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ylation and hydrolysis
functionalisations on the anti-oil staining
behaviour of textiles grafted with poly(N-
isopropylacrylamide) hydrogel

Siti Samahani Suradi, Nurul Hazlina Naemuddin, Shahrir Hashim and Nadia Adrus *

Novel hydrogel-modified textiles have been prepared through photografting poly(N-isopropylacrylamide)

(PNIPAAm) onto pristine and functionalised polyethylene terephthalate (PET) surfaces. In this work, two

types of functionalisation, carboxylation (CPET) and hydrolysis (HPET), were performed to scrutinise the

hydrogel grafting efficiency. Basic characterisation of the pristine, functionalised and grafted textiles was

carried out via fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM) and field

emission scanning electron microscopy (FESEM) analyses. Then, the functional characteristics of these

samples were determined based on the oil staining performance. Functionalisation of the PET textiles via

hydrolysis and carboxylation gives rise to different chemical reactivity and interactions on the PET

surface. Impressively, the surface formed via hydrolysis functionalisation of PET was found to be more

efficient compared to that formed via carboxylation, and the untreated one. The HPET surface was

remarkably more hydrophilised and rougher than both the UPET and CPET surfaces. The accessibility of

the –OH groups for hydrogen abstraction from HPET has a great impact on the hydrogel grafting onto

the HPET surface. All the grafted textiles (PNIPAAm-g-UPET, PNIPAAm-g-CPET and PNIPAAm-g-HPET)

demonstrated anti-oil staining behaviour at 27 �C. In particular, PNIPAAm-g-HPET textiles with a high

degree of grafting (DG) exhibited the fastest rate for oil to de-stain from the surface. Moreover, the

reversible transition of PNIPAAm hydrogels around the lower critical solution temperature (LCST) �
32 �C from hydrophilic to hydrophobic generates switchable surfaces of the textiles with regard to the

oil wettability. Specifically, PNIPAAm-g-HPET textiles also displayed the highest degree of wettability

switching as a result of having the highest DG. Taken together, the PNIPAAm hydrogels grafted onto PET

textiles were significantly enhanced though hydrolysis functionalisation and possessed excellent

switchable surfaces toward oil-staining, having great potential to be used for applications in oil and

water separation as well as smart textiles.
1. Introduction

In recent years, the demand for the development of materials
that can efficiently separate oil and water has aroused signi-
cant interest. Scientists have shied their attention towards the
development of ‘water-removing’ materials, which exhibit the
opposite wettability to oil. This is because materials with special
wettability possess multi-functionality, such as self-cleaning
and anti-oil staining functions, which may nd use in various
applications including separation materials and smart textiles.
Most recent approaches have been focused on the hydrophilic
and oleophobic modication of several substrates with various
coatings, including uorinated polymers,1,2 hydrophilic
ineering, Faculty of Chemical and Energy

ia, 81310 UTM Johor Bahru, Johor,

hemistry 2018
polymers,3–5 inorganic materials6–8 and nanoparticles.9,10 As
these hydrophilic–oleophobic materials show water wetting
preferences over oils, they have signicant advantages
compared to traditional ‘oil-removing’ materials, such as good
oil resistance and recyclability without requiring post-treat-
ment.11–13 Additionally, these materials are also easy to fabricate
and have no limitation in terms of absorption capacity because
the separation is based on a ltration mechanism. Since these
hydrophilic/oleophobic lters have anti-oil wetting properties,
this could lead to faster and higher efficiency ltration that is
easily scalable for commercial applications.

Following this strategy, porous substrates, including
meshes, polymer lms, membranes and textiles, are good
candidates for hydrophilic modication due to their large pore
volume, exibility and commercial availability.7,14–16 These
materials can be modied via coating5,17 or graing18,19

methods. Xue et al. reported the use of metallic substrates for
RSC Adv., 2018, 8, 13423–13432 | 13423
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hydrogel coatings that can selectively and effectively (99%)
separate water from an oil/water mixture.4 Liu and co-workers
previously coated polyvinylidene uoride (PVDF) membranes
with chitosan–silica nanoparticles using glutaraldehyde for
effective oil/water emulsion separation.20 Moreover, composite
membranes based on PVDF/nano-sized titanium oxide cast
onto a non-woven fabric as a substrate exhibit higher perme-
ability and good fouling resistance.21

Despite much progress in this eld and the existing
hydrophilic/oleophobic modications, detailed studies on the
interplay between hydrogels and the chosen substrates via
chemical functionalisation are still lacking. For example,
current research is more focussed on the use of uorinated
compounds instead of hydrogels in order to enhance the special
wettability of membrane coatings.20,22 Most uorinated
compounds are harmful and quite costly.23,24 Stainless steel
meshes modied via physical coating using zinc oxide25 or
hydrogels4,26 suffered from poor interfacial surface properties
that could result in the coating delaminating from the substrate
surface. This has become a drawback of the physical coating
approach compared to the graing process that limits its
practical applications. Additionally, stainless steel meshes are
difficult to gra due to the lack of reactive functional groups on
their surface. In this regard, the graing method is more suit-
able for modifying the surface chemistry of polymeric
membranes and textiles. Polyethylene terephthalate (PET)
textiles are one of the most commonly used substrates and
possess excellent characteristics, including easily scalable
modication, anti-wrinkle properties and exibility.27,28

However, it is always a challenge to modify the surface of PET
textiles because of their hydrophobic surfaces. Hence, several
techniques have been applied, including surface functionali-
sation via carboxylation and hydrolysis.29–31 These techniques
have been proven to impart more hydrophilicity and specic
functionalities on PET surfaces, which can offer improvements
in the chemical stability. Through these functionalisations, the
incorporated functional moieties on these surfaces are
tremendously effective for further graing in order to achieve
hydrophilic/oleophobic surfaces.

In this paper, we report the graing of poly(N-iso-
propylacrylamide) (PNIPAAm) hydrogels onto functionalised
PET textiles. Amongst hydrophilic materials, hydrogels are
typically three-dimensional hydrophilic polymeric networks
lled with large amounts of water. Due to their excellent water
absorbing and water retaining capacities, hydrogels are highly
efficient ‘water-removing’ materials. A smart temperature-
responsive PNIPAAm hydrogel was chosen due to its fasci-
nating ‘sensor’ properties, which can be reversibly switched
from a hydrophilic to hydrophobic state across its lower critical
solution temperature, LCST � 32 �C. To use this smart hydrogel
effectively, we graed it onto a PET substrate in order to
generate a more stable hydrophilic and oleophobic modica-
tion via a uoride-free approach.32 Importantly, efforts were
made to make the PET surface more compatible with the PNI-
PAAm hydrogel using a systematic functionalisation strategy via
carboxylation and hydrolysis.33,34 The surface functional groups,
roughness and morphology were investigated in detail. These
13424 | RSC Adv., 2018, 8, 13423–13432
surface functionalisations on the PET substrates provide
different surface properties and interactions with the graed
hydrogel. We have demonstrated that carboxylation and
hydrolysis give rise to different accessibility of the hydroxyl
groups on the PET surface, further enhancing graing with the
PNIPAAm hydrogel, which can ultimately improve the resis-
tance towards oil staining, making the material easily recyclable
and recoverable with excellent switchable wetting 4 anti-
wetting surfaces.35–37 Overall, this study suggests a facile and
new technique to design modied PET textiles that could
potentially be used for oil and water separation applications as
well as smart textiles.

2. Experimental section
2.1. Materials

N-Isopropylacrylamide (NIPAAm) monomer, N,N0-methyl-
enebisacrylamide (MBAAm) crosslinker, benzophenone (BP;
“type II” photoinitiator), sodium hydroxide (NaOH), potassium
permanganate (KMnO4), hydrochloric acid (HCl, 37%), sul-
phuric acid (H2SO4, 96%) and acetic acid (CH3COOH, 99%)
were purchased from Acros Organic (Belgium), Sigma-Aldrich
(USA), Rahn AG (Germany) and Fisher Scientic (M) Sdn. Bhd.
(Malaysia). All chemicals were analytical grade with high purity.
NIPAAmwas recrystallised from n-hexane while other chemicals
were used directly without further purication. The PET
nonwoven textile was supplied by Feichang Lianyi Engineering,
China.

2.2. Surface functionalisation of PET textiles

The PET textiles were cut into circles with a diameter of 4.5 cm
and washed with distilled water to remove the impurities. The
hydrolysis functionalisation was carried out by immersing the
untreated PET (UPET) textiles into NaOH solution (1 N) at 60 �C
for 2 hours. Then, the PET textiles were rinsed with abundant
water to remove any traces of alkali on the surface of the textiles.
Aer the treatment, the textiles were neutralised with a dilute
CH3COOH solution and were washed again with distilled water.
Finally, the treated textiles were dried at room temperature for
48 hours. Alternatively, the carboxylation functionalisation was
carried out through the immersion of UPET textiles in a reaction
mixture of 10 g KMnO4 in 200 mL H2SO4 (0.75 N), for about two
and a half hours. Then, the textiles were washed twice with
deionised water. Next, the PET textiles were submerged in HCl
(6 N) four times. The PET textiles were washed again with water
four times and twice with ethanol before being dried in oven at
a temperature of 45.8 �C overnight.

2.3. Surface graing of PNIPAAm onto PET textiles

The photoinitiator type II solution was prepared using 50 mM
BP in 10 mL of C2H5OH. All the samples of UPET and func-
tionalised PET (carboxylation: CPET, and hydrolysis: HPET)
textiles were immersed in the photoinitiator solution for 1 hour.
Meanwhile, the PNIPAAm pre-gel reaction mixture was
prepared using puried AAm (15 wt%) in 5mL of distilled water,
followed by the addition of MBAAm (crosslinker, 5 wt%), and
This journal is © The Royal Society of Chemistry 2018
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Scheme 1 Surface functionalisation via carboxylation (right) and
hydrolysis (left) of polyethylene terephthalate.
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this was stirred until completely dissolved. The textiles were
immersed for about 15 minutes in the pre-gel solution and
exposed to UV LED light (UV LED, Hönle UV Technology, Ger-
many) for 20 minutes.

2.4. Degree of graing

Aer the irradiation step, the textile samples were equilibrated
with distilled water for 8 hours to elute all the unreacted
monomer, BP and homopolymer. Then, the textile samples
were dried in oven at 45 �C for about 24 hours and weighed
again. The degree of graing (DG) for PNIPAAm-g-UPET, PNI-
PAAm-g-CPET and PNIPAAm-g-HPET was determined using
eqn (1):

DG ¼ Wf �Wi

Wi

� 100% (1)

where Wi is the initial weight of the textile sample and Wf is the
textile weight aer functionalisation.

2.5. PET surface characterisation

The functional groups on the surface of UPET, functionalised
PET (CPET and HPET), and graed PET (PNIPAAm-g-UPET,
PNIPAAm-g-CPET, PNIPAAm-g-HPET) were analysed using
a fourier transform infrared spectrophotometer (FTIR, Perkin
Elmer Spectrum One) via a potassium bromide (KBr) pellets
standard technique. The spectra were obtained in the region
4000–600 cm�1 in transmittance mode for 32 scans. Samples
were prepared by dispersing the complexes well in KBr and
compressing the mixtures to form disks. The surface topogra-
phies of the PET textiles were evaluated using an atomic force
microscopy (AFM, Nanoscope IIIA) system in tappingmode with
a silicon nitride probe. The morphological structures of the
surfaces of the as-prepared samples were investigated using
eld emission scanning electron microscopy (FESEM, JEOL
JSM-6701F) at a voltage of 5 kV. These samples were coated with
gold and the surface features were visualised individually at
different magnications. Water contact angle (WCA) measure-
ments of the PET textiles were performed using an optical
contact angle measurement system (VCA Optima) using the
sessile drop technique at 27 and 45 �C. A water droplet (2.0 mL)
was dropped onto the surface of the as-prepared samples and
readings were recorded three times for each sample.

2.6. Anti-oil staining assessment

For this investigation, cooking oil was selected as a model
pollutant in the water source and the assessment was carried
out at 27 and 45 �C. Pictures of the graed PET textiles aer
dipping in oils and washing with water were captured. The
recyclability of the graed PET samples was determined based
on the time taken for the oil to disappear at 27 �C aer 5 cycles.

3. Results and discussion
3.1. Preparation of functionalised PET textiles

The PET textiles were chemically functionalised to improve the
surface hydrophilicity and surface roughness, and to enhance
This journal is © The Royal Society of Chemistry 2018
the efficiency of the subsequent surface-initiated graing pho-
topolymerisation because accessible reactive functional groups
were introduced. The reactive functional groups were generated
depending on the chemical functionalisation approach. The
carboxylation and hydrolysis functionalisations favoured
enhancing the carboxyl and hydroxyl groups, respectively.29

Basically, the structure of pure PET consists of a substantial
amount of hydroxyl and carboxyl groups. The carboxylation or
hydrolysis process creates a higher amount of hydrophilic
chain-ends via selective cleavage of the PET ester bonds.38 The
hydrolysis process introduced more hydroxyl groups in the
chain-ends of the HPET surface when the PET ester bonds were
cleaved (cf. Scheme 1(A)).31,38 These reactive functional surface
groups are useful for immobilizing the BP initiator on the
functionalised PET surface and become active sites for the
subsequent surface graing of PNIPAAm-g-PET textiles.29

Meanwhile, more carbonyl-carboxyl groups were formed in the
CPET end chains. Thus the ester groups at the CPET surface
converted to mostly carboxyl groups (cf. Scheme 1(B)).29,38

FTIR analysis was employed to characterise the functional
groups on the PET textile surfaces. The FTIR spectra of
unmodied PET (UPET) and functionalised PET textiles made
via carboxylation and hydrolysis (CPET and HPET) are shown in
Fig. 1. Even though all of the PET textiles displayed character-
istic bands with similar peak positions in each spectrum, the
spectra of the textiles aer functionalisation certainly exhibited
different peak intensities. Peaks were detected at 1746–1635,
1410 and 1343 cm�1, which correspond to the stretching of the
carbonyl bonds (–C]O), and the bending and wagging modes
of the ethylene units, respectively. The appearance of broad
absorption bands at around 3420 cm�1 was attributed to the
intermolecular –OH bonded to the C]O groups and –OH of the
carboxylic groups in the PET chains.39 Three strong stretching
vibrations were identied at 1235, 1090 and 1017 cm�1, and are
mainly attributed to the PET ester bonds.40

When compared to that of the UPET textile, the spectrum for
CPET (Fig. 1) shows weaker intensity absorption bands at
RSC Adv., 2018, 8, 13423–13432 | 13425
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Fig. 1 The FTIR spectra of UPET, CPET and HPET in the absorption
range 4000–600 cm�1.

Scheme 2 Schematic diagram of the steps of grafting the PNIPAAm
hydrogel onto the PET textile surface.
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around 1746 and from 1123 to 1090 cm�1. The alteration of
CPET was indicated by the fading ester groups at around
1235 cm�1. It can also be observed that the ester peaks of PET
diminished at around 1710 and 910 cm�1 aer carboxylation.
This indicates that the ester bonds of PET were cleaved during
carboxylation.29,38 Only the carboxyl groups remained at the end
of the polymer chains.

Meanwhile, carboxyl (COO�) and hydroxyl (–OH) groups
were found on the HPET textile similar to on the CPET (Fig. 1)
due to the cleavage of the PET ester bonds. Hydrolysis func-
tionalisation forms more hydroxyl groups rather than carboxyl
groups. The appearance of a shoulder at around 1710 cm�1

indicates the formation of hydrogen bonds to the surface of the
hydrolysed PET (HPET). At the same time, the peaks at 1505,
1174, 1090, 1017, and 910 cm�1 (Fig. 1, HPET) were intensied,
and are assigned to C]C, C–O and –OH groups, respectively.
Apparently, the spectrum of HPET exhibits broader and higher
adsorption peaks than that of UPET at the following peak
positions: 1746, 1174, and 910 cm�1. The decrease in the
intensity of the HPET adsorption bands at 1235, 1090 and
1017 cm�1 could also be an indication that the ester bonds of
PET were cleaved via hydrolysis. The FTIR data revealed that the
HPET consists of a higher amount of hydroxyl groups and
becomes more hydrophilic, which could further enhance the
graing of the PNIPAAm hydrogel onto PET.41
3.2. Preparation of PNIPAAm-g-PET textiles

The surface graing of the PNIPAAm hydrogel onto PET is
a subsequent step aer the functionalisation of the PET textiles.
Here, the ‘graing-from’ approach was applied to grow more
polymer chains on the PET surfaces. This approach consists of
two steps: (i) pre-adsorption of the photoinitiator onto the PET
surface, and (ii) subsequent gra polymerisation of the PNI-
PAAm hydrogel onto the PET surface via photoinitiated
hydrogen abstraction, as depicted in Scheme 2. For this
purpose, the unmodied and functionalised PET textiles were
13426 | RSC Adv., 2018, 8, 13423–13432
employed as substrates to be graed with the PNIPAAm
hydrogel.

First, the BPmolecules were immobilised and adsorbed onto
the PET surface. Then, UV LED light was used as a light source
to excite the BP photoinitiator at 365 nm. This led to hydrogen
abstraction of the functional group to form free radicals on the
surface.42,43 Aer reactive sites were produced, these high energy
radicals initiated the gra photopolymerisation in the subse-
quent step.29,44 Thus, the growth of the PNIPAAm chains was
propagated in relation to the accessible amount of reactive
groups that were introduced during primary
functionalisation.43

Immobilisation of the photoinitiator on the PET textiles with
different functionalities had an inuence on its pre-adsorption
onto the surface. UPET has a comparatively equal amount of
carboxyl and hydroxyl functional groups. Aer functionalisa-
tion, HPET consisted of a hydroxyl-rich terminated surface,
while CPET had a higher amount of carboxyl end groups
compared to the uncleaved PET base material. The pre-
adsorption of the BP initiator on the HPET surface was signif-
icantly improved by the interactions of the hydroxyl groups of
the surface and the photoinitiator. The increase in the number
of accessible hydroxyl groups on HPET, which were introduced
during hydrolysis, enabled efficient hydrogen abstraction with
the aid of the BP photoinitiator. This could lead to more effi-
cient and selective functionalisation, resulting better control of
the DG of the PNIPAAm hydrogel onto the HPET surface.
Alternatively, the UPET could be modied much more effi-
ciently than CPET. This can be explained by the fact that the
surface of the CPET textile was shielded by the carboxyl groups
and therefore the formation of free radicals via hydrogen
abstraction was hindered. A similar nding was reported by
Geismann and colleagues.29 This study has shown that the
formation of active sites on the PET surface was inuenced by
the hydrogen abstraction from the selective reactive functional
groups via a photoinitiator pre-adsorption approach. Hence, the
functionalised PNIPAAm-g-PET textiles made via graing could
be tailored accordingly. To conrm this further, the effect of
functionalisation via carboxylation and hydrolysis of the PET
textiles on the photograing polymerisation of PNIPAAm can be
scrutinised based on the DG results (cf. Section 3.3).
This journal is © The Royal Society of Chemistry 2018
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The surface of the unmodied and functionalised PET
textiles aer graing photopolymerisation was characterised by
means of FTIR analysis. By referring to the adsorption peaks of
ungraed PET (Fig. 1), a dramatic change of the spectra can be
clearly seen for the graed PET textiles, as shown in Fig. 2. New
peaks associated with the characteristic peaks of the PNIPAAm
hydrogels appeared on the spectra of the graed PET, which are
detected at wavenumbers of 1635, 1535, 1170 and 1090 cm�1.
These peaks were attributed to the C]O (amide I), C–N (amide
II) and OH groups, respectively. A broader and stronger band
around 3454 cm�1 was also detectable, which corresponds to
the stretching vibrations of the –OH group overlapped with the
N–H stretching vibration bands for the PNIPAAm hydrogel.45

Additionally, medium peaks at 1453 and 1338 cm�1, which are
assigned to the stretching vibrations of the isopropyl groups of
PNIPAAm, were also seen.46,47 Therefore, the presence of PNI-
PAAm absorption bands has conrmed that the graing of the
PNIPAAm hydrogel layer onto the surface of the PET textiles was
successful.

The effect of graing on the PET textiles aer carboxylation
and hydrolysis functionalisation (PNIPAAm-g-CPET and PNI-
PAAm-g-HPET) was also studied using FTIR analysis, and the
results are shown in Fig. 2. The characteristic absorbance bands
at around 3454, 1635 and 1535 cm�1 in these IR spectra validate
that the PNIPAAm hydrogel layer was graed onto the CPET and
HPET during photopolymerisation. When compared to those of
PNIPAAm-g-UPET, the transformation of the peaks of PNI-
PAAm-g-CPET and PNIPAAm-g-HPET can clearly be identied.
PNIPAAm-g-HPET shows broader amide (I) and amide (II) peaks
with absorption bands around 3454, 1713 and 1241 cm�1

(Fig. 2). The intensity of the PNIPAAm-g-HPET peaks at 1235,
1090 and 910 cm�1 (ester group) is diminished, which clearly
emphasised that the surface of HPET was signicantly covered
with a graed layer of the PNIPAAm hydrogel. Furthermore, an
increase in the intensity of the PNIPAAm-g-HPET peaks at 1645
and 1575 cm�1 suggested that more hydrogen bonding had
Fig. 2 The FTIR absorptions of the various PNIPAAm hydrogel grafted
functionalised PET textiles, PNIPAAm-g-UPET, PNIPAAm-g-CPET and
PNIPAAm-g-HPET, in the absorption range 4000–600 cm�1.

This journal is © The Royal Society of Chemistry 2018
occurred. This noticeably shows that the graing of the PNI-
PAAm hydrogel onto the HPET surface is relatively enhanced
compared to that on the UPET surface (Fig. 2). However, the
presence of characteristic PET bands (cf. Fig. 1) around 1746,
1235, 1174, 1090 and 1017 cm�1 can still be seen in the PNI-
PAAm-g-CPET. The remaining PET functional groups on the
surface reveal that only a small amount of the PNIPAAm
hydrogel layer was graed onto PNIPAAm-g-CPET, when
compared to on both PNIPAAm-g-HPET and PNIPAAm-g-UPET.
This is in agreement with the effect of carboxylation explained
earlier; the CPET textile was shielded by the carboxyl groups
during graing photopolymerisation.
3.3. Characterisation of PET textiles

To further conrm that the PNIPAAm hydrogel was graed onto
the PET surfaces, we also conducted a quantitative analysis
based on the percentage DG, and the results are shown in Fig. 3.
Aer the graing functionalisation has taken place, the PET
textiles were covered with a PNIPAAm layer that contributed to
the DG value. We found that the amount of PNIPAAm hydrogel
graed onto the pristine UPET surface was 15.5% on average.
Meanwhile, the amounts of PNIPAAm hydrogel graed onto the
functionalised CPET and HPET were 5.1% and 33.2%, respec-
tively (Fig. 3). The trend obviously shows that the amount of
PNIPAAm graed onto HPET (PNIPAAm-g-HPET) was the
greatest. We have noted that the hydrolysed surface has highest
tendency for graing, rather than the UPET and CPET textiles.
This suggests that the development of more hydroxyl groups at
the end chains of HPET made it more susceptible to hydrogen
abstraction by the BP initiator upon UV irradiation. In addition,
the surface of HPET tended to be highly hydrophilic. This could
also provide better compatibility with hydrogel materials30,48

and thus, the graing of the PNIPAAm hydrogel onto the PET
surfaces was further enhanced. In contrast, the PNIPAAm
hydrogel graed onto the CPET surface displayed the lowest DG
value, which was even signicantly lower than that of PNIPAAm-
g-UPET. This shows a clear correlation between the DG and the
amount of accessible carboxyl groups on the CPET surface. The
Fig. 3 The degree of grafting of the PNIPAAm hydrogel grafted onto
PET with different functionalisations.
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shielding effect of the CPET surface reduced the efficiency of
hydrogen abstraction by the BP initiator for efficient graing
due to the limited accessibility of the carboxyl groups aer the
carboxylation.29

The surface roughness plays a key role in elucidating the
effect of chemical functionalisation and graing onto PET
surfaces. For this purpose, AFM analysis of the PET textiles was
conducted in the dry state. The distinctive topographies of the
pristine UPET and functionalised PET textiles are shown in
Fig. 4, with the light regions being the highest points and the
dark regions representing the depth of the valleys. The surface
roughness data for the PET aer functionalisation and graing
processes were obtained based on the root mean square average
roughness (Rms), as stated in Fig. 4. When comparing with the
pristine UPET as a benchmark, a substantial change of the
roughness of the PET surfaces was observed (area of 2 mm � 2
mm, cf. Fig. 4). Aer functionalisation, the Rms of the PET
surfaces was gradually increased from 3.341 nm to 10.50 nm.
The pristine UPET shows a smooth surface of irregular curva-
tures, which is illustrated by the bright peaks and dark valleys
(Fig. 4a).49,50 The surface curvature and distribution of protru-
sions for both the functionalised PET surfaces are relatively
different.51 The CPET surface possesses a regular curvature and
uniform distribution of peak to valley topography with isolated
growth of micro- and nano-grooves (Fig. 4b). Meanwhile, the
surface roughness of HPET has consistently increased. This
indicates that etching of the HPET textile surface via hydrolysis
Fig. 4 The AFM images of PET textiles before grafting; (a) UPET, (b)
CPET and (c) HPET, and the PET textiles after grafting with the
hydrogel; (d) PNIPAAm-g-UPET, (e) PNIPAAm-g-CPET and (f) PNI-
PAAm-g-HPET. The measurements were carried out at 25 �C.

13428 | RSC Adv., 2018, 8, 13423–13432
has occurred, resulting in a topography with numerous
protrusions and grooves (Fig. 4c). The results from our study are
corroborated by previous work by Škvarla and co-workers; the
PET surface became increasingly eroded via hydrolysis.51 An
increase in the surface roughness is important for improving
the interfacial adhesion of the PNIPAAm hydrogel onto the
HPET surface in the subsequent functionalisation.52,53

The topography of the PET textiles aer the graing process
is shown in Fig. 4d–f. Even though the PNIPAAm-g-UPET surface
shows heterogeneous curvature similar to that of UPET, the
uneven distribution of lumps and signicantly larger Rms value
could also be noted. This is an indication that the PNIPAAm
hydrogel was graed onto the UPET surface.54 The PNIPAAm-g-
CPET exhibited the lowest Rms value; its surface is less rough
with a uniform distribution of small pits. The surface also dis-
played a less pronounced peak to valley topography (Fig. 4e).55

This can be elucidated by the fact that the hydrogen abstraction
by the carboxyl groups in the primary functionalisation (CPET)
occurred in shielded manner, thus only a low concentration of
energy-rich starter radicals were formed.

Consequently, this resulted in a lesser extent of graing
polymerisation causing the smoother surface of PNIPAAm-g-
CPET.56 In contrast, the topography of PNIPAAm-g-HPET
(Fig. 4f) displayed prominent roughening with numerous
protrusions and grooves, which is consistent with the Rms value.
The PNIPAAm-g-HPET surface was constructed of micro-scale
bulges with deeper curvatures. The functionalisation via
hydrolysis improved the PET roughness and enhanced the
amount of accessible hydroxyl groups on the HPET surface,
stimulating more PNIPAAm hydrogel to be graed onto the
HPET surface.54,57 This nding is also in agreement with the DG
results.

The effects of functionalisation and the subsequent graing
process on the PET surfaces were further investigated using
FESEM analysis at three different magnications, as shown in
Fig. 5 and 6. The FESEM images at 500�magnication show the
random stacking orientation of the PET bres constructing
Fig. 5 Surface morphologies of the PET textiles before and after
functionalisation; (a) UPET, (b) CPET and (c) HPET, based on a top view.

This journal is © The Royal Society of Chemistry 2018
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mesh-like voids. The morphology of a single bre and its top
surface are shown by further zooming at 5 000� and 15 000�
magnication, respectively.

As a benchmark, the UPET textile appears to have a smooth
sandy surface with orderly aligned wrinkles along the bre axis
structure (Fig. 5a). This is in agreement with previous
studies.31,58 Aer primary functionalisation steps, the surface
morphologies of the PET textiles were not signicantly altered
via carboxylation, but were drastically changed via hydrolysis.59

Overall, the surface of CPET appeared much smoother than that
of the pristine PET, with isolated aggregations of small pits. In
contrast, the HPET is signicantly more porous than the pris-
tine UPET. Hydrolysis creates remarkable roughness and cavi-
ties on the HPET surface.31,51 This can be attributed to the
etching of pristine PET textiles during the functionalisation
reaction, resulting in the exposed structure of the PET surfaces.
Similar ndings have also been reported by researchers
previously.31,58

As shown in Fig. 6a–c, obvious changes of the morphologies
of the PET surfaces can be observed aer the graing photo-
polymerisation process has taken place. This observation indi-
cates that the PNIPAAm hydrogel layer was successfully graed
onto the PET surface. As a remark, the FESEM images were
obtained under dry conditions. At a lower magnication, we
observed a transparent lm covering the voids between the PET
bres, which may represent the hydrogel layer. From the high-
magnication FESEM images, the entire PNIPAAm-g-UPET
(Fig. 6a) surface exhibited a moon-surface morphology with
a moderately rough appearance. In contrast, only a few regions
of PNIPAAm-g-CPET were covered with a bumpy appearance.
The hindrance of the carboxyl groups to forming starter radicals
via hydrogen abstraction has resulted in less graing and
heterogeneous distribution of the hydrogel layer.

Meanwhile, the increase in the surface porosity and cavities
of HPET provided a free area for the PNIPAAm hydrogel to be
Fig. 6 Surface morphologies of the PET textiles after grafting; (a)
PNIPAAm-g-UPET, (b) PNIPAAm-g-CPET, and (c) PNIPAAm-g-HPET,
based on a top view.

This journal is © The Royal Society of Chemistry 2018
easily graed onto it. The attachment of the PNIPAAm hydrogel
onto the HPET surface covered both the cavities and pores on
the surface as well as the mesh-opening of the voids, thus the
HPET surface appeared smoother aer graing (Fig. 6c).55,60 Up
to this point, the change in surface morphology clearly supports
the reasoning behind the DG results and surface roughness
determined via AFM analysis, for all the PET textiles before and
aer graing.
3.4. Oil staining behaviour at different temperatures

The oil staining resistance of the PNIPAAm hydrogel graed
PET textiles was examined in order to assess the performance
with regard to oil fouling. For this purpose, three different
graing samples, PNIPAAm-g-UPET, PNIPAAm-g-CPET and
PNIPAAm-g-HPET, were immersed in oil for about two minutes
and subsequently washed with water. The measurements were
carried out at temperatures below and above the LCST of PNI-
PAAm, i.e. 27 and 45 �C, respectively. The oil staining resistance
was assessed qualitatively and quantitatively from (i) the
appearance of the textiles without and with hydrogel graing,
and (ii) the times taken for the oil to disappear from the graed
PET textiles when immersed in water at a temperature of 27 �C.
Images of the UPET textiles before and aer oil staining are
shown in Fig. 7. During the testing, the oil spread instanta-
neously upon contact with the UPET textile. Not only that, the
UPET textile was completely stained with oil and the staining
was unremovable (Fig. 7b). Regardless of the temperature, the
UPET textile was susceptible to oil staining due to its permanent
oleophilic and hydrophobic surface.

In addition, the appearances of the graed PET textiles
(PNIPAAm-g-UPET, PNIPAAm-g-CPET and PNIPAAm-g-HPET)
aer oil staining were also assessed, as shown in Fig. 8. Note
that this testing was conducted for 5 cycles at 27 and 45 �C. The
PNIPAAm hydrogel graed PET textiles were in swollen states
when immersed in oil below the LCST (27 �C). The physical
appearances of these three different graed PET surfaces aer 5
cycles of testing are consistently clean without signicant oil
staining (Fig. 8ii). In the swollen state, the graed PET textiles
generate a hydration layer, thus preventing oil adhesion on the
PET surfaces. The sufficient hydration layer in the swollen state
caused steric repulsion to effectively repel oil adsorption on the
surface.61,62 The correlation between the strong hydration of the
Fig. 7 The appearance of the unmodified PET textile; (a) the clean
surface before oil staining, and (b) the permanent and irreversible oil
stained surface even after intensive washing with water.
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Fig. 8 The effect of oil staining before and after immersion in oil at 27
and 45 �C on (a) PNIPAAm-g-UPET, (b) PNIPAAm-g-CPET, and (c)
PNIPAAm-g-HPET, respectively, together with the WCA
measurements.

Fig. 9 The anti-oil staining behaviour of untreated and functionalised
PNIPAAm-g-PET textiles at a temperature of 27 �C based on the time
taken for the oil to disappear.
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graed PET textiles and their resistance towards oil adsorption
is mainly driven by the increasing entropy of the system via the
replacement of water molecules at the surface.62 Due to the
hydrophilic character below the LCST, PNIPAAm-g-UPET, PNI-
PAAm-g-CPET and PNIPAAm-g-HPET revealed anti-oil staining
behaviour.

The PNIPAAm hydrogel is intrinsically thermo-respon-
sive.63–65 Thus, the appearances of the graed PET textiles were
signicantly changed above the LCST (Fig. 8iii). When the
temperature was increased above the LCST, the PNIPAAm
hydrogel switched to a hydrophobic state and became de-
swollen.66 Consequently, the hydrophobicity of the surface of
the graed PET promoted more oleophilicity. As a result, the
surface of the PNIPAAm hydrogel graed PET was entirely
stained with oil at 45 �C. Clearly, this study has demonstrated
that PET textiles graed with PNIPAAm hydrogels exhibit
switchable surface wettability toward oil staining. More
importantly, the assessment conducted for up to 5 cycles
revealed that the switching from a hydrophilic to hydrophobic
state across the LCST was reversible.

Upon a close look at Fig. 8iii, it is found that PNIPAAm-g-
HPET was completely stained with oil at 45 �C. In contrast,
roughly 90% of the PNIPAAm-g-UPET surface was covered with
oil, while the staining of PNIPAAm-g-CPET was only approxi-
mately 10%. This reveals that PNIPAAm-g-HPET exhibited
a relatively higher degree of switchability compared to
13430 | RSC Adv., 2018, 8, 13423–13432
PNIPAAm-g-UPET and PNIPAAm-g-CPET. We have noticed that
the trend for the degree of switching from hydrophilic/
oleophobic to hydrophobic/oleophilic is in agreement with
the DG values. This can be explained by the fact that the high
DG value of PNIPAAm-g-HPET promoted an increased fraction
of the hydrogel layer, consequently, the degree of switchability
was also easily enhanced.67

We also performed WCA measurements at below and above
the LCST in order to clarify the wettability and switchability of
the as-prepared hydrogel graed PET textiles, from hydro-
phobic to hydrophilic, as depicted in Fig. 8ii and iii. At
a temperature of 27 �C, all the graed PET textiles showed good
hydrophilic properties to water. The increased hydrophilicity of
the graed PET textiles was noticeable with the decrease in the
WCA values from 68.60� for PNIPAAm-g-CPET to 48.70� for
PNIPAAm-g-HPET. In contrast, when raising the temperature up
to 45 �C, the WCA of all the graed PET textiles rapidly
increases, and they changed to a hydrophobic state (z114�).53,68

Therefore, the switching of the wettability of the graed PET
textiles is accomplished based on temperature-responsive
behaviour. This result was also in good agreement with the
DG and anti-staining analysis. From the correlation with the
DG, the degree of switchability from oleophobic to oleophilic
therefore diminishes according to the following trend: PNI-
PAAm-g-CPET < PNIPAAm-g-UPET < PNIPAAm-g-HPET.

The resistance of the hydrogel graed PET textiles towards
oil fouling was further investigated based on the time taken for
oil to disappear from the surfaces. This test was carried out for 5
cycles at 27 �C, and the results are shown in Fig. 9. Amongst
these three graing samples, the PNIPAAm-g-HPET textile
showed oil de-staining, with the time taken for the oil to
disappear being only around 32–34 seconds. Importantly, the
time taken for the oil to disappear from the PNIPAAm-g-HPET
textile was highly consistent even aer testing for 5 cycles. The
anti-oil staining behaviour of the PNIPAAm hydrogel graed
PET textiles can be elucidated using the ‘water barrier theory’.69

Below the LCST (27 �C), the PNIPAAm hydrogel is in
This journal is © The Royal Society of Chemistry 2018
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a hydrophilic state and thus it absorbs water and becomes
swollen. This theory suggests that the formation of a tightly
bound water layer through hydrogen bonding prevented oil
from interacting with the hydrogel-graed PET surfaces.
Furthermore, this compact hydration layer created a thermody-
namically unfavourable osmotic force and thus repelled the oil
from staining the surface.69

4. Conclusion

In summary, graing of PET textiles with PNIPAAm hydrogels
was successfully performed via photopolymerisation onto the
surfaces of HPET > UPET > CPET. The overall results suggest
that hydrolysis functionalisation produced more a hydrophilic,
rough and reactive surface that yielded the highest DG for
PNIPAAm-g-HPET. The anti-oil staining tests show that PNI-
PAAm graed PET displayed anti-fouling properties. Impor-
tantly, the PNIPAAm hydrogel graed functionalised PET
textiles also demonstrated a switchability function from
hydrophilicity to hydrophobicity by regulating the temperature
in oil staining assessments. To sum up, the impact of different
functionalisations of PET textiles on graing photo-
polymerisation is very useful for obtaining smart materials with
responsive behaviour towards oil staining, which may nd
further potential application in oil and water separation and
smart textiles.
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47 P. Golshaei and O. Güven, React. Funct. Polym., 2017, 118,
26–34.

48 B. Dong, H. Jiang, S. Manolache, A. C. L. Wong and
F. S. Denes, Langmuir, 2007, 23, 7306–7313.

49 M. J. Perez-Roldan, D. Debarnot and F. Poncin-Epaillard,
RSC Adv., 2014, 4, 31409–31415.

50 Y. Shin and D. I. Yoo, J. Appl. Polym. Sci., 2008, 108, 785–790.
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