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Staphylococcus aureus is one of the most common pathogenic bacteria that causes human infectious

diseases. The emergence of antibiotic-resistant strains of S. aureus promotes the development of new

anti-bacterial strategies. Silver ions (Ag+) have attracted profound attention due to their broad-spectrum

antimicrobial activities. Although the antibacterial properties of silver have been well known for many

centuries, its mechanism of action remains unclear and its protein targets are rarely reported. Herein, we

identify the catabolite control protein A (CcpA) of S. aureus as a putative target for Ag+. CcpA binds 2

molar equivalents of Ag+ via its two cysteine residues (Cys216 and Cys242). Importantly, Ag+ binding

induces CcpA oligomerization and abolishes its DNA binding capability, which further attenuates

S. aureus growth and suppresses a-hemolysin toxicity. This study extends our understanding of the

bactericidal effects of silver.
Introduction

The main carbon catabolite repression (CCR) system is an
important global control system of various bacteria, which
allows the bacteria to adapt quickly to a preferred carbon source
rst. This is usually achieved by the repression of genes whose
products are involved in the catabolism of alternative, less
preferred carbon sources. In Gram-positive bacteria, a highly
conserved regulator, catabolite control protein A (CcpA), exerts
the important catabolite repression function.1 CcpA is usually
activated by its co-regulator via the formation of a complex
which recognizes the catabolite-responsive element (cre)
sequences and regulates downstream gene expression.2

Staphylococcus aureus (S. aureus), a worldwide spread human
pathogen, is the leading cause of hospital- and community-
acquired infections. The pathogen causes a series of human
diseases ranging from minor skin infections to life-threatening
sepsis.3 In particular, the emergence of drug-resistant strains of
the bacteria, such as methicillin-resistant and vancomycin-
resistant S. aureus, poses a huge threat to public health
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worldwide.4,5 Intriguingly, S. aureus CcpA (SaCcpA) is not only
involved in the regulation of carbon metabolism but also affects
antibiotic resistance, biolm formation, toxin expression and
even the infectivity of this bacterium, implying its critical role as
an important global regulator for bacterial metabolism as well
as virulence.6–9 Recently, small molecule inhibitors targeting the
S. aureus virulence regulators, SarA or MgrA, are reported to be
efficacious in animal models, indicating that targeting these
regulator proteins might be a promising anti-bacterial
strategy.10,11 Given the important role that CcpA played in
S. aureus virulence, this transcription factor could be a feasible
anti-bacterial drug target.12 Chemical inhibition of CcpA
binding to the cre DNA region could potentially diminish
S. aureus virulence.

Silver ions (Ag+) have been used as antibacterial agents for
centuries. It is suggested that Ag+ could bind to the thiol group
(–SH) of bacterial enzymes and subsequently cause enzyme
deactivation.13 However, up to now, few Ag+ protein targets have
been identied and characterized. Herein, we demonstrate that
SaCcpA serves as a potential target for Ag+ in S. aureus. Ag+

binds specically to the two cysteines of SaCcpA and abolishes
its cre-binding property, which further abrogates S. aureus
a-hemolysin secretion and biolm formation.
Results and discussion

It is reported that silver nanoparticles (AgNPs) could block
bacterial sugar metabolism in order to be bactericidal.14

Furthermore, recent studies demonstrated that bacterial strains
with a TCA cycle genes knockout were less sensitive to Ag+

treatment.15 All of these data imply that Ag+ targets the bacterial
Chem. Sci., 2017, 8, 8061–8066 | 8061
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central metabolism pathway. CcpA is an important regulator
that coordinates central metabolism in Gram-positive
bacteria.1,16 We therefore investigate the possible effect of Ag+

on CcpA physiological function.
Sequence alignments of 20 CcpA family proteins from

different Gram-positive bacteria species revealed that SaCcpA
contains two cysteine residues (Cys216 and Cys242), which are
almost absent in other species (Fig. S1†). Given that Ag+ is
highly thiophilic, we postulated that Ag+ could bind to SaCcpA.
To test this hypothesis, puried SaCcpA was incubated with 3
molar equivalents of Ag+ followed by the removal of excess
amounts of Ag+ with a desalting column. By using a BCA assay
and inductively coupled plasma mass spectrometry (ICP-MS),
the stoichiometry of Ag+ binding to CcpA (monomer) was
determined to be 2 : 1, indicating that each CcpA monomer
binds 2 molar equivalents of Ag+ (Fig. S2†). Subsequently, we
examined whether the two cysteine residues are involved in the
Ag+ binding. We measured free thiol amounts of the CcpA
protein aer premixing with different molar ratios of Ag+ by
Ellman’s assay. As expected, the free thiols of CcpA decreased
with increasing pre-mixed Ag+ concentrations until the Ag+/
CcpA molar ratio reached 2 : 1, conrming that the cysteines
participate in Ag+ binding (Fig. S3†). The two cysteines were
then individually mutated to serine. Both the ICP-MS
measurement and Ellman’s assay showed that the CcpAC216S

and CcpAC242S mutants could bind one Ag+ per monomer, while
the double Cys mutant CcpAC2S had no Ag+ binding capability,
indicating that both cysteines are responsible for Ag+ binding
(Fig. S2 and S3†). In line with the results, isothermal titration
calorimetry (ITC) data showed that wild-type (WT) CcpA binds
1.94 � 0.02 molar equivalents of Ag+ with an apparent dissoci-
ation constant (Kd) of 0.74 � 0.03 mM. The single Cys mutant
CcpAC242S binds 1.08 � 0.03 molar equivalents of Ag+ with
a much lower affinity (Kd ¼ 7.81 � 0.61 mM), while the double
Cys mutant CcpA2CS had no detectable binding to Ag+ (Fig. 1
and Table S2†).

As a global transcription factor, CcpA binds to a couple of
gene promoter regions (cre sequence), such as the pckA
(encoding phosphoenol-pyruvate carboxykinase) and hla
Fig. 1 Isothermal titration calorimetry results of Ag+ binding to CcpA,
CcpAC242S and CcpA2CS in 50 mM Tris-HNO3 and 150 mM NaNO3

buffer at pH 7.4. The titrations were carried out at 25 �C. The data were
fit to a one-set-of-sites binding model using the Origin software.

8062 | Chem. Sci., 2017, 8, 8061–8066
(encoding a-hemolysin) promoters. To examine the effect of Ag+

binding on the CcpA’s function, we investigated whether Ag+

affected the CcpA-DNA binding properties in vitro. An electro-
phoretic mobility shi assay (EMSA) was applied to 35 nM pckA
DNA probe (covers the cre sequence of the pckA gene) and
a negative control proC probe with increasing concentration of
CcpA (0–700 nM monomer concentration). As expected, the
signicant shi of DNA was only observed for pckA but not proC
(Fig. S4a and c†). The results are consistent with a previous
report that SaCcpA does not essentially require the association
with phosphorylated HPr for efficient DNA binding.8 However,
the addition of gradient amounts of Ag+ obviously disrupted the
complex formation (Fig. 2a). The double-mutant CcpA2CS binds
pckA DNA in a similar way to the WT CcpA (Fig. S4b†). However,
the CcpA2CS mutant would not dissociate from the DNA probe
even in the presence of Ag+ (Fig. 2b). A similar phenomenon was
observed for the hla probe (Fig. S5†). CcpA binding to the cre
region was enhanced by phosphorylated HPr (HPr-P).8 However,
the EMSA assay demonstrates that Ag+ prevented CcpA-DNA
binding even in an excess amount of Hpr-P (Fig. S6a†). Native
polyacrylamide gel electrophoresis (PAGE) further conrmed
that Ag+ binding also disrupted the DNA-CcpA-(Hpr-P) ternary
complex (Fig. S6b†). All these results demonstrate that Ag+

binding completely abolishes CcpA-DNA binding in vitro.
For further conrmation, we measured the DNA binding

capabilities of the WT CcpA and CcpA2CS mutant by BioLayer
Interferometry (BLI). A Biotin-labeled pckA DNA probe was
immobilized on a streptavidin sensor to enable kinetic analysis
of the CcpA binding to the DNA probe. As shown in Fig. 3a, WT
CcpA binds strongly to the pckA probe with a Kd value of 16.1 �
0.47 nM. While in the presence of Ag+, the binding of WT CcpA
to the pckA probe is undetectable (Fig. 3b). In contrast, the
binding affinities of CcpA2CS to the pckA probe are nearly
identical in the absence and presence of Ag+, with Kd values of
15.1 � 0.28 nM and 20.7 � 0.51 nM, respectively (Fig. 3c and
d and Table S3†). Collectively, these data demonstrate that Ag+

binds to the two Cys residues of CcpA, and Ag+ binding disrupts
its DNA binding capability.

Previous studies demonstrated that the binding of non-
physiological metal ions to proteins usually caused protein
aggregation and dysfunction.17,18 To further investigate the
Fig. 2 Electrophoretic mobility shift assay (EMSA) of the CcpA binding
to the catabolite responsive elements (cre) of the pckA gene.
Approximately 35 nM pckA promoter (189 base pairs) was incubated
with 500 nM purified CcpA (a) or CcpA2CS (b) in the presence of 0, 0.4,
0.8, 1.2, 2 and 3 molar equivalents of Ag+.

This journal is © The Royal Society of Chemistry 2017
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Fig. 3 The DNA binding capabilities of CcpA (a), CcpA with Ag+ (b),
CcpA2CS (c) and CcpA2CS with Ag+ (d) were measured by BioLayer
Interferometry (BLI). Biotinylated pckA (300 nM) was captured on pre-
immobilized streptavidin Dip and Read sensor heads for 3 min. Asso-
ciation occurred from 0 to 180 s and dissociation was monitored
thereafter for up to 360 s. The Kd values are presented as the mean
� s.e.m. derived from a global fitting of all binding curves.
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mechanism of the Ag+-induced loss of DNA-binding capability
of CcpA, we examined the oligomerization states of CcpA before
and aer Ag+ binding using size-exclusion chromatography
(SEC). In the absence of Ag+, WT CcpA eluted at 9.6 ml with
amolecular weight (Mw) of 64.9 kDa, corresponding to a dimeric
form (Fig. 4a). With increasing amounts of pre-incubated Ag+,
the intensities of the dimeric peak of CcpA decreased, whereas
a new peak appeared at 8.7 ml with aMw of 159.7 kDa, indicative
of a tetrameric form of CcpA. This result implied that CcpA
forms a dimer of dimers aer Ag+ binding. A similar phenom-
enon was observed for the single Cys mutants of CcpA,
CcpAC216S and CcpAC242S, which also formed a tetramer aer
incubation with Ag+ (Fig. S7†). In contrast, the majority of the
Fig. 4 The effects of Ag+ binding on the oligomeric states of CcpA (a)
and CcpA2CS (b). Size-exclusion chromatography analysis of CcpA
incubated with 0, 0.6, 1.2 and 2.0 molar equivalents of Ag+ and
CcpA2CS incubated with 0 and 2.0 molar equivalents of Ag+.

This journal is © The Royal Society of Chemistry 2017
doublemutant CcpA2CS eluted at exactly the same volume asWT
CcpA, even in the presence of 2 molar equivalents of Ag+, owing
to the loss of the Ag+ binding capability of the protein (Fig. 4b).
In line with the SEC results, native PAGE shows that Ag+ binding
slowed down the migration rates of WT CcpA, and single
mutants CcpAC216S and CcpAC242S in the native PAGE, which is
indicative of the formation of a higher molecular weight olig-
omer upon Ag+ binding. However, Ag+ had no effect on the
migration rate of the CcpA double mutant, CcpA2CS (Fig. S8†).
Taken together, the binding of Ag+ to CcpA induces its tetra-
merization, which is possibly attributable to the loss of DNA
binding capability.

Next, we investigated whether CcpA binds Ag+ in vivo using
the cellular thermal shi assay (CETSA), a method based on the
change in protein thermal stability upon ligand binding for
studies of the target engagement of drug candidates in a cellular
condition.19,20 As shown in Fig. 5a, supplementations of 10 mM
Ag+ to the bacterial culture resulted in the apparent aggregation
temperature (Tagg) of the intracellular WT CcpA shiing from
49.5 �C to 45.4 �C, indicating that Ag+ binds to CcpA in vivo and
such a binding destabilizes the protein. A similar result was
obtained when using puried CcpA protein (Fig. S9a†). Since
Ag+ binds to the two Cys residues of CcpA, it is plausible to
hypothesize that Ag+ would not change the thermal stability of
the double-cysteine mutant CcpA2CS due to the loss of Ag+

binding sites. To verify this, a CcpA gene mutant of S. aureus,
the Newman strain, was constructed, in which the WT CcpA
gene was replaced by a double cysteine mutant gene CcpA2CS

(denoted as S. aureus ccpA::ccpA2CS) and a similar CETSA was
performed with the mutant strain. As expected, Ag+ treatment
did not alter the intracellular CcpA thermal stability in the CcpA
mutant strain (Fig. 5b). Similarly, the puried CcpA double
mutant CcpA2CS protein had the same thermal denaturation
curves in the absence and presence of Ag+ (Fig. S9b†). Collec-
tively, we demonstrated that Ag+ binds to CcpA intracellularly
via its two Cys residues.

CcpA is the major gene regulator of central metabolism in
S. aureus and the CcpA gene knockout was found to retard
bacterial growth.9 Since Ag+ binds to CcpA and abolishes its
Fig. 5 Cellular thermal shift assay (CETSA) of wild-type S. aureus (a)
and the S. aureus ccpA::ccpA2CS mutant (b) with or without Ag+

treatment. The soluble fractions of the intracellular CcpA or CcpA2CS

protein were quantified by a western-blot. The band intensities at
different temperatures are normalized to that at 36.6 �C. All experi-
ments were performed in triplicate.

Chem. Sci., 2017, 8, 8061–8066 | 8063
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function in S. aureus, this prompted us to investigate whether
Ag+ affects S. aureus growth. We examined the bacterial growth
of both the WT S. aureus and ccpA::ccpA2CS mutant strains upon
supplementation of 30 mM Ag+ into the cultures at the
exponential-growth phase (OD600 ¼ 0.6). As shown in Fig. 6a,
both the WT and ccpA::ccpA2CS mutant of S. aureus display
nearly identical growth curves in the absence of Ag+. Both
cultures exhibit typical S-shaped growth curves and enter
a stationary-growth phase aer around 250 min, indicating that
ccpA::ccpA2CS did not affect S. aureus growth signicantly. In
contrast, the growth rates of both the WT and ccpA::ccpA2CS
Fig. 6 (a) The inhibition effect of Ag+ on the bacterial growth of the
wild-type S. aureus and ccpA::ccpA2CS mutant strains. The OD600 was
recorded at 20 min intervals, and 30 mM Ag+ was added when OD600

reached 0.6. The secreted a-hemolysin in the supernatant was
normalized to OD600. (b) Rabbit erythrocyte lysis activities of S. aureus
and the S. aureus ccpA::ccpA2CS mutant with or without 20 mM Ag+.
Ag+ was added at the beginning of the bacterial culture. All experi-
ments were performed in triplicate. Results are shown as mean � sd.
The haemolytic activities of the wild-type strain without Ag+ treatment
are used as a control and themean value is set at 100%. The activities in
other groups are normalized to the control. The statistical difference is
determined by the two-tailed Student’s t-test.

8064 | Chem. Sci., 2017, 8, 8061–8066
mutant of S. aureus were remarkably inhibited aer the addi-
tion of Ag+ until 300 min. However, a clearly different behavior
was observed for the WT and mutant cultures aer 300 min,
with the WT culture displaying a slower growth, yielding
cell density which signicantly lagged behind that of the
ccpA::ccpA2CS mutant culture. Aer 700 min, the mutant culture
with the addition of Ag+ reached almost the same OD600 value as
the control group, whereas the WT culture with the addition of
Ag+ only reached approximately 60% of the OD600 value of the
control group. The results indicated that the S. aureus ccpA::ccpA2CS

mutant is less sensitive to Ag+ than the WT. In line with this, the
IC50 values of Ag

+ for the WT and ccpA::ccpA2CS mutant of S. aureus
were calculated to be 79.8� 1.1 mMand 94.1� 0.8 mM, respectively
(Fig. S10†).

Besides regulation of carbon catabolite repression, CcpA also
exerts a critical role in S. aureus virulence factor secretion and
biolm formation.6,7,9 It is reasonable to postulate that Ag+

would interfere with these physiological processes of S. aureus
by targeting CcpA. Therefore, the effect of Ag+ on the virulence
factor secretion and biolm formation in both the WT and
ccpA::ccpA2CS mutant S. aureus strains was investigated. The
promoter region of the hla gene (encoding a-hemolysin) in
S. aureus contains the cre sequence that could be recognized by
CcpA. Previous studies demonstrated that the hla transcription
level was markedly down-regulated in the ccpA knockout
S. aureus strain.21 Indeed, secreted a-hemolysin and rabbit
erythrocyte lysis activity of a S. aureus mutant strain with the
CcpA gene knockout (denoted as S. aureus DccpA) is almost
undetectable. On the other hand, the S. aureus ccpA::ccpA2CS

mutant exhibited a signicant decrease on secreted a-hemo-
lysin and retained approximately 50% erythrocyte lysis activity
compared to the WT strain, implying that the two Cys residues
have a potential role in the regulation of a-hemolysin expres-
sion (Fig. S11†). Upon supplementation of 20 mMAg+, a western-
blot showed a signicant decrease in secreted a-hemolysin in
WT S. aureus. While in the ccpA::ccpA2CS mutant strain, Ag+

caused no obvious change in the secreted a-hemolysin.
Consistently, the rabbit erythrocyte lysis activity of WT S. aureus
decreased dramatically by 60% aer Ag+ treatment. In contrast,
the treatment of Ag+ led to much smaller decrease on the lysis
activity of the ccpA::ccpA2CS mutant strain, which still exhibited
85% activity compared to the control group (Fig. 6b and c). The
results are consistent with qPCR data, which demonstrated that
attenuation of the transcription level of CcpA regulated genes
(pckA and hla) was much higher in the WT strain than that in
the ccpA::ccpA2CS mutant strain (Fig. S12†). Similarly, bacterial
biolm formation is inhibited by Ag+ to a lesser extent in the
ccpA::ccpA2CS mutant than in the WT strain (Fig. S13†). It is
noteworthy that regulation of a-hemolysin expression and
biolm formation in S. aureus are complicated. For example,
a-hemolysin expression is affected by multiple regulatory
networks, including the global regulators SarA and MgrA.22,23 It
is possible that these regulatory networks were also perturbed
upon Ag+ treatment, which could at least partially explain the
decrease of erythrocyte lysis activity observed in the ccpA::ccpA2CS

mutant strain upon Ag+ treatment. Nevertheless, the evident
discrepancy observed between the ccpA::ccpA2CS mutant and WT
This journal is © The Royal Society of Chemistry 2017
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S. aureus upon Ag+ treatment conrms that CcpA indeed serves as
one of the targets of Ag+ in vivo.

All of the results demonstrated that the WT S. aureus strain
was more sensitive to Ag+ treatment than the ccpA::ccpA2CS

mutant strain due to Ag+ binding to the two cysteine residues.
To further conrm this, the severity of a S. aureus infection was
compared between the WT and ccpA::ccpA2CS mutant in
a murine model. The details are described in the ESI.† In brief,
groups of female BALB/c mice were inoculated with S. aureus
WT or ccpA::ccpA2CS mutant strains to develop abscesses on the
skin. Twice-daily treatment of AgNO3 with different concentra-
tions (20 mg ml�1 and 100 mg ml�1) was applied onto the
abscesses. The skin abscesses were excised 64 h post-infection,
homogenized and serially diluted for CFU quantication. As
shown in Fig. 7, the control groups infected with the WT or
ccpA::ccpA2CS mutant had similar viable bacterial counts, with
log CFU mean values of 8.4 and 8.1 respectively, indicating that
double Cys mutation does not signicantly perturb S. aureus
viability in a murine model. A low dosage of AgNO3 treatment
(20 mg ml�1) did not change the bacterial loads in both the WT
and ccpA::ccpA2CS mutant infected groups. However, a signi-
cant difference was observed when the two infected groups were
treated with a high dosage of AgNO3 (100 mg ml�1). In the WT
S. aureus infected group, the viable bacterial counts dropped
signicantly compared to the control group. In contrast, the
bacteria counts were almost the same in the ccpA::ccpA2CS
Fig. 7 Murine skin infection model (a) to investigate the sensitivity of
S. aureus strains to Ag+ treatment. The bacterial load of local abscesses
induced by wild-type S. aureus (b) or the ccpA::ccpA2CS mutant (c) was
enumerated in control or AgNO3 treatment groups (20 mg ml�1 and
100 mg ml�1). The log CFU values are presented as the mean� sd. The
statistical difference is determined by the Mann–Whitney U test.

This journal is © The Royal Society of Chemistry 2017
mutant infected groups upon a high dosage Ag+ treatment,
conrming that WT S. aureus is more sensitive to Ag+ than the
ccpA::ccpA2CS mutant. Intriguingly, a signicant difference on
the dermonecrosis of the skin abscess was observed for themice
infected with two different bacterial strains (Fig. S14†). The
mice infected with wild-type S. aureus had much more severe
dermonecrosis than those infected with the ccpA::ccpA2CS

mutant strain. Given that a-hemolysin is the major contributor
to necrotic lesions,24 the observation is consistent with the
results that the ccpA::ccpA2CS mutant had a lower a-hemolysin
level than the wild-type strain.
Conclusions

CcpA is one of the important global DNA regulators of Gram-
positive bacteria. Recent transcriptome and proteome anal-
yses revealed that CcpA has broad effects on gene expression in
S. aureus, even in the absence of glucose.25 Particularly, a CcpA
gene knockout abrogates biolm formation and virulence factor
expression in S. aureus, which remarkably decreases bacterial
pathogenesis. We show clearly that Ag+ binds to CcpA via the
two Cys residues both in vitro and in vivo, leading to the
disruption of protein functions, thus attenuating bacterial
growth, bacterial toxin expression and biolm formation.
Importantly, we demonstrated that WT S. aureus was more
sensitive to Ag+ treatment than the ccpA::ccpA2CS mutant in
a murine skin infection model. The results herein conrm
SaCcpA as an intracellular target for Ag+. It should be noted that
metal-based drugs are usually multi-targeted.26 Although it is
commonly believed that the antimicrobial activity of silver is
due to its interaction with thiol groups in enzymes and proteins,
other cellular components are likely to be involved.27–29 There-
fore, identication of Ag-binding proteins at a proteome-wide
scale may allow extensive exploration of silver targets to
advance our understanding on the bactericidal effects of
silver.30–32 However, the physiological function of the two
cysteine residues in SaCcpA remains unclear. It has been re-
ported previously that several DNA regulators of S. aureus use
the cysteine-based oxidation sensing pathway for regulatory
functions.33–35 Whether the two cysteines in SaCcpA are also
involved in oxidative sensing may warrant further studies.
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