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latelets-sericin surface-modified
Gum alloy for improved biological response†

Valentina Mitran, a Valentina Dinca, b Raluca Ion, *a Vasile D. Cojocaru, c

Patricia Neacsu, a Cerasela Zoica Dinu, d Laurentiu Rusen, b

Simona Brajnicov, be Anca Bonciu, bf Maria Dinescu, b Doina Raducanu, c

Ioan Dan g and Anisoara Cimpean *a

In this study a “Gum Metal” titanium-based alloy, Ti-31.7Nb-6.21Zr-1.4Fe-0.16O, was synthesized by

melting and characterized in order to evaluate its potential for biomedical applications. The results

showed that the newly developed alloy presents a very high strength, high plasticity and a low Young's

modulus relative to titanium alloys currently used in medicine. For further bone implant applications, the

newly synthesized alloy was surface modified with graphene nanoplatelets (GNP), sericin (SS) and

graphene nanoplatelets/sericine (GNP–SS) composite films via Matrix Assisted Pulsed Laser Evaporation

(MAPLE) technique. The characterization of each specimen was monitored by scanning electron

microscopy (SEM), atomic force microscopy (AFM), contact angle (CA) measurements, and Fourier

Transform Infrared Spectroscopy (FTIR). The materials' surface analyses suggested the successful coating

of GNP, SS and GNP–SS onto the alloy surface. Additionally, the activities of pre-osteoblasts such as cell

adhesion, cytoskeleton organization, cell proliferation and differentiation potentials exhibited on these

substrates were investigated. Results showed that the GNP–SS-coated substrate significantly enhanced

the growth and osteogenic differentiation of MC3T3-E1 cells when compared to bare and GNP-coated

alloy. Collectively, the results show that GNP–SS surface-modified Gum alloy can modulate the

bioactivity of the pre-osteoblasts holding promise for improved biological response in vivo.
1 Introduction

During the last decade, a special class of titanium-based alloys
called Gum-type alloys was investigated1–4 in order to develop
new materials targeted for use in biomedical domain as dental
and orthopaedic materials, due to their superior mechanical
properties, corrosion resistance and biocompatibility. The
uniqueness of Gum-type alloys lies in their combination of
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mechanical properties. Their low elastic modulus, high
strength and large elastic strain characteristics are due to
oxygen addition in Ti-b phase (bcc – body centred cubic) crys-
talline structure, with oxygen acting like an interstitial hard-
ening element, which is capable of increasing the strength of
the Ti-b phase and partially suppressing the Ti-b/ Ti-a00 phase
transformation.5–8 Low modulus of elasticity allows proper
loading of the bone, inhibiting bone atrophy and enhancing
bone formation.9–11 Furthermore, the high corrosion resistance
and biocompatibility limit failures such as fatigue fractures,
implant loosening, and adverse reactions due to ion release. To
further improve the quality of the biomaterial integration in
host tissue and of the biocompatibility in general, most of
metallic implants are subjected to surface treatments.

Over the past few years, graphene (G) has received increased
attention due to its unique physical and chemical properties,
and its resulting biocompatibility. G, the elementary structure
of graphite, is an atomically-thick sheet composed of sp2
carbon atoms arranged in a at honeycomb structure. In
addition to (monolayer) G, various G-based materials (GBMs)
with different numbers of layers, lateral dimensions, and
chemical modications have also been developed. These
include ultrathin multilayer materials made by graphite exfoli-
ation, few-layer materials, graphene oxide (GO) and other
This journal is © The Royal Society of Chemistry 2018
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chemically modied G, as well as carbon materials made from
both G or GO as atomically-thin precursors to be used for the
design of various three-dimensional (3D) architectures.12

Beyond the broad range of technical applications, the biomed-
ical application of G and GBMs is an area with very rapid
expansion. So far, investigations have been carried out to
explore the use of G and GBMs for drug delivery,13–16 biological
sensing and imaging,17–21 and as antibacterial materials,22–25 and
biocompatible scaffolds for cell culture.26–28 Some examples of
the reported advantages of G and GBMs are: (a) improvement of
biomaterials' mechanical/electrical properties; (b) enhance-
ment of cellular attachment and growth at biomaterials surface;
(c) production of efficient biosensors, and (d) better imaging,
tracking and monitoring of drug delivery.29,30 Recently, another
promising area of interest for G was as coating for metallic
substrates. Several reports conrmed the capability of G to
interfere positively in several processes related to osteogenic
differentiation and cellular maturation toward osteoblastic
phenotype.31–35 Moreover, G could be used as platform for the
release of therapeutic molecules at the surgical sites to improve
bone formation and integration of implants. G, GO and reduced
GO (rGO) are for instance known to bind to dexamethasone,
serum, insulin, albumin, bone morphogenetic protein (BMP)-2,
and others.36–38 As such, the application of rGO-based coating
loaded dexamethasone onto Ti13Nb13Zr alloy was shown to
enhance the differentiation of MC3T3-E1 cells into osteoblasts.
Notably, cells seeded on the rGO/dexamethasone-coated alloy
presented higher expression of collagen I, osteocalcin (OCN),
Runt-related transcription factor 2 (RUNX2) and osteopontin
(OPN) genes aer seven days in culture. Moreover, it was
observed higher alkaline phosphatase (ALP) activity and
increased calcium nodule formation when compared to the
uncoated alloy or unloaded rGO coating.39

In this context, the present study explored the potential of
graphene nanoplatelets (GNP), sericin (SS) and graphene
nanoplatelets/sericin (GNP–SS) composite coatings deposited
onto the Ti-31.7Nb-6.21Zr-1.4Fe-0.16O Gum alloy to enhance
osteogenesis in vitro. SS, a hydrophilic, water solu-
ble macromolecular glycoprotein from silk worm cocoon, was
proposed to be used in the composite coatings due to its
demonstrated bioactivities, including cell adhesion, biode-
gradability, biocompatibility, and low-immunogenicity.40–42 An
increasing number of studies are directed towards the
applications of SS in the eld of tissue engineering and regen-
erative medicine. Thus, it has been explored in the neuronal
regeneration,43,44 skin regeneration,45 myocardial repair,46 SS
capped particles47,48 and even fabrication of self-assembled
nanoparticles for cancer treatment.49 Nayak et al.50 demon-
strated for instance that surface modication with SS and
arginine–glycine–aspartic acid (RGD) peptide enhanced the
osteointegration and osteoconductivity of the orthopaedic tita-
nium implants. However, SS has never been investigated in
composite coatings with GNP for applications in orthopedics.
Here we demonstrate that GNP–SS composite coatings support
cell viability/proliferation and promote MC3T3-E1 pre-
osteoblast differentiation to a signicantly higher extent than
GNP alone.
This journal is © The Royal Society of Chemistry 2018
2 Experimental
2.1. Alloy synthesis and characterization

The Ti-31.7Nb-6.21Zr-1.4Fe-0.16O (% wt) Gum-type alloy was
produced using the high-purity individual elemental compo-
nents, in a cold crucible levitation melting furnace (FIVES
CELES MP25) under argon protective atmosphere. Given the
high difference in specic weight and melting temperature of
the incorporated alloying elements, three re-melts were per-
formed to increase resulting alloy's homogeneity. The melt was
cast in 20 � 45 mm diameter ingots inside melting furnace
chamber.

The samples were cut in the shape of disks using an auto-
matic cutting machine (Metkon Micra Cut 200) and diamond
disks. Subsequently, the samples surfaces were grinded down to
600-grit SiC paper (Buehler CarbiMet) in order to remove any
surface defects induced by cutting. The Gum alloy's micro-
structure and chemical homogeneity was metallographically
investigated using Scanning Electron Microscopy – SEM (TES-
CAN Vega II-XMU SEMmicroscope tted with a Bruker Quantax
6/30 XFlash EDS detector). The samples for metallographic
analysis were hot mounted (Buehler SimpliMet) in conductive
phenolic resin (Buehler KonductoMet) and grinded down
(Metkon DigiPrep ACCURA) to 1200-grit SiC paper. The samples
were polished with 6 mm and 1 mm polycrystalline diamond
suspensions (Buehler MetaDi) followed by super-polishing with
0.02 mm colloidal silica (Buehler MasterMet2) and mixed with
10% H2O2 as mild oxidizing agent. For SEM analysis, the
metallographic prepared samples were etched by swabbing for
10–15 s with a mixture of HNO3, HF and H2O (6–3–91%).

The X-ray diffraction (XRD) investigations were performed
using a PANalytical X'Pert PRO MRD diffractometer with
a wavelength of Cu k-alpha (l ¼ 1.5418 Å). The recorded XRD
spectra were tted to determine the phase structure and to
calculate the lattice parameters of the observed phases. The
tting procedure was performed using PeakFit v4.11 soware
package, which allowed to determine for each of the observed
diffracted peak its position, intensity and broadening respec-
tively. A pseudo-Voigt diffraction line prole was used in the
tting procedure.

The mechanical characterization of the alloy was performed
using a DEBEN MicroTest 2000N universal micromechanical
testing module, at a 0.4 mm min�1 cross-head speed. The tests
were repeated 10 times, all computed data being statistically
analysed in order to determine for each parameter its standard
deviation.

The obtained samples were further cleaned by sonication
with ethanol and double distilled water (30 min each step)
before being functionalized by Matrix Assisted Pulsed Laser
Evaporation (MAPLE) with SS-, GNP- and GNP–SS and prepared
to assess the in vitro osteogenic response.
2.2. Target preparation

SS (Sericin Bombyx mori (silkworm), code S5201) and GNPs
(code 799084) were obtained from Sigma-Aldrich and were
suspended, respectively dissolved in double distilled water to
RSC Adv., 2018, 8, 18492–18501 | 18493
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lead to 0.01 (for GNP) and 2 (for SS) weight% solutions. The
GNPs (as micron sized aggregates of stacks of 2–5 microns large
platelets – see Fig. S1a in ESI†) solutions were subsequently
sonicated for several hours (10 h) (Sharpertek Digital Ultrasonic
cleaner XP PRO) and kept overnight at room temperature. As
shown in Fig. S1b,† no signicant changes were observed for
GNPs aer the sonication process, all relative to both powder
and suspended GNPs.

To form the single element target, the solutions were again
sonicated for 15 min and rapidly frozen drop-by-drop in a liquid
nitrogen cooled copper container. In the case of the composite
target, equal volumes of SS and GNP solutions were mixed
together and frozen. The container was then mounted on
a cryogenic holder inside the deposition chamber (Neocera
spherical vacuum chamber). The target was maintained frozen
during deposition by a circulating liquid nitrogen system.

2.3. Substrates preparation

Two types of substrates, namely double polished silicon (Si)
(100) transparent in the infrared (Neyco) and Gum alloy, were
used in this study. Si was used for FTIRmeasurements as well as
for thickness measurements. The substrates were carefully
cleaned in an ultrasonic bath in acetone (99.5% purity, Chim-
reactiv SRL) ethyl alcohol (99.5% purity, Chimreactiv SRL) and
deionized water and subsequently blow-dried under N2 gas
before use. All substrates were placed at a distance of 3.5 cm
from the frozen target and kept at ambient temperature during
the deposition; no post deposition annealing was carried out.

2.4. Matrix assisted pulsed laser evaporation (MAPLE)
system

A “Surelite II” pulsed Nd: YAG laser system (Continuum
Company) (5–7 ns pulse duration) at 266 nm and 10 Hz repe-
tition rate was used to irradiate the frozen targets. The laser
uence was 0.6 J cm�2 and the number of pulses used was
18 000 for GNP and 72 000 for SS and GNP–SS coatings, leading
to 91, 424 and 458 nm thick coatings, respectively. In order to
avoid the damage of the target by local overheating and drilling
following multiple pulses during the laser irradiation, the target
was rotated with 20 rpm using a motion feed driven motor
contained within the system. The background pressure in the
deposition chamber was adjusted at 1–2 � 10�3 Pa by TPU 170
turbomolecular pump (Pfeiffer-Balzers). Laser beam interacted
with the target surfaces, leading to the evaporation process,
during which GNP and SS materials were transported by the
formed vapours and deposited onto the substrate placed
parallel to the target at a distance of 3 cm.

2.5. Structural and morphological characterization of the
deposited graphene, graphene–sericin thin lms

FTIR was performed using a Jasco FT/IR-6300 type spectrometer
in the 400–7800 cm�1 range, with a resolution of 4 cm�1, and
was used to analyse the characteristic vibrations of the func-
tional groups of the SS deposited thin lms. The materials
deposited by drop cast were used as controls for the FTIR
measurements.
18494 | RSC Adv., 2018, 8, 18492–18501
Atomic Force Microscopy (AFM) and SEM were used for the
morphological evaluation of the samples. An AFM-E 100, Park
system was used for performing measurements in non-contact
mode and surface roughness analyses. Qualitative analysis of
surface morphological characteristics was carried out by using
a scanning electron microscope (JSM-531 microscope (FEI Inspect
S)) equipped with energy dispersive X-ray spectrometer EDAX
(Element 2CB detector), operating at 5 kV. Samples were coated
with 10 nm Au prior to imaging to obtain electrical conductivity.

Contact Angle (CA) measurements were performed with KSV
CAM101 microscope equipped with FireWire interface video
camera. The sessile drop method was applied at constant room
temperature (24 �C) using a syringe with double distilled water,
which ensured droplets with a volume of 2 ml. The reported
values for the CAs were obtained by averaging ve measure-
ments performed on different areas of the samples.

2.6. Cell culture conditions

Cell culture experiments were performed with mouse pre-
osteoblast MC3T3-E1 cell line, subclone 4 (CRL-2593™, Amer-
ican Type Culture Collection). The cells were seeded onto ster-
ilized metallic specimens placed in 12-well cell culture plates at
a density of 104 cells per cm2 and maintained in a humidied
atmosphere of 5% CO2 at 37 �C in Dulbecco's Minimal Essential
Medium supplemented with 10% (v/v) fetal bovine serum and
1% (v/v) penicillin/streptomycin (10 000 units per mL penicillin
and 10 mg mL�1 streptomycin).

2.7. Cell viability and proliferation

The cytotoxic potential of the analysed specimens was evaluated
by cell staining with LIVE/DEAD Cell Viability/Cytotoxicity Assay
Kit (Molecular Probes), in accordance with the manufacturer's
instructions. Briey, aer 1 and 5 days of culture, the analysed
samples were incubated in a solution consisting of calcein-AM
(2 mM) and ethidium homodimer-1 (4 mM) for 15 min at room
temperature, protected from the light.51 The samples were then
washed with phosphate buffered saline (PBS) and examined
under an inverted microscope Olympus IX71 to detect the
bright green uorescent living cells and red uorescent dead
cells. The uorescent images were captured using Cell F Image
acquiring system.

The capacity of cells to proliferate onto these substrates was
investigated at 1 and 5 days post-seeding by cell incubation with
1 mg mL�1 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium
bromide (MTT, Sigma-Aldrich Co.) solution, as previously
described.52 The amount of formazan produced by metaboli-
cally active viable cells was solubilized with dimethyl sulfoxide
and absorbance of dye was recorded at 550 nm using a micro-
plate reader (Thermo Scientic Appliskan).

2.8. Microscopic evaluation of MC3T3-E1 cell morphology

The morphological features of MC3T3-E1 cells grown on each
sample were examined using immunouorescent labeling of
actin and vinculin at 1 day and 5 days post seeding. For this, the
pre-osteoblast cells grown on the above substrates were xed,
permeabilized, blocked and incubated with specic antibodies,
This journal is © The Royal Society of Chemistry 2018
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Fig. 1 Dispersion of alloying elements in Ti-31.7Nb-6.21Zr-1.4Fe-
0.16O (% wt) Gum-type alloy microstructure: (a) SEM-BSE image of
investigated field; (b) dispersionmap of Ti; (c) dispersionmap of Nb; (d)
dispersion map of Zr; (e) dispersion map of Fe; (f) dispersion map of O;
(g) EDS spectrum of investigated field. Scale bar: 40 mm.

Table 1 Chemical composition of Ti-31.7Nb-6.21Zr-1.4Fe-0.16O
(% wt) Gum-type alloy

Element
Composition
[% wt]

Composition
[% at]

Absolute
error [%]

Relative
error [%]

Titanium (Ti) 60.1603 73.6959 1.6146 2.1909
Niobium (Nb) 31.7612 20.0467 0.6400 3.1925
Zirconium (Zr) 6.5123 4.1859 0.1270 3.0340
Iron (Fe) 1.4028 1.4728 0.0557 3.7819
Oxygen (O) 0.1634 0.5987 0.0861 14.3812
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View Article Online
as previously reported.53 Subsequently, phalloidin coupled with
Alexa Fluor 488 was added in order to label actin laments and,
then, 40,6-diamidino-2-phenylindole (DAPI) to visualize the
nuclei. Labelled samples were washed three times with PBS and
examined under an inverted microscope equipped with epi-
uorescence (Olympus IX71). The microscopic images were
captured using the Cell F soware.

2.9. Evaluation of the pre-osteoblast differentiation potential

For differentiation assay, the pre-osteoblastic cells were seeded
onto samples at a density of 5 � 104 cells per cm2. At 24 h post-
seeding, differentiation was induced by maintaining the cells in
culture media supplemented with 50 mg mL�1 ascorbic acid
(Sigma-Aldrich) and 5 mM beta-glycerophosphate (Sigma-Aldrich).
The medium was changed every two days during the culture
period.

Cell differentiation was evaluated by analysing alkaline
phosphatase (ALP) activity at 7 and 14 days post-seeding and by
Alizarin Red S (ARS) staining for matrix mineralization aer 3
weeks of incubation. The intracellular ALP activity was deter-
mined with an Alkaline Phosphatase Activity Colorimetric Assay
Kit (BioVision, Milpitas, CA, USA), as previously described.54 For
ARS staining, cell layers were washed three times with PBS and
xed in 10% paraformaldehyde. Following three rinses in
deionized water, cells were placed in a 1 mg mL�1 ARS (Sigma-
Aldrich) solution for 30 min. Aer washing the samples with
deionized water, cells were air-dried for 24 h. Subsequently, ARS
stain on specimens was dissolved in 5% v/v perchloric acid in
order to measure the optical density at 405 nm.

Immunouorescence staining was also performed to detect
the expression of osteocalcin (OCN). Briey, the samples were
rinsed with PBS, xed with 4% paraformaldehyde, per-
meabilized with 0.1% Triton X-100 in PBS, and blocked in PBS
containing 2% Bovine Serum Albumin (BSA). The samples were
then incubated with mouse anti-osteocalcin monoclonal anti-
body (Santa Cruz Biotechnology) in PBS containing 1.2% BSA.
Aer washes with PBS, they were further incubated with Alexa
Fluor 546-conjugated goat anti-mouse IgG antibody (Invitrogen)
in PBS containing 1.2% BSA, followed by washing with PBS. A 2
mgmL�1 DAPI solution was used to stain cell nuclei. Fluorescent
images were taken with an Olympus IX71 inverted microscope.

2.10. Statistical analysis

Triplicate samples were used in the experiments to ensure the
reproducibility of the results. Statistical analysis of the data was
performed with GraphPrism soware using one-way ANOVA
with Bonferroni's multiple comparison tests. All results are
expressed as means � SD (standard deviation) and p values of
less than 0.05 were considered statistically signicant.

3. Results and discussion
3.1. Alloy's characterization

As observed in Fig. 1a, the Ti-31.7Nb-6.21Zr-1.4Fe-0.16O (% wt)
Gum-type alloy microstructure consists of polyhedral equiaxed
grains, with an average grain-size of about 120 mm. Grains seem
This journal is © The Royal Society of Chemistry 2018
to be formed from a mixture of zones, some enriched in Ti, Zr
and lean in Nb, and others enriched in Nb and lean in Ti and Zr
respectively (Fig. 1b–d). The Fe distribution was non-uniform
(Fig. 1e), whereas the O one was more uniform (Fig. 1f) all
relative to the other elements, namely Ti, Zr, Fe and Nb.

Energy-dispersive X-ray (EDS) spectrum (Fig. 1g) identied
separate peaks for Ti, Nb, Zr, Fe and O. The chemical compo-
sition of Gum-type alloy computed based on this spectrum is
shown in Table 1. Overall, the Gum-type alloy microstructure
showed the presence of chemically inhomogeneous zones,
which can be diminished/removed either by increasing the
number of re-melts during synthesis or by further thermal
processing the ingots and homogenization heat treatment.

The XRD spectra corresponding to the as-obtained alloy are
shown in Fig. 2. It was found that b-Ti phase shows the presence
of (110), (200) and (211) diffraction lines. The b-Ti phase was
indexed in Im�3m body centred cubic system, with a calculated
lattice parameter of about a ¼ 3.31 Å.
RSC Adv., 2018, 8, 18492–18501 | 18495
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Fig. 2 XRD spectra of Ti-31.7Nb-6.21Zr-1.4Fe-0.16O (% wt) Gum-
type alloy.

Fig. 3 Strain–stress curve of Ti-31.7Nb-6.21Zr-1.4Fe-0.16O (% wt)
Gum-type alloy.

Table 2 Mechanical properties of Ti-31.7Nb-6.21Zr-1.4Fe-0.16O
(% wt) Gum-type alloy

Ultimate tensile
strength, sUTS
[MPa]

Yield strength,
s0.2 [MPa]

Elongation to
fracture, 3f [%]

Elastic modulus,
E [GPa]

832 � 13.8 331 � 6.2 19,3 � 3.1 58 � 3,4
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Mechanical characterization aimed to determine the
mechanical properties of the Gum-type alloy, which were
expressed by 0.2 yield strength (s#0.2), ultimate tensile strength
(sUTS), elongation to fracture (3f), elastic modulus (E) and
microhardness (HV0.1). The strain–stress diagram of Gum-type
alloy in as-obtained condition is shown in Fig. 3 and indicates
high plasticity of the alloy. Also, a high necking process was
observed prior to fracture, most likely indicating the presence of
a ductile fracture mechanism.

Table 2 shows that the Gum-type alloy exhibits a low elastic
modulus, close to 58 � 3,4 GPa, much lower than that of
commercial pure titanium (cpTi) (102–104 GPa) which is
a conventionally used metallic biomaterial.

3.2. Coatings deposition and characterization

MAPLE was chosen as a suitable method for the coating depo-
sition; previous results showed that a good control on coating
composition, morphology, higher adhesion onto different types
of substrates,55,56 and, most importantly, the assembling of an
unlimited class of compounds, even immiscible ones within the
same coating, can be achieved using such technique.57,58 Since
18496 | RSC Adv., 2018, 8, 18492–18501
its rst implementation in the late 1990s, a variety of materials
from smart polymers to bioactive compounds, ceramics and
proteins were used to enhance cellular responses toward
a surface.59–62

FTIR analysis of the SS and GNP–SS samples deposited by
MAPLE showed mainly typical protein absorption bands cor-
responding to amide I (C]O stretching), amide II and amide III
(C–N stretching, N–H in-plane bending) bands in the range of
1710–1590 cm�1, 1570–1480 cm�1 and 1270–1200 cm�1,
respectively. Despite the observed difference in peaks intensity
associated with different thickness of the measured samples
which were observed as well in our previous works,57,60 the
typical signatures for SS were observed for both control and
MAPLE coatings (Fig. 4). Specically, bands were observed at
1646 cm�1 (nC]O for amide I); 1535 cm�1 (nN–H for amide II);
and 1230–1400 cm�1 (N–H in plane bend and nC–N for amide
III) respectively. The characteristic amide I peak (1646 cm�1)
shows the presence of a-helix structures in the protein. The
band at 2700–3200 cm�1 corresponds to N–H bend vibration
from SS material and was merged with the 3450 cm�1 charac-
teristic to O–H vibration band.63

The important vibration peaks of GNP material at 1585 cm�1

nC]C and in the region of 1050–1400 cm�1 nC–C, skeleton
vibration and also nC–O (related to the presence of water in the
control samples) are also shown in the IR spectra of GNP
coatings (Fig. 4b). The large absorption band observed in the
2500–3500 cm�1 region is most likely related to the O–H
vibration. In the case of composite coatings, due to GNP being
highly absorbent of IR radiation, the ngerprint of the SS was
mainly observed, with weak vibrations in the range of 1050–
1400 cm�1 from GNP coatings.

The typical SEM and AFM micrographs of bare alloy and
alloy functionalized with GNP and GNP–SS respectively, are
shown in Fig. 5. The bare sandblasted alloy revealed the pres-
ence of irregular shapes on the surface (Fig. 5a–d). Due to the
substrate morphology, and relatively small thickness of the
coatings (from 91 to 442 nm), similar morphologies to that of
bare alloy surface were observed overall for GNP- (Fig. 5b–e) and
GNP–SS- (Fig. 5c–f) functionalized alloy. While the Ra value for
the alloy samples functionalized with GNP lms was similar to
the initial roughness (�640 nm), the presence of SS led to
a decrease in roughness of up to �495 nm. As a general
observation, the presence of SS in the lms produced by MAPLE
also led to the improvement of the lm homogeneity and more
than 20% reduction in surface roughness.

In order to conrm these observations and to have a better
understanding on the nanoscale topography characteristic of
each coating, higher magnication SEM micrographs of SS
This journal is © The Royal Society of Chemistry 2018
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Fig. 5 SEM (a–c) and AFM (d–f) micrographs of the Gum alloy (a and d)
functionalized with GNP (b and e), and GNP–SS (c and f) by MAPLE
(266 nm, 600 mJ cm�2). The scanned area by AFM was 40 � 40 mm2.
Scale bar: 20 mm.

Fig. 6 SEM micrographs of alloy functionalized with SS (a), GNP (b)

Fig. 4 FTIR spectra of SS protein (a), GNP (b) and GNP–SS (c)
deposited by MAPLE (red line) as compared with the drop cast (black
line).

Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

1 
M

ay
 2

01
8.

 D
ow

nl
oa

de
d 

on
 7

/1
4/

20
25

 2
:3

2:
32

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
immobilized on alloy by MAPLE, with and without GNP, were
taken (Fig. 6). A uniform non-porous hydrogel like appearance
was noticed for SS, which might explain the observed decrease
of roughness values.

Contact angle was also evaluated on the analysed specimens.
No signicant differences in CA values were noticed among the
bare and GNP-coated material (98� and 92�, respectively).
However, SS and GNP–SS exhibited a considerable decrease in
the CA to 47� and 65�, respectively.
This journal is © The Royal Society of Chemistry 2018
3.3. In vitro pre-osteoblast response

Biological studies used the MC3T3-E1 pre-osteoblasts to eval-
uate the cellular response to the bare, GNP-, SS- and GNP–SS-
coated alloy surfaces. The cell–material interactions were
studied in terms of cell adhesion and morphological features,
viability, proliferation and differentiation.

The morphology and adhesion of MC3T3-E1 pre-osteoblasts
on the synthesized substrates were visualized by uorescence
microscopy aer culture for 1 day and 5 days respectively. As
shown in Fig. 7a as well as in the ESI (Fig. S2a†), a signicant
number of cells colonized the substrate's surface at 1 day post-
seeding and adopted different morphologies. Analysis showed
that the cells attached to the control surfaces presented
a cuboidal morphology and underwent less stretching when
compared to the cells adhered onto the coated surfaces, which
exhibited more stretched and elongated shapes. The cells also
seemed to be settled faster on GNP-, SS- and GNP–SS-coated
substrates, and that they have quickly interacted and became
adapted to these surfaces earlier than on bare alloy. In addition,
well-dened arrangements of actin stress bers that appear to
be oriented in a parallel direction along to the long axis of the
cells were more visible on GNP-, SS- and GNP–SS-coated alloy.
The formation and contractility of stress bers has been shown
to be associated with stem cell differentiation.64 Specically, the
cells grown on substrates that promote increased stress ber
and focal adhesion formation also exhibited increased osteo-
blastic differentiation. Our nding indirectly indicates that
GNP-, SS- and GNP–SS-coated substrates might be helpful for
stimulating cell differentiation. Furthermore, immunoreactive
sites for vinculin, displaying punctiform pattern, localized at
and GNP–SS (c) by MAPLE (266 nm, 600 mJ cm�2). Scale bar: 4 mm.
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Fig. 7 Fluorescent images of MC3T3-E1 pre-osteoblasts grown on
control substrate and GNP-, SS- and GNP–SS-coated alloy for 1 day (a)
and 5 days (b) respectively. Green fluorescence: actin cytoskeleton;
red fluorescence: vinculin signals. Scale bar: 20 mm.

Fig. 8 Viability/proliferation of MC3T3-E1 cells grown on test
substrates for 1 day and 5 days respectively. (a) MTT assay (n¼ 3, mean
� SD), *p < 0.05 for GNP-coated alloy versus control, **p < 0.01 for SS
and GNP–SS-coated alloy versus control; (b) fluorescent cell staining
with LIVE/DEAD Cell Viability/Cytotoxicity Assay Kit (live cells fluores-
cence green and dead cells fluorescence red). Scale bar: 100 mm.
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the peripheral regions of the cells, predominantly at the termini
of actin microlament bundles, were more numerous on the
modied surfaces relative to control substrate (uncoated alloy).
It is well known that vinculin is a major protein of focal adhe-
sions playing a critical role in initiating and establishing cell
adhesion, cell shape, and cytoskeletal development.65,66 There-
fore, it is suggested that GNP-, SS- and GNP–SS-coated
substrates are more effective in promoting cell adhesion and
establishing tight interactions with MC3T3-E1 cells than the
control surface. Fig. 7b and Fig. S2b (ESI†) show the uores-
cence micrographs representing the expression and dense
distribution of vinculin-associated actin stress bers in MC3T3-
E1 pre-osteoblasts aer 5 days of culture. It can be observed that
the coated surfaces enabled actin laments to form a strong
network with well-dened and elongated bers, better repre-
sented than on bare alloy.

MC3T3-E1 cell proliferation on the substrates was investi-
gated by MTT assay. As shown in Fig. 8a, the metabolic activity
(OD values) of the MC3T3-E1 cells of all four experimental
groups increased with the prolonged culture time. On the other
hand, the proliferation of cells grown for 5 days on the GNP-, SS-
and GNP–SS-coated substrates was signicantly higher than
18498 | RSC Adv., 2018, 8, 18492–18501
that expressed on the control surfaces (p < 0.05 for GNP coated
alloy and p < 0.01 for both SS- and GNP–SS-coated alloy). This
nding indicates that all modied alloy surfaces stimulate cell
proliferation, although to a different extent, namely with the SS-
and GNP–SS-coated substrates having a much more prominent
impact on cell proliferation than the GNP-coated surface.

The presence of SS in the coatings is assumed to be the
major reason for the enhancement of cell proliferation because
of its attractive bioactive properties in tissue engineering eld.41

The compound has been previously shown to increase cell
attachment and proliferation.41,43,45,46,51,67 In our experiments,
the highest OD values corresponded to MC3T3-E1 cells grown
for 5 days on the GNP–SS-coated alloy. This behaviour could be
partially ascribed to the moderately hydrophilic character
exhibited by this coating (CA of �65�). It is well known that
This journal is © The Royal Society of Chemistry 2018
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moderate hydrophilic surfaces are more adequate for cell
growth relative to hydrophobic surfaces.68,69

In addition, calcein AM/EthD-1 staining revealed a high
percentage of viable cells converting non-uorescent calcein AM
to green-uorescent calcein as well as a low number of red
uorescent dead cells (Fig. 8b; see also separate channel images
in Fig. S3 – ESI†). It can be also observed, on all analysed
substrates, an increasing pre-osteoblast density with the
increase in the culture period. Specically, at 5 days post-
seeding cell density increased in the following order: bare
alloy < GNP < SS < GNP–SS indicating a good agreement with the
cell proliferation experimental data. Taken together, the data
clearly indicate that the GNP-, SS- and, especially, GNP–SS-
coated samples favour the growth of MC3T3-E1 pre-osteoblasts.

We further assessed the potential of both uncoated and
GNP-, SS-, and GNP–SS-coated alloy to promote osteoblast
differentiation in the presence of soluble factors (i.e., osteogenic
medium). ALP expression was measured on incubation-days 7
and 14 (Fig. 9a), and used as an early marker of osteogenic
differentiation. A signicantly higher ALP activity was detected
in cells cultured on the GNP–SS substrate than in those in
contact with GNP and control samples at both time points. SS-
coated substrate was also found to have a signicant impact on
ALP activity aer 14 days of culture suggesting that the presence
of SS stimulated the early osteoblastic differentiation. More-
over, the OD values corresponding to ALP activity exhibited by
MC3T3-cells grown on the GNP and bare alloy substrates did
not show any signicant difference, suggesting that GNP
coating had no effect on the potential of the Gum alloy to induce
the early stages of osteoblast differentiation. Deposition of
Fig. 9 Differentiation of MC3T3-E1 pre-osteoblasts grown on bare
and coated Gum alloy. (a) The levels of intracellular ALP activity at 7 and
14 days post-seeding (*p < 0.05 for GNP–SS-coated alloy vs. control
substrate at 7 days post-seeding; *p < 0.05 for SS-coated alloy and **p
< 0.01 for GNP–SS-coated alloy vs. control substrate at 14 days post-
seeding; ***p < 0.001 ALP activity at 14 days vs. ALP activity at 7 days
post-seeding). (b) Quantitative colorimetric analysis of extracellular
matrix mineralization after 3 weeks of culture; *p < 0.05 for SS-coated
alloy, **p < 0.01 for GNP–SS-coated alloy vs. control sample. Results
are presented as means � SD (n ¼ 3).

This journal is © The Royal Society of Chemistry 2018
calcium phosphate by the pre-osteoblasts maintained in
contact with the developed biomaterials was demonstrated by
ARS staining (Fig. 9b). The OD values recorded indicated
a signicantly higher mineral content on SS- and GNP–SS-
coated Gum alloy than on control and GNP surfaces aer
three weeks.

Furthermore, no statistically signicant differences were
detected between SS- and GNP–SS-coated substrates, suggesting
once again that GNP played little role in the osteogenic differ-
entiation of MC3T3-E1 cells.

To further conrm osteogenic commitment, the protein
expression of late osteoblast differentiation marker OCN was
studied. It is known that OCN is essential for hydroxyapatite
binding and deposition in the extracellular matrix of bone.70

The OCN expression was evaluated by using uorescent
immunocytochemistry. As shown in Fig. 10 and S4 – ESI,† GNP–
SS-coated surface displayed the strongest OCN immunoreac-
tivity. These results strengthen the ndings of ALP assay and
mineral quantication.

Overall, our data are in line with the results obtained by Nayak
et al.,50 which demonstrated that the immobilization of SS on Ti
surface generates a bioactive nano-topography that induces effects
on early events of osteogenesis and could possibly augment bone
formation. However, it was surprising to achieve a similar outcome
of cell differentiation experiments for bare and GNP-
functionalized specimens. Several previous studies have shown
that G, mostly grown by chemical vapor deposition (CVD), can
enhance osteogenic cell differentiation when used either as two-
dimensional or three-dimensional substrates.31–34 For example,
Nayak et al.34 demonstrated that Si/SiO2 substrates treated with G
were able to accelerate human mesenchymal stem cells (hMSCs)
differentiation into bone cells. Moreover, Xie et al.32 showed that
two- and three-dimensional G substrates upregulated bone-related
genes and proteins regardless the use of osteogenic medium, all
relative to control glass slides and polystyrene scaffolds. In another
Fig. 10 Immunofluorescence detection of osteocalcin expression by
MC3T3-E1 cells grown for 3 weeks on Gum alloy and GNP-, SS- and
GNP–SS-coatings. Scale bar: 50 mm.
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study,33 polydimethylsiloxane was used as a referencematerial and
support for G and GO. The authors outlined that the strong non-
covalent binding abilities of G allow it to act as a preconcentration
platform for osteogenic inducers, which accelerate MSCs
commitment toward the osteogenic lineage.

Unlike previously mentioned studies, in the present work the
control sample was represented by a Ti-based alloy which was
subjected to sandblasting, an effectivemethod to greatly improve
the surface bio-performances. Moreover, GNP coatings were
used, which are different as morphology from those based on G
used in other studies. Therefore, the differences between our
results and those reported by other groups regarding mineral
deposition on GNP-coated substrates could be attributed to the
comparison of the outcomes obtained using GNP coatings on
other substrates that differ physically and chemically from Ti
based materials. Moreover, the use of osteogenic medium could
have been masking the effects promoted by GNP alone.
4 Conclusions

In this work, a new Ti-31.7Nb-6.21Zr-1.4Fe-0.16O Gum alloy
through a melting process for bone implant applications, was
successfully synthesized. This alloy exhibited a lower elastic
modulus than that of conventionally used metallic biomaterials
however, a higher plasticity. The surface of Ti-31.7Nb-6.21Zr-
1.4Fe-0.16O alloy was easily modied with GNP, SS and GNP–
SS by MAPLE technique. Analysis showed that GNP–SS coated
substrate promoted cell differentiation to a higher extent than
bare, SS- and GNP-modied substrates. Collectively, the results
presented herein reveal the potential of GNP–SS surface-
modied Ti-31.7Nb-6.21Zr-1.4Fe-0.16O alloy to enhance the
osseointegration in orthopaedic applications.
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