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Inflammatory breast cancer (IBC) has a poor prognosis because of the lack of specific biomarkers and its

late diagnosis. An accurate and rapid diagnosis implemented early enough can significantly improve the

disease outcome. Vibrational spectroscopy has proven to be useful for cell and tissue characterization

based on the intrinsic molecular information. Here, we have applied infrared and Raman microspectro-

scopy and imaging to differentiate between non-IBC and IBC at both cell and tissue levels. Two human

breast cancer cell lines (MDA-MB-231 and SUM-149), 20 breast cancer patients (10 non-IBC and 10 IBC),

and 4 healthy volunteer biopsies were investigated. Fixed cells and tissues were analyzed by FTIR micro-

spectroscopy and imaging, while live cells were studied by Raman microspectroscopy. Spectra were ana-

lyzed by hierarchical cluster analysis (HCA) and images by common k-means clustering algorithms. For

both cell suspensions and single cells, FTIR spectroscopy showed sufficient high inter-group variability to

delineate MDA-MB-231 and SUM-149 cell lines. Most significant differences were observed in the spectral

regions of 1096–1108 and 1672–1692 cm−1. Analysis of live cells by Raman microspectroscopy gave also

a good discrimination of these cell types. The most discriminant regions were 688–992, 1019–1114,

1217–1375 and 1516–1625 cm−1. Finally, k-means cluster analysis of FTIR images allowed delineating

non-IBC from IBC tissues. This study demonstrates the potential of vibrational spectroscopy and imaging

to discriminate between non-IBC and IBC at both cell and tissue levels.

1. Introduction

Inflammatory breast cancer (IBC) is one of the most lethal and
fatal forms of breast cancer with a higher incidence in young

women.1 It is characterized by a low survival rate in compari-
son with other breast cancer types.2 The majority of IBC
patients have no well-defined mass on clinical examination
and the first symptom is rapid breast enlargement and
changes in the skin overlying the breast.2 Clinically, IBC is
characterized by rapid onset, erythema, edema of the breast,
and a “peau d’orange” appearance of breast skin. Moreover, at
diagnosis, IBC patients are characterized by the presence of
positive metastatic lymph nodes and up to 30% of IBC patients
have metastasis at diagnosis.3 Nipple flattening, retraction,
crusting, or blistering may be frequently apparent but not
included as a diagnostic clinical feature of IBC.4 However,
some conditions such as nonpuerperal bacteria mastitis may
lead to late diagnosis and treatment of IBC.5 Pathologically,
IBC is characterized by the presence of dermal and stromal
tumor emboli. Lymphatic tumor emboli prevent drainage of
the lymph fluid leading to swelling of the breast tissue and
causing inflammation.6

Mammography and ultrasound are the common diagnostic
and therapeutic monitoring imaging modalities of breast
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cancer.7 The main purpose of imaging in IBC is to determine
the primary breast tumor, identify distant metastases, support
image-guided biopsy, and optimally evaluate tumor response
to neoadjuvant chemotherapy.4 However, mammography has a
high rate of false-positives,8 or negative diagnostics.9 Other
imaging modalities are more frequently used in breast cancer
diagnosis such as magnetic resonance imaging (MRI, func-
tional MRI), hybrid positron emission tomography/computed
tomography (PET/CT, cone-beam breast CT) and 3-D ultra-
sound.4 However, these imaging modalities may not allow
early diagnosis of IBC in some cases.

Many studies have tried to identify specific biological
markers to differentiate between non-IBC and IBC conditions.
For instance, E-cadherin is an epithelial marker and calcium
dependent transmembrane glycoprotein that mediates epi-
thelial cell–cell adhesion.10 IBC cells are characterized by over-
expression of E-cadherin, which is essential for cell adherence
and tumor embolus formation.11 In non-IBC, the loss of
E-cadherin expression contributes to increased tumor prolifer-
ation and to the progression of metastasis and is associated
with poor prognosis.12 DNA microarray studies showed gene
expression differences between IBC and non-IBC and over-
expression of toll-like receptors (TLR) in IBC tissues.13 Another
study comparing MicroRNA (miRNA) expression profiles in
non-IBC, IBC carcinoma tissues, and normal breast tissues
found that IBC carcinoma tissues are characterized by five
overexpressed miRNAs comprising miR-421, miR-486,
miR-503, miR-720, and miR-1303.14 However, all previously
discussed markers do not distinguish IBC from non-IBC and
fail to explain the specific pathobiology of IBC. Late diagnosis
of IBC due to the absence of any biological markers was associ-
ated with a low survival rate compared to other types of breast
cancers.2 Therefore, there is room for new developments in
order to characterize IBC and non-IBC cells and tissues.

Fourier-transform infrared (FTIR) and Raman vibrational
spectroscopies have proven to be useful diagnostic tools for
characterizing carcinoma cells and tissues based on their
intrinsic molecular information.15–18 The obtained spectral
data provide information on the structure and composition of
characteristic biomolecules such as lipids, proteins, nucleic
acids, and polysaccharides. Thus, vibrational signatures rep-
resent a complete “molecular fingerprint” of the sample and
can be both qualitative and quantitative. Vibrational micro-
spectroscopy/imaging is a highly sensitive method capable of
probing cells and tissues at the micron level. It is a rapid, non-
invasive and label-free approach,19 capable of detecting tumor
heterogeneities, thus highlighting subtle intra-tumoral biologi-
cal differences that may not be addressed through convention-
al histology approaches.20 A combination of spectroscopy with
chemometrics tools like HCA,21,22 k-means (KM) clustering,23

and fuzzy c-means (FCM) clustering,24 could distinguish
different cell types within the same tissue or even between
different cancer cells in the same carcinoma tissue.

Previous studies have used FTIR and Raman spectroscopy
for analyzing breast cancer cells and tissues. It has been
reported that FTIR spectroscopy on isolated peripheral blood

mononuclear cells (PBMCs) is potentially feasible. It is an
efficient tool to differentiate between healthy and breast
cancer patients, to detect early breast neoplasms and to reduce
false positive results at screening.25 FTIR imaging was used to
study the effect on three different breast cancer cell lines co-
cultured with normal fibroblasts. The obtained spectral data
easily discriminate between normal and co-cultured fibroblasts
independent of their morphological changes.26 Recently, a
simple model for cell type recognition using 2D-correlation
analysis of FTIR images allowed the separation of the extra-
cellular matrix (ECM) from carcinoma cells in breast cancer
tissue.27 Raman confocal microscopy was used to study the
impact of four different polyphenols (epigallocatechin gallate
(EGCG), gallic acid, resveratrol and tannic acid) on the nucleus
and cytoplasm of MCF-7 breast cancer cells. An increase in
lipid content was observed after exposure to these
polyphenols.28

FTIR imaging was applied on breast biopsies of different
tumor histological grades to study the changes in the micro-
environment surrounding the carcinomas.29 Differences were
due to collagen bands at 1630 and 1640 cm−1, when the ECM
near and far from the tumor was compared. Raman spec-
troscopy has also been proposed for the detection of tumor
margins during breast cancer surgery, both in vivo and
ex vivo.30,31 In addition, Raman spectroscopy was used to
compare the spectra obtained from ductal carcinoma, sur-
rounding inflammatory stroma and healthy breast tissue
(lobules, ducts, stroma and fat).32 Furthermore, Raman spec-
troscopy was used in vivo to evaluate the biochemical changes
pre- and post-photodynamic therapy in live rat breast
tumors.33 In addition, Zhang and Barman employed spon-
taneous Raman spectroscopy for early detection and evalu-
ation of cancer-colonized bone alterations in a mouse model
system.34

The aim of the present study was to explore the potential of
vibrational microspectroscopy/imaging, in combination with
chemometric analytical methods for differentiating, on the
one hand, between non-IBC and IBC cell lines and on the
other hand, tissue sections from non-IBC and IBC patient
biopsies.

2. Materials and methods
2.1. Cell lines

Two human breast cancer cell lines MDA-MB-231 (ATCC®
HTB-26™), representing non-IBC, and SUM-149 representing
IBC (kindly provided by the Cancer Biology Research
Laboratory, Zoology department, Faculty of Science, Cairo
University, Giza, Egypt), were used in this study. MDA-MB-231
cells were cultured in DMEM medium with 10% fetal bovine
serum and 1% of penicillin/streptomycin antibiotic mixture.
SUM-149 cells were cultured in HAM’s F12 medium with 5%
fetal bovine serum, 5 mM HEPES, 1 µg ml−1 hydrocortisone,
5 µg ml−1 insulin and 1% of penicillin/streptomycin antibiotic
mixture. Both cell lines were incubated at 37 °C in 5% CO2.
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2.2. High-throughput infrared analysis of cell suspensions

At 80% of confluency, cells were detached using 1% trypsin,
washed with growth media supplemented with FBS, and then
rewashed twice with PBS. The cells were then resuspended in
sterile water and 5 µL of cell suspension (105 cells per mL)
were deposited onto a 384-well silicon plate and left to air-dry.
After 1 h drying at room temperature, the plate was placed in
the high-throughput screening HTS-XT extension coupled to a
Tensor 27 spectrometer (Bruker Optics GmbH, Ettlingen,
Germany). Three independent cultures and 8 replicates per
culture were analyzed. Measurements were performed in the
transmission mode, at a spectral resolution of 4 cm−1 using 64
co-additions in the spectral range of 4000–400 cm−1.

2.3. FTIR imaging of single fixed cells

Two mL of cell suspension (105 cells per mL) were seeded on a
calcium fluoride (CaF2) substrate (Crystran, Dorset, UK) and
incubated for 24 h at 37 °C in 5% CO2. Cells were then fixed
with 4% paraformaldehyde (PFA) for 20 min and washed three
times with sterile distilled water, and then left to air-dry. The
cells were analyzed with a FTIR imaging system (Spotlight 400,
PerkinElmer, Courtaboeuf, France). The cells were selected
after visual inspection and FTIR images were recorded in the
transmission mode at a spatial resolution of 6.25 µm per pixel,
and a spectral resolution of 4 cm−1 using 128 scans in the
spectral range of 4000–800 cm−1. Three independent cultures
were used and 8 cells per culture were analyzed.

2.4. Raman microspectroscopy of live cells

Two mL of cell suspension (105 cells per mL) were seeded on a
CaF2 substrate and incubated for 24 h at 37 °C in 5% CO2.
Cells were then rinsed three times with 0.9% sterilized NaCl
and immersed in the same solution for Raman acquisition
under live conditions. Live cells were analyzed with an Labram
Raman microspectrometer (Horiba Jobin Yvon, Villeneuve
d’Ascq, France) equipped with laser excitation at 660 nm, 950
lines per mm grating and using a confocal hole of 300 µm.
The objective used on the microscope (Olympus BX40) was a
100× water immersion objective (NA: 1.0) giving a laser spot
size of ∼1 µm. The laser power at the sample was 28 mW and
the acquisition was performed in point mode in the spectral
range of 600 to 1750 cm−1 with 1 accumulation of 45 s. Ten
different individual cells were analyzed and for each cell, five
Raman spectra were recorded from the cytoplasm.

2.5. Patient tissue samples

For patient inclusion in this study, Institutional Review Board
(IRB) approval was obtained from the ethics committee of the
Faculty of Medicine, Ain Shams University, Egypt
(IRB#00006379). Each patient provided a signed consent form
including approval for publication of results. Patients were
clinically and histopathologically diagnosed as non-IBC and
IBC as described before.35 A total of twenty breast cancer
patients (10 non-IBC and 10 IBC), all triple negative (ER−, PR−

and Her-2), and four healthy volunteers who had breast
reduction surgery were enrolled.

2.6. FTIR imaging of formalin-fixed paraffin-embedded
tissues

FTIR spectral images were acquired on formalin-fixed paraffin-
embedded (FFPE) human breast tissues. To do so, three 5 µm
thick sections were prepared. The first and third sections were
stained with hematoxylin phloxin saffron solution (HPS) and
underwent histopathological examination to define the normal
and carcinoma outlines. The second tissue section was
mounted on a CaF2 window for FTIR microspectroscopy/
imaging analysis without any particular preparation, especially
no chemical dewaxing. Images were acquired in transmission
mode using the Spotlight 400 imaging system at a pixel size of
6.25 µm, and a spectral resolution of 4 cm−1 using 16 scans in
the spectral range of 4000–800 cm−1. The workflow of the FTIR
imaging and data analysis of the FFPE tissue sections is shown
in Fig. 1.

2.7. Preprocessing and processing of cell spectral data

2.7.1. HT-FTIR of cell suspensions. Spectral data obtained
from cell suspensions were baseline corrected (elastic func-
tion, 5 points) and their second derivative spectra computed
and vector normalized to increase spectral differences and for
comparing spectra with each other. Then, spectral data
were processed by hierarchical cluster analysis (HCA)
(Matlabsoftware) which is based on a distance calculation. The
results of HCA analysis are represented in a tree figure called a
dendrogram.

2.7.2. FTIR imaging of single fixed cells. For single fixed
cell imaging, the CaF2 substrate background was automatically
subtracted from the recorded FTIR hyperspectral cell images.
Spectra were obtained from the whole single cell and all of the
obtained spectra of the same cell type were baseline corrected
and their second derivative spectra computed and vector nor-
malized. The processed spectra were analyzed by HCA analysis
(OPUS 6.5 software, Bruker Optics GmbH, Ettlingen,
Germany).

2.7.3. Raman microspectroscopy of single live cells. Raman
spectra were preprocessed using an in-house routine built in
the Matlab software (MathWorks, Natick, MA, USA). First a
set of calibration spectra (silicon, neon lamp, NIST, optics,
dark current, CaF2 substrate) were recorded and these were
subsequently used to process the raw Raman spectra. This pro-
cedure has been previously described in detail.36 The spectra
were then smoothed using a Savitzky–Golay function with
second order polynomial, baseline corrected, and vector nor-
malized. Corrected spectra were processed with HCA analysis
(Matlab software).

2.8. Preprocessing and processing of tissue spectral images

The recorded FTIR hyperspectral images of paraffin-embedded
breast tissues exhibit both tissue biochemical information and
paraffin bands (1378 cm−1 and 1467 cm−1) in the 900 to
1800 cm−1 spectral region. In our study, we did not perform a
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chemical dewaxing but images were digitally corrected for
paraffin spectral contribution. This is achieved via an auto-
mated data processing method based on Extended
Multiplicative Signal Correction (EMSC). The complete
method has been previously described by Ly et al.37 For tissue
classification, an unsupervised common k-means clustering
method was used.38 In k-means, each spectrum belongs to a
unique cluster and spectral images can be reconstructed for a
rapid and simple visual analysis of clustering results. Apart
from the cluster images, a dendrogram obtained by HCA
showing the spectral distance between different k-means

cluster centroids can be retrieved. All processed FTIR images
were compared with adjacent HPS stained sections. Both
EMSC and k-means clustering algorithms were implemented
in Matlab Statistics Toolbox software.

2.9. Statistical analysis

Data were expressed as mean ± standard deviation (SD). The
statistical difference between groups was assessed by Student’s
t-test and the Chi square test. P values <0.05 were considered
to be statistically significant. All statistical analyses were per-

Fig. 1 Workflow showing the FTIR spectral imaging analysis of FFPE breast tissue sections and analysis of FTIR images with common k-means
clustering.
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formed by using SPSS 22.0 software (IBM Corporation,
New York, USA).

3. Results and discussion
3.1. Clinical and pathological characteristics of non-IBC and
IBC patients

Clinical and pathological characteristics of patients are
described in Table 1. Statistical analysis showed that IBC
patients were significantly younger with larger tumor sizes
(p = 0.001 and 0.004, respectively) compared to non-IBC
patients. Moreover, the status of lymph node metastasis and
the incidence of lymphovascular invasion were significantly
higher in IBC patients in comparison with non-IBC patients
(p = 0.039 and 0.035, respectively).

3.2. Characterization of MDA-MB-231 and SUM-149 cell
suspensions by high-throughput FTIR spectroscopy

Normalized mean FTIR spectra obtained from MDA-MB-231
and SUM-149 cells in suspension were compared. Visually, the
spectral profiles of both cell types were quite similar in the
1800–800 cm−1 spectral range (Fig. 2A). In addition, the vector
normalized second derivative spectra showed very minor modi-
fications between both cell types in the 1200–800 cm−1 spectral
range (saccharide absorption region) (Fig. 2B). The cell suspen-
sion spectra were analyzed by HCA. The computation was per-
formed on all second derivative spectra (n = 8) for each cell
suspension in the 1800–800 cm−1 spectral range. The results
show that the eight replicate spectra of each cell suspension

were grouped together in the same cluster and exhibited a
high degree of homogeneity. This indicates a good reproduci-
bility of the measurements and, therefore, a low intra-group
variability. The inter-group variability was sufficiently high to
distinguish the two cell types (Fig. 2C).

3.3. Differentiating between non-IBC and IBC cells via fixed
single cell FTIR imaging analysis

Fig. 3A shows on the left the white light images of
MDA-MB-231 (top) and SUM-149 (bottom) single fixed cells
and their corresponding FTIR images on the right. The mean
spectrum of each cell was extracted from the dotted square,
baseline corrected and vector normalized as displayed in

Table 1 Clinical and pathological characteristics of non-IBC and IBC
patients

Characteristic Non-IBC (n = 10) IBC (n = 10) P value

Age [year]
Range 53–65 29–53 0.001*a

Mean ± SD 58.5 ± 4.1 42.1 ± 7.6

Tumor size [cm]
Mean ± SD 3.4 ± 0.8 6 ± 2.3 0.004*b

≤4 4 1
>4 6 9

Tumor grade
G1 2 0 0.289b

G2 6 5
G3 2 4
G4 0 1

Axillary lymph node metastasis
0 4 0 0.039*b

≤4 3 2
>4 3 8

Lymphovascular invasion
Negative 3 8 0.035*b

Positive 7 2

Data are reported as means ± SD. a Student’s t-test. b Chi square test.
*Significant p value (p < 0.05).

Fig. 2 High-throughput FTIR spectra of MDA-MB-231 and SUM-149
cell suspensions. (A) Comparison between baseline corrected and nor-
malized FTIR spectra obtained from MDA-MB-231 and SUM-149 cell
suspensions in the spectral range of 1800–800 cm−1; (B) their second
derivative counterparts; (C) HCA analysis of second derivative FTIR
spectra. Spectra are offset for clarity.
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Fig. 3B. The spectral profiles of both cell types were quite
similar in the 1800–800 cm−1 spectral range. In order to
enhance the differences, second derivative spectra were calcu-
lated and displayed some modifications between both cell
types in the 1800–800 cm−1 spectral range as shown in Fig. 3C.
HCA analysis was then performed on the second derivative
spectra of each cell type in the 1800–800 cm−1 spectral range.
The cluster analysis reveals two well distinct groups corres-
ponding to each cell type (Fig. 3D). Furthermore, an intra-
group low degree of heterogeneity and an inter-group high
degree of heterogeneity were observed as with the cell suspen-
sion measurements. This separation was based on spectral
differences in the following regions: 994–1072, 1096–1108,
1264–1352, 1386–1444, 1672–1692 and 1710–1743 cm−1. The
assignment described in Table 2 is based on the previous work
by Movasaghi et al.39 The effect of the media on the two cell
lines was verified. MDA-MB-231 cells were grown in DMEM
and HAM’s F12 media and similarly for SUM-149 cells. HCA
analyses show that the discrimination between the two cell
lines is possible independent of the culture medium (see ESI,
Figure ESI1†). In addition, their line morphology was observed
in the two media. For both cell lines, the morphology was not

affected by the medium (see ESI, Figure ESI2†). Finally, the
cell growth kinetics of both cell lines in the two media demon-
strate that SUM-149 cell growth is similar in DMEM and
HAM’s F12 media and a similar tendency is observed for the
MDA-MB-231 cell line in the two media (see ESI, Figure ESI3†).

3.4. Characterization of MDA-MB-231 and SUM-149 live cells
using Raman microspectroscopy

Raman microspectroscopy has the advantage of measuring
single cells in 0.9% NaCl solution with very low interference

Fig. 3 FTIR imaging of MDA-MB-231 and SUM-149 fixed single cells. (A) White light images of MDA-MB-231 (top left) and SUM-149 (bottom left)
single fixed cells and their corresponding FTIR images on the right; (B) comparison between the mean spectrum of each cell (top: MDA-MB-231 and
bottom: SUM-149) in the spectral range of 1800–800 cm−1 as extracted from the dotted square, then baseline corrected and vector normalized; (C)
their corresponding second derivative spectra; (D) HCA analysis of second derivative FTIR spectra. Spectra are offset for clarity.

Table 2 Tentative assignment of FTIR bands based on the second
derivative spectra of fixed MDA-MB-231 and SUM-149 cell types

Spectral
range

Frequency
(cm−1) Assignment

1 994–1072 RNA
2 1096–1108 νas, νs CO–O–C, lipids
3 1264–1352 Amide III, proteins
4 1386–1444 ν COO−, δs CH3, lipids, proteins
5 1672–1692 CvO guanine deformation
6 1710–1743 ν(CvO), lipids (esters), νas (CvO),

RNA (esters)
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from water molecules. The results described here were per-
formed on live MDA-MB-231 and SUM-149 breast cancer cells.
Data presented here are from cell cytoplasms (n = 10 cells; 5
spectra per cell for each cell line). Fig. 4A shows the compari-
son of the mean Raman spectra of MDA-MB-131 (top) and
SUM-149 (bottom) cells. Several spectral differences can be
observed in the regions of 688–992, 1019–1114, 1217–1375 and
1516–1625 cm−1 as depicted in Fig. 4A. The differences
concern mainly proteins, nucleic acids and amino acids. The
assignment described in Table 3 is based on the previous work
by Movasaghi et al.40 HCA analysis was carried out on normal-
ized spectra in the 600–1800 cm−1 spectral range and the
results displayed in Fig. 4B show a good discrimination
between non-IBC and IBC cells. For both HT-FTIR of cell popu-
lations and FTIR imaging of single fixed cells, a low intra-
group variability was observed indicating a good reproducibil-
ity of the replicates. The inter-group variability was sufficiently
high to delineate the two cell types.

The intra-group and inter-group variabilities in single cells
were comparable to those of the cell suspension data.
Concerning Raman data, the intra-group variability in
SUM-149 was found to be higher than that observed in FTIR
analyses, where the cells were either dried or fixed. It can be
hypothesised that the Raman data on live cells better reflect
the heterogeneity within the cell population.

However, the two techniques provide different spatial resol-
utions and at the cellular level this can introduce a spectral
variability.

Having demonstrated that non-IBC and IBC cells can be
discriminated using vibrational spectroscopy, it would be
interesting from a clinical perspective to evaluate the potential
of the technique for differentiating non-IBC and IBC con-
ditions at the tissue level.

3.5. Common k-means clustering of non-IBC and IBC tissue
hyperspectral images

After digital dewaxing of the FTIR images of healthy and carci-
noma breast tissue sections, a common k-means clustering
was performed using 10 clusters. This method was applied to
20 breast cancer patients (10 non-IBC and 10 IBC) and
4 healthy volunteers who underwent breast reduction surgery.
The reconstructed color-coded cluster images enabled the
recovery of different histological features that allowed us to
precisely localize breast tumors from other tissue components.
An example of the k-means clustering results is shown in
Fig. 5. Fig. 5A shows one healthy breast tissue on the left HPS-
stained image and its corresponding k-means image on the
right. In a similar way, Fig. 5B and C show two non-IBC and
IBC cases, respectively. Annotation of each generated cluster
was then performed with the help of a confirmed pathologist
resulting in the following precise tissue characterization:
breast carcinoma tissue was represented by clusters 2 and 10,
breast adipose tissue by clusters 4 and 8, breast fibrous con-
nective tissue by clusters 1, 5, 6, 7 and 9, and breast necrotic
tissue by cluster 3. The outcome of k-means clustering can
also be represented in the form of a dendrogram which shows
the distance between the cluster centroids (Fig. 5D). All ten
centroid spectra are shown in Fig. 5D.

Our results show that healthy adipose tissue and normal
adipose tissue adjacent to carcinoma tissue obtained from
both non-IBC and IBC patients were represented by two
different clusters (cluster 8 and 4, respectively). Moreover,
healthy and normal fibrous breast connective tissues adjacent

Fig. 4 Raman microspectroscopy of MDA-MB-231 and SUM-149 single
live cells. (A) Comparison between the mean spectrum of each cell (top:
MDA-MB-231 and bottom: SUM-149) in the spectral range of
600–1800 cm−1, baseline corrected and vector normalized; (B) HCA
analysis of Raman spectral data obtained from MDA-MB-231 and
SUM-149 live cells in the spectral range of 1800–600 cm−1. Spectra are
offset for clarity.

Table 3 Tentative assignment of Raman bands of live MDA-MB-231
and SUM-149 cell types

Spectral
range

Frequency
(cm−1) Assignment

1 688–992 DNA/RNA bases, tryptophan/tyrosine
2 1000–1114 Phenylalanine, PO2

−

3 1217–1375 Amide III, lipids, nucleic acids (bases)
4 1516–1625 CvC bending mode

Phenylalanine/tyrosine
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to carcinoma tissues of both non-IBC and IBC patients were
represented by five different clusters (clusters 5, 9 and 1, 6, 7,
respectively) (Fig. 5D and E). An interesting finding is that the
average percentage of carcinoma (cluster 2) was significantly
higher in non-IBC (p < 0.05) compared to IBC carcinoma
tissues. In contrast, the average percentage of carcinoma
(cluster 10) was significantly higher in IBC (p < 0.05) compared

to non-IBC carcinoma tissues. These results obtained from
common k-means clustering showed that carcinoma tissues of
non-IBC and IBC patients were represented by two different
clusters (2 and 10, respectively) (Fig. 5F).

Vibrational microspectroscopy/imaging is an analytical tool
with several obvious advantages in disease diagnosis. It has
the ability to detect subtle molecular changes that precede any

Fig. 5 Common k-means clustering of FTIR images of non-IBC and IBC tissues. (A) Example of one healthy breast tissue: HPS stained image (left)
and its corresponding k-means image (right); (B) example of two non-IBC cases: HPS-stained images (left) and their corresponding k-means images
(right); (C) example of two IBC cases: HPS-stained images (left) and their corresponding k-means images (right); (D) dendrogram showing the group-
ing of ten clusters obtained after k-means; (E) comparison between ten centroid spectra; (F) histogram showing the average percentages of two
clusters (2 and 10) representative of carcinoma in non-IBC and IBC tissues. *indicates a significant p value, as determined by the Chi square test.
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morphological changes. These observed spectroscopic changes
are related to any modifications of the concentration and the
conformational orientation of functional groups associated
with proteins, lipids, nucleic acids and carbohydrates.41,42 The
delay between diagnosis and treatment can be very long and
distressing for patients and the cost is very substantial for
health care. Vibrational spectroscopy, as a ‘spectral histo-
logical’ technique for cancer diagnosis and prognosis, can be
used as a screening method to help histopathologists in their
decision and thus shortening the delay time.43 Its potential for
cell studies has been demonstrated for breast cancer cells.
Recently, a strong correlation between gene expression pat-
terns and FTIR spectral data has been demonstrated for
thirteen breast cancer cell lines grown under 2D and 3D
culture conditions.44 The same group has also shown that
HTS-FTIR spectroscopy can classify numerous polyphenols
according to the metabolic modifications they induced in the
MDA-MB-231 cell line.45 Due to the late diagnosis of IBC, an
accurate and rapid method is critically needed which will sig-
nificantly improve the IBC outcome when implemented early
enough.

In the present study, FTIR and Raman microspectroscopy
and imaging were used for the first time to discriminate
between non-IBC and IBC at the cell and tissue levels. Our
results showed that both FTIR and Raman microspectroscopy
were effective methods at the single cell level. However, since
Raman measurements are amenable to live cell exploration,
they reflect better the cell physiological status compared to
fixed cell measurements. Recent studies have also demon-
strated the potential of FTIR microspectroscopy for single live
cell analysis. An increase in cellular level spatial resolution was
achieved either by the high refractive index of a micro-ATR
element46 or by the use of a synchrotron IR source.47 These
advances are promising but require specific set-ups for live cell
measurements with a proper control of the path length of the
medium in which cells are measured. Thus, Raman microspec-
troscopy presents the advantages of a straightforward tech-
nique with subcellular spatial and axial resolutions. The FTIR
imaging results obtained from breast carcinoma tissues after
the application of the common k-means cluster algorithm
showed that the reconstructed color-coded clustering images
allowed the recovering of different histological structures, par-
ticularly to precisely localize tumoral areas and their normal
counterparts. Furthermore, non-IBC and IBC carcinoma
tissues, represented by two different clusters, could be differ-
entiated and this is the first time that such results are
reported. In contrast, we could not discriminate between non-
IBC and IBC stromal breast tissues. In this case, it would be
necessary to increase the spatial resolution and/or apply more
advanced spectral image analysis methods. For instance, Patel
and coll. used synchrotron-FTIR microspectroscopy to identify
biomolecular changes associated with chronic oxidative stress
in the mammary epithelium and stroma of breast tissues from
healthy young women.48 Other modalities using FTIR imaging
via a focal plane array detector could provide more insight into
breast tissue analysis.49

4. Conclusions

In this study, we have applied vibrational spectroscopy and
imaging to investigate non-inflammatory and inflammatory
breast cancer at the cellular and tissue levels. IBC is one of the
most lethal and fatal forms of breast cancer with a higher inci-
dence in young women.

Differentiating between these two pathological conditions
is crucial for patient therapy and management. Existing
markers fail to explain the specific pathobiology of IBC and to
distinguish IBC from non-IBC. Consequently, late diagnosis of
IBC due to the absence of any biological markers is associated
with a low survival rate compared to other types of breast
cancer. Therefore, new approaches based on spectral analysis
can be complementary to conventional methods based on
immunohistochemistry. These methods have the advantages
of being rapid, non-destructive, non-contact and label-free.

Our findings demonstrate that vibrational spectroscopy has
the potential to discriminate between non-IBC and IBC at both
the cell and tissue levels. This is an important aspect since
inflammation is indicative of bad prognosis and its identifi-
cation could be useful for patient therapy management.
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