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Tracking particles with large displacements using
energy minimization†

Rostislav Boltyanskiy,a Jason W. Merrillb and Eric R. Dufresne*c

We describe a method to track particles undergoing large displacements. Starting with a list of particle

positions sampled at different time points, we assign particle identities by minimizing the sum across all

particles of the trace of the square of the strain tensor. This method of tracking corresponds to

minimizing the stored energy in an elastic solid or the dissipated energy in a viscous fluid. Our energy-

minimizing approach extends the advantages of particle tracking to situations where particle imaging

velocimetry and digital imaging correlation are typically required. This approach is much more reliable

than the standard squared-displacement minimizing approach for spatially-correlated displacements that

are larger than the typical interparticle spacing. Thus, it is suitable for particles embedded in a material

undergoing large deformations. On the other hand, squared-displacement minimization is more

effective for particles undergoing uncorrelated random motion. In the ESI, we include a flexible MATLAB

particle tracker that implements either approach with a robust optimal assignment algorithm. This

implementation returns an estimation of the strain tensor for each particle, in addition to its identification.

Introduction

In a wide range of pure and applied sciences, the motion of
objects needs to be tracked over time. The central difficulty is
that while an object’s trajectory is continuous through space
and time, its position can only be sampled at discrete
moments. When the objects of interest are far away from each
other or otherwise distinguishable, tracking is simple. However,
when many identical objects (which we refer to as particles) are
near each other, tracking can be difficult.

Particle tracking is employed across physics, biology, and
many other fields. In soft matter physics, it has shed light on
mechanical properties like rheology,1 and revealed microscopic
processes underlying phase transitions,2 among many other
applications. In biology, particle tracking is used across many
length scales from the movement of single molecules, to the
transport of organelles within cells, to movement of whole
organisms such as flies, birds, fish, and humans.3–6

In the absence of Brownian motion, particles embedded in a
material reveal its deformation field. In fluid mechanics, particle
tracking reveals flow fields in the Lagrangian frame of reference.7

Traction force microscopy (TFM) quantifies the forces applied to
a solid surface by tracking and analyzing motion of particles

embedded within the solid. TFM was originally developed to
quantify the forces exerted by adherent cells,8 but has recently
been applied to a wide range of problems in biology and physics.9

The standard method of particle tracking first locates particles
at each time point and then assigns identities by minimizing the
sum of squared displacements across time points.10 While this
method is rigorously correct for objects undergoing Brownian
motion, it works very well across a wide range of applications,
provided that the particles move a distance that is small compared
to the typical interparticle separation. The improvement of this
basic tracking approach has been an active area of research in
recent years, driven by applications in the biomedical community.
For a useful comparison of these particle tracking approaches, see
ref. 11. When the displacements are large, it is helpful to employ a
tracking algorithm that exploits knowledge of the system’s
kinematics. For example, particle tracking in dense turbulent
fluid flows has been greatly improved by employing a ‘‘predictive
tracker,’’ which exploits the inertial character of high Reynolds
number fluid flow.12

Particle Imaging Velocimetry (PIV) and Digital Imaging
Correlation (DIC) are widely used to assess the flow of fluids
and deformation of solids.13–15 These methods assign velocities
or displacements to locations in a material by cross-correlating
patches of an image across time points. This is a robust and
successful approach, even for systems with large displacements.
However, it is inappropriate in cases where individual particle
identities need to be followed over time or where the displacements
need to be known at the resolution of individual particles. In
these cases, image correlation and particle tracking can readily
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c Department of Materials, ETH Zürich, 8092 Zürich, CH, Switzerland.

E-mail: eric.dufresne@mat.ethz.ch

† Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sm02011a

Received 1st September 2016,
Accepted 22nd February 2017

DOI: 10.1039/c6sm02011a

rsc.li/soft-matter-journal

Soft Matter

PAPER

Pu
bl

is
he

d 
on

 2
2 

Fe
br

ua
ry

 2
01

7.
 D

ow
nl

oa
de

d 
on

 1
2/

28
/2

02
4 

7:
04

:0
9 

PM
. 

View Article Online
View Journal  | View Issue

http://crossmark.crossref.org/dialog/?doi=10.1039/c6sm02011a&domain=pdf&date_stamp=2017-02-25
http://rsc.li/soft-matter-journal
https://doi.org/10.1039/c6sm02011a
https://rsc.66557.net/en/journals/journal/SM
https://rsc.66557.net/en/journals/journal/SM?issueid=SM013011


2202 | Soft Matter, 2017, 13, 2201--2206 This journal is©The Royal Society of Chemistry 2017

be combined in a two-step process. First, image correlation can
be used to calculate coarse-grained displacements. Then, the
standard particle tracking algorithms can readily identify particles
based on the residual displacements.9

Here, we present an algorithm that extends particle tracking
to the large-displacement regime, without an image correlation
step. Our algorithm is optimized for tracking the motion of
particles undergoing large spatially-correlated displacements,
typical for tracers embedded in a deformed elastic solid or a
flowing viscous fluid. As a useful by-product, it provides estimates
of the local strain for each particle. We start by posing the tracking
problem generally, and review the maximum likelihood method
employed to track Brownian particles. Then, we describe our
energy minimization approach and directly compare the results
of the two methods for simulated and real data.

Optimal assignment

Suppose a set of particles, {p(k)(ti)}, where k is the particle index,
are found at locations {-x(k)(ti)} at time ti and a set of particles
{p(k)(tf)} are found at {-x(k)(tf)} at time tf. We wish to connect
particle positions across time to make trajectories. The particle
identities are represented by a list, T, where T(l) = m if particle
p(l)(ti) at time ti becomes particle p(m)(tf) at time tf.

We find an optimal assignment of identities by minimizing a cost
function. We associate a cost, cl,m, to each possible particle pairing.
The total cost, C, is the sum of the costs of individual pairings across
all of the particles, C ¼

P
l

cl;TðlÞ. We assign identities that minimize

the cost using the robust and efficient Hungarian algorithm.16,17

Since assigning particles is a combinatoric process, it
rapidly becomes computationally overwhelming as the system
size increases. While the Hungarian algorithm handles challenging
combinatorics more effectively than previous implementations,10 it
remains essential to limit the number of combinations by ruling out
unphysical assignments, as described below.

Minimization of squared-displacements

The standard particle-tracking algorithm minimizes the sum of
the squared displacements across all of the particles.10 This
yields the most likely assignment of identities when particles
undergo Brownian motion. In that case, the probability that the
kth particle will be displaced by D-

x(k) in a time interval, Dt, is:

P D~xðkÞ;Dt
� �

� exp �
D~xðkÞ
�� ��2
4dDDt

 !
(1)

Here, D is the diffusion coefficient and d is the number of spatial
dimensions.18 Therefore, the probability of observing a specific set
of displacements of N identical particles moving independently is:

P ¼
YN
k¼1

P D~xðkÞ;Dt
� �

� exp �
XN
k¼1

D~xðkÞ
�� ��2
4dDDt

 !
(2)

The most likely assignment of particle identities maximizes
the total probability, P, which is equivalent to minimizing the

total squared-displacement
PN
k¼1

D~xðkÞ
�� ��2. Therefore, one can

optimally assign particle identities with a cost for each potential
pairing, cl,m = |-x(l)(ti) �

-
x(m)(tf)|

2.
To accelerate the data analysis, one needs to rule out

unphysical assignments. Typically, one specifies a maximum
displacement a particle could have between time points, and
assigns an infinite cost to all of the elements of c that correspond to
displacements that would exceed this maximum. These elements
are ignored in the combinatorial optimization.

In practice, minimizing the squared-distance works very well
whenever particle displacements are small compared to the
distance of a particle to its nearest neighbors.

Minimization of energy

In the case of large displacements, squared-distance minimizing
trackers may not work effectively. Fortunately, however, these
displacements often have strong spatial correlations. For example,
particles embedded in a rigid material undergoing translation and
rotation are fixed relative to their neighbors. Similarly, displace-
ments of particles embedded in a liquid or solid undergoing large
deformations are typically strongly correlated to their neighbors. In
both of these cases, we do not wish to penalize displacements in
the laboratory frame, but displacements relative to neighboring
particles.

In continuum mechanics, the variation of displacements
over space is characterized by the strain. In the case of a linear,
isotropic, elastic solid of Young’s modulus, E, the stored
energy is

Uel ¼
E

2

ð
vol

Tr e2dV (3)

where e and -
u are the strain and displacement fields, respectively.

In component form, these two are related as eij ¼
1

2
@iuj þ @jui
� �

.19

Analogously, for a fluid of dynamic viscosity m sheared with a
strain rate _e, the rate of energy dissipation is:20

_Ufl ¼ 2m
ð
vol

Tr _e2dV (4)

If one is considering only two time points, then experimental
estimates of e and _e only differ by a pre-factor.

Motivated by these two physical examples, we propose to
assign particle identities by minimizing the stored/dissipated
energy. The basic hypothesis is that tracking errors tend to
exaggerate the strain/strain-rate, increasing the apparent stored/
dissipated energy. Therefore, we implement a cost function
cl,m = Tr(e(l,m))2. The main challenge of the proposed algorithm
is to identify the strain associated with a given particle pairing.
Calculating the strain requires positions of particles and their
nearest neighbors at two times.

The neighbors of particle p(k), can be found in 2-D using the
Delaunay triangulation. To ensure that the strain is uniform over
the region where it is calculated, we only consider neighbors
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within a distance rmax of p(k). In Fig. 1(a and b), neighbors
included in the strain calculation are within the dotted circles.

We use the method of Falk and Langer21 to calculate the
strain associated with candidate particle pairs and their neighbors.
The strain about a particle at position -

x from the position of
neighbors -x(n) can be estimated as follows:

Xij ¼
X
n

x
ðnÞ
i tfð Þ � xi tfð Þ

� �
� x

ðnÞ
j tið Þ � xj tið Þ

� �
; (5)

Yij ¼
X
n

x
ðnÞ
i tið Þ � xi tið Þ

� �
� x

ðnÞ
j tið Þ � xj tið Þ

� �
; (6)

Lij = XikYjk
�1, (7)

eij ¼
1

2
Lij þ Lji

� �
� dij : (8)

Note that in order to calculate strain accurately, at least d neighbors
must be included for particle tracking in d-dimensions.

To properly calculate strain around a particle, one needs to
accurately track its neighbors across time. Consider a particle at
time ti, p(l)(ti) (in the center of the dotted circle in Fig. 1a) and a
candidate corresponding particle at time tf, p(m)(tf) (in the center a
dotted circle in Fig. 1b). To connect the neighbors of p(l)(ti) with those
of p(m)(tf), we translate the candidate particles and their neighbors to
the same location, as shown in Fig. 1(c and d). We then track the
neighbors of the candidate pair by minimizing the square of the
residual displacements. To accelerate the calculation, we rule out
relative displacements that would exceed an expected maximum
value of the strain. If the candidate pair produces at least d tracked
neighbors, we calculate the strain for the candidate pairing
according to eqn (8) and assign the pairing a cost cl,m =
Tr(e(l,m))2. Otherwise, the pairing is ruled out by setting the cost
to infinity. Once all possible pairings have been assigned costs,
the Hungarian algorithm is used to minimize the total cost
across all of the particles.

Implementation of tracking algorithms

We implement the squared-distance-minimizing ‘‘diffusion
tracker’’ and energy-minimizing ‘‘strain tracker’’ algorithms in
MATLAB. In the ESI,† we include the main particle-tracking
function, Tracker.m. We also include a script, Example.m, that
allows the user to explore the examples described below. Details
regarding use of the code are found in the comments as well as
the text of ReadMe.pdf. A convenient by-product of our strain
tracker is that it returns the symmetrized strain matrix for each
tracked particle.

Comparison of tracking strategies with
simulated data

We compare the performance of the diffusion and strain trackers
with simulated data. As shown in Fig. 2, we consider four types of
particle motion: diffusion, translation, shear, and stretch. For
each example, the first row of Fig. 2 shows the positions of
particles at the first (black) and second (magenta) time points.
The second row shows the correct displacement field in green.
The third and fourth rows show the displacements determined by
the diffusion tracker (red) and the strain tracker (blue).

Not surprisingly, the diffusion tracker out-performs the
strain tracker for the case of diffusion. For the example shown
in the first column of Fig. 2, the diffusion tracker returns
results for all of the particles. About 96% of these tracks are
correct. On the other hand, the strain tracker provides correct
identifications for only 73% of the particles, incorrect identifications
for 11%, and no identification for 16%. These tracking errors
impact quantitative measures of the particle motion. Even though
the distributions of the particle displacements for the two trackers
look similar, Fig. 3(a and b), tracking errors tend to introduce counts
in the tails of the displacement distribution that have a significant
impact on the mean-squared particle displacement (MSD). In this
example, the MSD calculated from the diffusion tracker is within
2% of the correct value. However, the value calculated using the
strain tracker is 30% greater than the correct value.

On the other hand, for the cases of large displacements due
to translation, shear, and stretch, the strain tracker is a much
more reliable choice. For the remaining examples in Fig. 2, the
diffusion tracker returns identifications for at least 84% of the
particles, but returns correct identifications for no more than
8% of the total. On the other hand, the strain tracker returns
indentifications for at least 74%, and nearly all of them are correct.
Furthermore, the strain tracker’s errors tend to be localized to the
boundary of the field of view, which can be easily discarded when
greater accuracy is required. The strain tracker not only accurately
identifies particles, but it also correctly quantifies particle displace-
ments and strains. The expected displacements and strains for the
cases of translation, shear, and stretch are shown as vertical green
lines in Fig. 3(c–h). The red histograms display the values for each
particle returned by the diffusion tracker and the blue histograms
report those from the strain tracker. The strain tracker consistently
returns the correct values, while the incorrect tracks from the
diffusion tracker return broadly distributed incorrect values.

Fig. 1 Schematic of strain-based particle tracking. (a) Particles at time ti.
Dotted circle represents a region around the particle of interest, p(l)(ti), with
radius rmax within which the particle neighbors are considered. (b) Particles
at time tf with candidate particles circled as in (a). (c) Particle p(l)(ti) and its
neighbors overlapped with p(m)(tf) and its neighbors. Arrows show tracked
displacements between neighbors of the candidate particles. (d) Particle
p(l)(ti) and its neighbors overlapped with p(n)(tf) and its neighbors. Arrows
show tracked displacements between neighbors of the candidate particles.
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In many applications, particles may exhibit a combination
of large correlated displacements (e.g. due to flow) and uncor-
related random displacements (e.g. Brownian motion). We
quantified the performance of both trackers for simulated
Brownian particles in a fluid undergoing pure shear, varying
the magnitude of the shear and the Brownian noise, as shown
in Fig. 4. When the particle displacements due to either type
of motion are small compared to the average interparticle
spacing, hrii, they perform equally well. As the root-mean-
squared magnitude of random displacements, Z, is increased
at a small value of the strain, both trackers start to make
mistakes. While the strain-tracker maintains high fidelity up
to Z/hriiE 0.1, the diffusion tracker maintains the same fidelity
up to Z/hrii E 0.2.

Comparison of tracking strategies with
experimental data

In this section, we compare the diffusion and strain trackers
with some experimental data.

First, we assess both trackers’ ability to identify particles
during a relatively large and homogeneous strain. Here, we
deform a silicone gel with embedded fluorescent tracers using
a macroscopic deformation. We image the tracers over a small
field of view, where we expect a reasonably uniform compression.
We estimated the strain using a manually applied affine trans-
formation to the particle locations, resulting in eigenvalues of
�0.06 and �0.04. Then, we calculated particle displacements
with the strain and diffusion trackers, as shown in Fig. 5(a and b).

Fig. 2 Comparison of the diffusion and strain trackers for simulated data of particles moving by diffusion (first column), translation (second column),
shear (third column), and stretch (fourth column). The particle positions at the first time point (black dots) and second time point (magenta dots) are
shown in the first (top) row. The correct displacements (green arrows) are shown in the second row. The displacements calculated from identities
returned by the diffusion and strain trackers are shown in the third and fourth rows, respectively. In all cases, arrows are drawn to scale. In the third and
fourth rows, the numbers in gray boxes correspond to percentages of particle trajectories calculated correctly and incorrectly by each tracker. The
percentages do not add to 100% because the trackers were not able to find partners for some particles.
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While both trackers return comparable results where the displace-
ments are small (upper-left corner of the field of view), they disagree
where the displacements are large. In this region, the diffusion
tracker returns an uncorrelated displacement field, while the strain
tracker returns the expected compression. Our strain tracker returns
a strain tensor associated with the displacement of each tracked
particle. Histograms of the strain eigenvalues of each particle are
plotted in Fig. 5(c–f). For both trackers, the peaks of the histogram
agree well with the expected values from the manual affine

transformation. However, the diffusion tracker reports a much
broader distribution, including some unphysical positive values.

Fig. 3 Histograms of individual particle displacements (a–d) and strain eigenvalues (e–h) from analysis of simulated data in Fig. 2. (a and b) are histograms of
horizontal and vertical displacements, respectively, from simulated diffusion data. (c and d) are histograms of horizontal and vertical displacements, respectively,
from simulated translation data. (e and f) are histograms of strain eignevalues from a simulated shear. (g and h) are histograms of strain eigenvalues from a
simulated stretch. In all panels, results from the diffusion tracker are in red, those of the strain tracker are in blue, and the overlap is in purple. In green is an outline
of the histogram of correct displacements in (a and b) and a vertical line corresponding to the correct values of displacements and strains in (c–h).

Fig. 4 Mixture of random and correlated displacements. Percentage of
particles correctly identified by the strain tracker (blue) and the diffusion tracker
(red) in a pure shear deformation (as in Fig. 2, third column) as a function of
superimposed random motion, quantified by the root-mean-squared magnitude
of random displacements, Z. Closed symbols are for a relatively small strain (eE
0.005), where the mean particle displacement is 0.13 hrii. Open symbols are for a
relatively large strain (eE 0.05), where the mean particle displacement is 1.13 hrii.

Fig. 5 Particle tracking examples with experimental data. (a and b) Trajectories
of particles embedded in a silicone gel undergoing uniform compression,
calculated with the diffusion tracker (a) and the strain tracker (b). Arrows are
scaled by a factor of 2. (c–f) Histograms of strain eigenvalues as calculated with
the diffusion tracker (c and e) and the strain tracker (d and f). (g and h) A
contractile fibroblast cell adherent on a silicone gel. Arrows overlaid on top
represent particle displacements from cell traction forces as calculated
with the diffusion tracker (g), and the strain tracker (h). Arrows are scaled by
a factor of 5. Scale bars are 20 mm.
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Next, we consider an example from Traction Force Microscopy
(TFM) where the strains have a much stronger spatial heterogene-
ity. In TFM, forces exerted by small objects, such as cells, are
quantified by measuring the deformation of an elastic material they
are adhered to. To quantify the deformation, fluorescent particles
are embedded in the elastic material. Displacements caused by
a fibroblast cell adherent to a silicone gel are presented in
Fig. 5(g and h). The cell is fluorescently tagged and is displayed in
inverted contrast. Overlaid on top of the cell image are displace-
ments of the surface underneath the cell (scaled by a factor of 5),
determined by the (g) the diffusion tracker and (h) strain tracker.
While displacements measured by the strain tracker and diffusion
tracker mostly agree, the diffusion tracker identifies some
unexpected large strains near the center of the cell.

Conclusion

We have introduced a particle tracking algorithm based on the
minimization of energy. This approach out-performs the conven-
tional squared-displacement minimizing particle tracker when the
displacements are larger than the interparticle spacing. On the
other hand, our strain tracker may have difficulty when the strain
changes significantly over the typical interparticle spacing. This
can occur in the vicinity of strain singularities, such as cracks, and
when particles are moving randomly, as in Brownian motion.
Although, the code included in the ESI† is designed for two time
points and two spatial dimensions, expanding to three dimensions
and many time points is a straightforward modification. It may
also be useful to combine the squared-displacement and energy
minimizing approaches in order to handle systems with large
correlated displacements and significant Brownian motion.
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