Chemical Science

View Article Online

View Journal | View Issue

CORRECTION

Check for updates

Cite this: Chem. Sci., 2017, 8, 5803

Correction: Tailored theranostic apolipoprotein E3 porphyrin-lipid nanoparticles target glioblastoma

M. A. Rajora,^{ab} L. Ding,^a M. Valic,^{ab} W. Jiang,^a M. Overchuk,^{ab} J. Chen^a and G. Zheng^{*abc}

DOI: 10.1039/c7sc90047c www.rsc.org/chemicalscience

Correction for 'Tailored theranostic apolipoprotein E3 porphyrin-lipid nanoparticles target glioblastoma' by M. A. Rajora *et al., Chem. Sci.,* 2017, DOI: 10.1039/c7sc00732a.

In Fig. 6 of the paper, the labels for the final two sets of treatment groups should be switched around as indicated in the revised figure.

Fig. 6 In vitro evaluation of pyE-LN PDT sensitization. Cell viability was normalized to untreated cells and is presented as the average of three replicates \pm standard deviation. Cells were treated with py-LN-CO (3 μ M), laser (671 nm) or a combination of laser and particle. Significant differences (*p < 0.01, n = 3) were observed between treated and untreated cells, wherein significantly higher toxicity (**p < 0.01, n = 3) was observed in U87 cells versus IdIA7 cells treated with particle and laser.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

^aPrincess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada. E-mail: gzheng@uhnresearch.ca ^bInstitute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada ^cDepartment of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada