6 767.8 770.2 728.1 813.9

Pr–O stretch 636.9 610.8 675.6 613.7 609.4 648.7 645.7
Bend 75.1 85.1 145.6 87.2 96.3 118.4

T1 0.035 0.034 0.051
D1 0.094 0.086 0.128
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red-shis from the corresponding modes of neutral NPrO are
192.3 and 174.8 cm�1 at the CCSD(T) level and 207.2 and 185.2
cm�1 at the B3LYP level, which are in reasonable agreement
with the experimentally observed shis of 195.3 and 138.3 cm�1

(for the major site absorptions of NPrO in solid neon) when
considering that no matrix effects are accounted for. The NPrO�

anion in the 2F ground electronic state has an electronic
conguration of (core) (1p)4(1s)2(2p)4(2s)2(1f)1. The unpaired
electron is located on the 1fMO that is a non-bonding Pr-based
4f atomic orbital, which is consistent with Mulliken population
analysis which shows that the spin density is located on the Pr
center. Therefore, the anion can be regarded as being formed by
adding an electron to the 1f LUMO of the neutral NPrO mole-
cule. The extra electron reduces the natural charge of the Pr
center from +1.49 in NPrO to +1.14 in the NPrO� anion, which
signicantly increases the ionic radii and reduces the electro-
static interaction in the anion. The Pr center in the 2F state of
NPrO� has an (ff

1d0) electronic conguration, and thus corre-
sponds to a Pr(IV) oxidation state. Natural bond orbital analyses
indicate that despite the Pr(IV) oxidation state in NPrO�, the 2F

ground state NPrO� anion is also a pentavalent species with
Pr^N and Pr]O multiple bonds (Table S3†), which are
consistent with the calculated Mayer bond orders of 3.0 and 1.9
for the Pr^N and Pr]O bonds, respectively (Table 3). Another
low-lying linear 2D electronic state of the NPrO� anion with
slightly shorter Pr–N and Pr–O bond distances is predicted to be
7.6 kcal mol�1 (B3LYP) or 7.0 kcal mol�1 (CCSD(T)) higher in
energy than the 2F ground state. This 2D state NPrO� anion has
a Pr(fd

1d0) conguration and an oxidation state of +IV as well.
The most stable quartet state with a linear structure, an
(fd

1ff
1s1) electronic conguration and a Pr(III) oxidation state is

15.4 (B3LYP) or 43.3 kcal mol�1 (CCSD(T)) higher in energy than
the ground state.

To assess the potential single-reference nature of the elec-
tronic structures of the NPrO and NPrO� species, additional
single-point multi-congurational SCF calculations using
CASSCF were performed on the optimized structures of the
linear singlet neutral NPrO molecule and the doublet NPrO�

anion at the B3LYP level of theory. The CASSCF calculations,
4040 | Chem. Sci., 2017, 8, 4035–4043
with 12 electrons in 12 orbitals including six bonding orbitals
and six antibonding orbitals (Fig. S4†) on the singlet NPrO,
indicate that the wavefunction of NPrO does not exhibit
signicant multi-reference features. While the Pr(V) (f0d0)
conguration from the CASSCF calculations has a dominated
weight of 86.7%, the sum of the natural orbital occupation
numbers (NOONs) of the six low-lying orbitals amounts only to
0.29 e� in total. Moreover, the T1-diagnostic value of 0.056 ob-
tained from the single-determinant CCSD(T) calculation also
implies that the wavefunction does not exhibit particularly large
multi-reference features (Table 2). Similar calculations on the
2F doublet state NPrO� anion with 13 electrons in 12 orbitals
(Fig. S5†) found that the Pr(IV) (f1d0) conguration has a domi-
nated weight of 88.8% and that the sum of the NOONs of the
ve low-lying orbitals amounts only to 0.27 e�. These results
indicate that the single-reference DFT and CCSD(T) calculations
are reasonably reliable, and the assignments of the oxidation
states of Pr(V) in neutral NPrO and Pr(IV) in the NPrO� anion are
appropriate due to the single reference features of their wave-
functions and the calculated state energies.

In addition to the NPrO and NPrO� molecules, our experi-
ments show that the NPrO molecule further reacts with nitric
oxide to form NPrO(NO) and NPrO(NO)2 complexes spontane-
ously upon annealing. The NPrO(NO) complex is predicted to
have a doublet ground state with a Cs symmetry (Fig. S6†),
which is 8.9 kcal mol�1 lower in energy than the separated NPrO
and NO reactants calculated at the B3LYP level. Upon NO
coordination, the Pr–N bond is elongated from 1.677 Å to 1.708
Å, while the Pr–O bond is slightly shortened from 1.765 Å to
1.761 Å at the B3LYP level of theory, with the NPrOmoiety being
close to linearity with a bond angle of 177.0�. The N–O, Pr–N
and Pr–O stretching modes are computed as 1883.1, 941.4 and
819.2 cm�1, respectively, which are in agreement with the
experimental values. The NPrO(NO)2 complex is predicted to
have a singlet ground state (Fig. S6†), which can be regarded as
a complex between NPrO and the (NO)2 dimer as the two NO
subunits are coupled into N2O4. This kind of ligand–ligand
coupling has been observed in some transition metal nitrosyl
cation complexes previously.35 Upon coordination of the second
This journal is © The Royal Society of Chemistry 2017
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NO, the Pr–N bond is further elongated to 1.746 Å, which is
quite close to the Pr–O bond length of 1.760 Å. The Pr–N and Pr–
O stretching modes are strongly coupled, and are better
described as antisymmetric and symmetric stretching modes.
The Pr center in both NPrO(NO) and NPrO(NO)2 retains the +V
oxidation state. It is quite interesting to note that upon l >
800 nm light irradiation, the absorptions of the complexes are
eliminated with the production of a weakly perturbed PrO2

complex absorption at 747.3 cm�1. This observation indicates
that Pr(V) is reduced to Pr(IV) and that the complexes are con-
verted to PrO2 and N2 under near infrared light irradiation.

Observation of the NPrO(NO) and NPrO(NO)2 complexes
indicates that NPrO is a Lewis acid, which points to the possi-
bility of forming complexes with noble gas atoms. DFT/B3LYP
calculations with or without dispersion correction (D3) were
thus performed on the complexes formed between NPrO and
noble-gas (Ng ¼ Ne, Ar) atoms for comparison. The total Ng
binding energies are calculated as the energy change for the
process: (NPrO)Ngn / NPrO + nNg. The calculated binding
energies are listed in Table S2† and the energy curves are pre-
sented in Fig. S7.† The B3LYP-D3 results indicate that NPrO can
be coordinated by six argon atoms in the rst coordination
sphere to form the NPrO(Ar)6 complex, which is predicted to
have a C6v structure with all the argon atoms equatorially
coordinated to the metal center. The total binding energy of the
six argon atoms is 12.7 kcal mol�1 with dispersion correction.
Upon argon atom coordination, the Pr–N and Pr–O stretching
modes red-shied by 11.9 and 7.9 cm�1, respectively. This result
implies that the NPrO molecule trapped in a solid argon matrix
may be regarded as a matrix-isolated NPrO(Ar)6 complex, as in
the case of the argon-coordinated CUO molecule.27(a),34 Similar
calculations on neon complexes indicate that NPrO can also
bind ve or six neon atoms at the equatorial plane. The
NPrO(Ne)5 complex has a slightly smaller binding energy (�0.9
kcal mol�1), which might be partially responsible for the
different matrix sites of NPrO observed. However, consistent
with the much lower coordination ability or Lewis basicity of
neon, the binding between Ne atoms and NPrO is rather weak,
which leads to a total binding energy of only 7.2 kcal mol�1 for
the NPrO(Ne)6 complex, thus suggesting that the coordination
effect of neon atoms compared to argon atoms is somewhat
more insignicant.

Conclusion

The reactions of praseodymium atoms with nitric oxide are
studied using matrix-isolation infrared absorption spectros-
copy. The ground state Pr atoms react with NO to spontaneously
form an inserted NPrO molecule upon annealing in solid neon,
with the molecule characterized to have a linear structure with
both Pr^N and Pr]O multiple bonds. Thus, the neutral NPrO
molecule is another pentavalent species with a Pr(V) oxidation
state, which follows the recently reported PrO2

+ complexes with
a Pr(V) center.10 An inserted NPrO� anion is also formed via
electron capture of the neutral molecule during the co-
condensation process. Although the anion exhibits quite large
red-shied Pr–N and Pr–O stretching frequencies relative to
This journal is © The Royal Society of Chemistry 2017
those of the neutral molecule, the anion is characterized to be
another pentavalent praseodymium species with Pr^N and
Pr]O multiple bonds. Especially noteworthy is the Pr(IV)
oxidation state of this pentavalent NPrO� complex. Evidence is
also presented for the formation of the NPrO(NO) and
NPrO(NO)2 complexes, which convert to PrO2 complexes with
a Pr(IV) oxidation state under l > 800 nm light irradiation.
Theoretical calculations suggest that NPrO is weakly coordi-
nated by noble gas atoms in solid noble gas matrices. The
present study together with our previous work on PrO2

+ and
PrO4 complexes10 has demonstrated that lanthanide
compounds with a Ln(V) oxidation state are plausible in both
oxides and nitrides. Further investigations into lanthanide
oxouorides, nitride-oxides, halides and carbides would be
interesting to explore the undeveloped pentavalent lanthanide
chemistry.
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