## Chemical Science



View Article Online

## CORRECTION



Cite this: Chem. Sci., 2017, 8, 5802

## Correction: A simple and traceless solid phase method simplifies the assembly of large peptides and the access to challenging proteins

N. Ollivier, R. Desmet, H. Drobecq, A. Blanpain, E. Boll, B. Leclercq, A. Mougel, J. Vicogne and O. Melnyk\*

DOI: 10.1039/c7sc90046e www.rsc.org/chemicalscience

Correction for 'A simple and traceless solid phase method simplifies the assembly of large peptides and the access to challenging proteins' by N. Ollivier *et al., Chem. Sci.,* 2017, DOI: 10.1039/c7sc01912b.

The authors regret that entries 2 and 3 in Table 1 are incorrect in the original manuscript. Entry 2 is missing the CH<sub>2</sub>CH<sub>2</sub>O group and entry 3 is missing two carbonyl groups.

A corrected version of Table 1 has been presented below:

Table 1 Linker strategies for solid phase protein synthesis in the N-to-C direction

| Entry            | Functional linker (FL)                                 | Attachment<br>method<br>for peptide<br>segment 1 | Latent thioester (LT) |                                                                           |                                                                    |      |
|------------------|--------------------------------------------------------|--------------------------------------------------|-----------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------|------|
|                  |                                                        |                                                  | Structure             | Activation method                                                         | Cleavage                                                           | Ref. |
| 1                | N<br>H<br>N<br>H                                       | Oximation pH 4                                   | o<br>s                | Alkylation with bromoacetic acid, pH 4.6                                  | β-Elimination,<br>aqueous base, pH 13                              | 22   |
| 2                | N <sub>3</sub> ,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, | CuAAC pH 7 or<br>SPAAC pH 2                      | O<br>N<br>S<br>S      | Reduction (TCEP) and<br>exchange by 3-<br>mercaptopropionic acid,<br>pH 4 | See entry 1                                                        | 40   |
| 3                |                                                        | CuAAC                                            | Note <sup>a</sup>     |                                                                           | Transimination,<br>1 M H <sub>2</sub> NOH, pH 7–8.5                | 44   |
| 4 (This<br>work) |                                                        | Oximation<br>pH 3-4                              | O<br>N<br>S           | See entry 2                                                               | Transoximation<br>0.025 M H <sub>2</sub> NOH,<br>3 M aniline, pH 3 |      |

<sup>*a*</sup> The method was used for the synthesis of large protein mimetics through CuAAC ligation.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

UMR CNRS 8161 CNRS, Université de Lille, Institut Pasteur de Lille, 1 rue du Pr Calmette, 59021 Lille Cedex, France. E-mail: oleg.melnyk@ibl.cnrs.fr