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A palladium catalyzed synthesis of N—H phenanthridinones was developed via C—H arylation. The protocol

gives phenanthridinones regioselectively by one-pot reaction without deprotection. It exhibits broad

DOI: 10.1039/c8ra02099j

rsc.li/rsc-advances reactive o-chlorobenzamides.

Introduction

Palladium-catalyzed direct functionalization of C-H bonds has
become one of the most efficient and environmentally friendly
mild procedures for building carbon-carbon bonds." It holds
a special place among various types of palladium-catalyzed
coupling reactions. C-H direct arylation is its typical applica-
tion, which is catalyzed by Pd(0) or Pd(u) with phosphine
ligands operating under a Pd(0)/Pd(u) or Pd(u)/Pd(wv) catalytic
cycle with or without the assistance of base.” This coupling
strategy has been well developed in terms of regioselectivity and
efficiency; the tolerance of diverse functional groups makes the
C-H arylation particularly versatile for organic synthesis. The
starting materials may be easily achieved and thus this strategy
has been used for building a variety of aromatic and hetero-
aromatic systems.’

Phenanthridinones are important structural units found in
many natural products and pharmaceuticals that exhibit wide
range of biological activities.* A variety of novel synthetic
approaches have been developed to the synthesis of the phe-
nanthridinone cores and related lactams, most of them are
based on palladium catalyzed biaryl coupling by the regiose-
lective C-H bond activation (Scheme 1a, synthesis of N-alkyl
phenanthridinones).® Although they are effective for synthesis
of N-alkyl phenanthridinones, the obvious drawbacks were
observed when applied to N-H phenanthridinones.’*® Their
scope of substrates is quite limited and high reaction temper-
ature is necessary. To the best of our knowledge, only the yields
with iodo-substituted anilides are reported. Usually a complex
mixture of side-products is observed, decreasing the yield of
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substrate scope and affords targets in up to 95% yields. Importantly, it could be applied for the less

desired product.®*** This is possibly resulted from the coordi-
nation of nitrogen to palladium in the presence of the NH free
amide.> Earlier reported efficient protocols for such analog
were mediated by potassium tert-butoxide” or photochem-
istry.®® However, those procedures are not regioselective with
substituted anilides due to radical cyclization mechanism
(Scheme 1b, radical pathway for synthesis of N-H phenan-
thridinones), limiting application of substrate scopes.” So based
on those disadvantages researchers reported utilization of
protection groups which could be easily cleaved after the ring
closure. Sandro Cacchi and co-workers®* developed N-benzyl
derivatives of N-benzoyl-o-iodoanilides which can be converted
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Scheme 2 Synthesis of cyclization substrates.

into the corresponding phenanthridinones in good to high
yields, but needed one more deprotection step in TFA. Francois
Tillequin et al.*® developed Boc as protection and leaving group,
however, one equivalent of Pd catalyst and two equivalents of
phosphine ligands were involved, and only 26% yield was
obtained.

In this account it is important to develop an operationally
simple catalyst system for direct intramolecular arylation
processes exhibiting broad scope for aryl chlorides, bromides,
and iodides. Here we disclosed a palladium catalyzed one pot
C-H activation protocol, cyclization and decarboxylation of N-
Boc protected o-halobenzamides to produce phenanthridinones
directly, which gave good to excellent yields as high as 95%
(Scheme 1c, synthesis of N-H phenanthridinones by C-H

Table 1 Screening of reaction conditions®
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activation from Boc protected amide). It can be easily scaled up
even with increasing of yield. The reaction was promoted by
Pd(¢-Bu;P), combining together with KOAc, a convenient,
commercial available catalyst inexpensive, but highly efficient
to produce a broad range of phenanthridinones.

Results and discussion

The synthesis of the amide starting material 4xy for this inves-
tigation is shown in Scheme 2. Ortho-halogen substituted
arylcarboxylic acid was easily converted to acyl chloride, which
reacted with aniline to give amide 3xy. Then under catalytic
amount of DMAP in DCM, 3xy was almost quantitatively con-
verted to 4xy."

In our initial investigation to optimize cyclization conditions
of 4xy, we selected 4aa as starting point for screening, which is
briefly summarized in Table 1. The C-H direct arylation is
strongly dependent on the catalyst, the solvent and the base.
Firstly we tried most popular coupling catalyst/base system
(entries 1-3),"* but obtained low yields; Pd(OAc),/BuzP/Ag,CO;
system'? gave better yield (38%). After that, we tried Pd(PCys),
under various basic conditions, and found the yield can be
increased to 48% when KOAc was used. Speculating that
different ligand could be used to fine-tune the reaction due to
its electronic and steric particularities,> we further screened
Pd(t-Bu;P), catalyst™ with different bases and finally identified
Pd(t-Bu;P),/KOAc was the best combination (entry 11, 72%
yield). Other bases with different cation or anion were inferior
(entries 9, 10). When the optimized condition was utilized with
non-Boc protected substrate 3aa (entry 12), the strategy was not
effective, suggesting that unprotected NH completely inhibited

Br
Boc O
u [M], ligand, base O
I DMA, 120 °C, 90 min NH
o

4aa 5aa
Entry Catalyst/ligand (mol%) Base (equiv.) Subs. conv. (%) Yield” (%)
1 Pd(P 3)a (5) K,CO; (2) 100 22
2 Pd(OAc),/PCy, - HBF, (5/10) Cs,C0; (2) 100 33
3 Pd[OAC)Z/BugP (5/10) Ag,CO; (2) 89 38
4 PA(PCys), (5) Cs,C0; (2) 97 35
5 PA(PCy;), (5) K,CO; 98 31
6 Pd(PCy;), (5) AgOAc (4) 83 20
7 Pd(PCy;), (5) K;PO, (2) 88 11
8 Pd(PCys3), (5) KOAc (4) 89 48
9 Pd(t-Bu,P), (5) Cs,CO0; (2) 98 38
10 Pd(t-BusP), (5) AgOAc (4) 82 23
11 Pd(t-Bu,P), (5) KOAc (4) 100 72
12° Pd(¢-BusP), (5) KOAc (4) 18 Trace

¢ Reaction conditions: 4aa (0.5 mmol), Pd catalyst and base in DMA (5 ml) were heated at 120 °C for 90 min under Ar atmosphere.

determined by LCMS. © 3aa was used as substrate.
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3 4dc R, = Me R, = HR; = Me R, = OMe 5dc R; = Me R, = H R; = Me R, = OMe 87
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Table 2 (Contd.)
Entry 4xy 5xy Yield” [%)]
Ry
Br
I|300
N
™
Ry O s
11 4af R, =R, = H 5af R, =R, = H 84/93°
12 4df R, = Me R, = H 5df R, = Me R, = H 71
13 4ef R, = H R, = OMe 5ef R, = H R, = OMe 61
Br (e} —
S
N/BOC " NNH
N
14 \ N o ol
S
4if 51
S Ry
Br \ \
Ry
O N S ‘ R,
Boc/ N\ NH
’
o
15 4ke R, = Me R, = OMe 5ke R, = Me R, = OMe 83/91°
16 4kg R, =CI R, = H 5kg R, =CIR, = H 71

S
\
Br N S
|
Y
17 o 'Tl
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= S
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7§
18 Br N\
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4if
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N R,
Boc
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20 4fc R; = Me R, = OMe
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Table 2 (Contd.)

B 0

r UAr -
Boc H ~ \r P R
ILVL Pd(t-BuP),
A NH
"Ar 1.R KOAc, DMA
o e B
R o)

4xy Sxy

Entry 4xy 5xy Yield” [%)]
o
o] RN
Y
N N Y1
| | N
— Boc |
Y; X — NH
Y2
(0]

21 4rcY, =CY,=NX=Br 5rcY; =CYy, =N 0
22 4s¢Y; =NY,=CX=Br 55¢Y; =NY,=C 0
23 4cY, =NY,=CX=1I 5tcY; =NY,=C 0

“ Reaction conditions: 1 mmol of substrate, 4 equiv. of KOAc, and 5% equiv. of Pd (¢-BuzP), in 10 ml DMA were heated at 120 °C for 2 h under Ar

atmosphere. ? Isolated yield. ° Reaction conducted at 20 mmol scale. ¢

the reaction, presumably resulted by coordination of nitrogen
to palladium in the presence of the NH free amide.>***

After optimization of the reaction condition, we attempted to
extend the scope and generality of the intramolecular coupling
as shown in Table 2. Various aryl acids and aryl amines were
examined. Electron-rich groups (e.g. Me and OMe) either on the
acid partner or on the aniline partner could smoothly undergo
cyclization-decarboxylation which exclusively provided the
desired products in 81-92% yields (entries 1-5). Notably,
naphthyl-based substrates 4lb and 4lg also gave good to excel-
lent yields (75-95%). 4lg gave lower yield due to slight electron
deficiency. When this protocol was subjected to strong electron-
deficient substrate such as cyano group (5jh, entry 8), the yield
reduced sharply. To explore the cyclization position with respect
to meta-substituted anilines, we tested meta-isopropyl aniline
(entry 9). The reaction gave para and ortho-cyclization mixtures
(2 : 1); However when tert-butyl analine was tested (entry 10),
only para-cyclization was produced, presumably due to stronger
steric hindrance. It was worth noting that the 3-amino thio-
phene also gave moderate to high yields (61-93%, entries 11—
14), suggesting it's high C-H activation activity and regiose-
lectivity. NMR confirmed the coupling is at second position. The
reaction scope is not limited to benzoic acids, thiophene-
carboxylic acids could also go cyclization smoothly (entries
15-20) with aniline or aminothiophene. Similar to early Pd-
catalyzated protocol,” we found that pyridine ring was not an
effective acid partner under our reaction condition (entries 21-
23). To further evaluation the protocol's scaling up efficiency,
we tested 4lb/4af/4ke as substrates for gram scale synthesis. To
our delight, the yields increased up from 91%/84%/83% to 95%/
93%/91% respectively.

This journal is © The Royal Society of Chemistry 2018

Reacted at 135 °C.

Our above results showed that diverse functional groups,
including F, Cl, CN, OMe, alkyl and a variety of aryl carboxylic
acids and aryl amines were well tolerated. It leads us to specu-
late the reaction scope is not limited to bromo-substituted acid,
but can also be extended to chloro-substituted acid. So we tested
the activity of halogens in Table 3. Firstly, we selected the
synthesis of 5aa as example (entries 1a to 1c). When iodide and
bromide were tested, the reaction can be finished at 120 °C,
given 77% and 66% yield respectively. When chloride was
utilized, the yield decreased to moderate (45%) and must be
conducted at higher temperature. After that, we tested electron-
donating substitutes on either carboxylic moiety or aniline
moiety (entries 2-5) and found yield can be as high as 78%j;
instead electron-withdrawing substitutes were negative to the
reaction (entry 6, 38% yield). When the reaction was extended to
strong electron withdrawing substituents, the yield decreased
significantly even with iodide (entry 9). Chloro-thiophene
carboxylic acid also delivered the corresponding products
without a problem (entries 7, 8). Considering both chlorine and
bromine were active as acid partner, we subjected 4uc for the
reaction. Just as we predicted, the reaction turned to be quite
messy and yielded no desired target (entry 10).

Next we examined the effect of catalyst loading to further
optimize the reaction condition. Substrates 4lb and 4af were
selected as examples which are shown in Table 4. Firstly we
tested 4lb, when the catalyst loading increased from 5 mol% to
6 mol%, the influence was insignificant. However, when it was
reduced to 4 mol%, the starting material remained and the yield
was reduced by 13%; and only 60% yield was obtained when
decreased further to 3 mol%; the same situation was observed
with substrate 4af. Based on research below, 5 mol% catalyst
was established as an optimal catalyst loading.

RSC Adv., 2018, 8, 13879-13890 | 13883


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c8ra02099j

Open Access Article. Published on 13 April 2018. Downloaded on 7/16/2025 1:37:18 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

View Article Online

RSC Advances Paper

Table 3 Scope of the reaction with respect to halogen-substituted substrates®
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Table 3 (Contd.)
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o INN
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Entry 4xy 5Xy ield” [%]
Cl
o LT
NH
6 O\ (0] E 38
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S \ | /O
N 0
o 4
7 53
(0] ITI NN o
Boc 8 _—
40b 50b
S
cl |
N NH
(0]
o —
Boc s =
40k Sok
CN CN

Boc

cl
10 0
Br NH

4 Reaction conditions: 1 mmol of substrate, 4 equiv. of KOAc, and 5% equiv. of (¢-BuzP),Pd in 10 ml DMA were heated at 135 °C for 2 h under Ar
atmosphere. ? Isolated yield. © Reacted at 120 °C.

The directly cleavage of Boc was left for investigation for further produced. It leaded us to suspect the stability of Boc on such
exploring of reaction mechanism. We tested another protection conformationally rigid tricyclic system. So we re-protected the
group acetyl and used it for cyclization. However acetyl group is  final target 5ec with Boc again and then heated it in the reaction
extremely unstable and only trace cyclization product was system at same condition without Pd catalyst (Table 5). To our

This journal is © The Royal Society of Chemistry 2018 RSC Adv., 2018, 8, 13879-13890 | 13885


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c8ra02099j

Open Access Article. Published on 13 April 2018. Downloaded on 7/16/2025 1:37:18 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

RSC Advances

Table 4 Effect of catalyst loading”

Entry  Substrate  Pd(t-BusP),  Subs. conv. (%)  Yield (%) of 5°
1 4lb 6% 100 93
2 41b 5% 100 91
3 4lb 4% 94 78
4 41b 3% 89 60
5 4af 5% 100 84
6 4af 4% 93 61
7 4af 3% 82 52

¢ Reaction conditions: 1 mmol of substate, 4 equiv. of KOAc, Pd catalyst
and 10 ml DMA were heated at 120 °C for 2 h under Ar atmosphere.
b Isolated yield.

Table 5 Stability testing of 6ec”

KOAc, DMA
120 °C
o\
Sec
Entry Time (min) 5ec (%) 6ec (%)’
1 60 13 83
2 90 26 69

“ Reaction conditions: Gec (0.5 mmol), 4 equiv. of KOAc in DMA (5 ml)
were heated at 120 °C. * Determined by LCMS.

t-BuOAc o O e
) XKOAC
KBr
L
e
Cr,
Boc
'V) / ) o
[IP" @
|||

HOAc
Scheme 3 Proposed mechanism for the phenanthridinone synthesis.
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delight, 26% 5ec was produced and 69% 6ec remained. This
result revealed that Boc was a fragile spot however just heating
the substrate couldn't result full decomposition. Pd catalyst
should have played a critical role in catalytic cycle for complete
cleavage.

Although additional data are needed to establish the mech-
anism, the fact that Pd catalyst loading influences the reaction
significantly and the base KOAc gives the best yield, Boc group
is some extend of fragile suggests their critical roles. It leads us
to propose a plausible Pd(0)/Pd(u) catalytic cycle* (Scheme 3). A
proton abstraction mechanism previously proposed by Echa-
varren and Maseras,® was found to explain our reaction
outcomes: (1) the anionic ligand KOAc is directly involved in
C-H bond cleaving; (2) the anion ligand must bind to the
catalyst, but not block the catalytic cycle by competitive occu-
pation of vacant coordination sites;'” (3) the arene which
interacts with the catalyst weakly must compete for binding to
the arylpalladium(u) intermediate with the excess anionic
ligand.™ So initially oxidative addition of polarized Ph-Br bond
to the Pd(0) catalyst forms a highly electrophilic arylpalladium
intermediate I,'®" which exchange with KOAc to produce
intermediate II,'**° followed by phosphine dissociation.
Secondly Pd(u) interacts with arene at the ortho position of
aniline in a C-H activation manner which forms intermediate
III.>*** Here HOAc plays a critical role in the stabilized coordi-
nation intermediate.*** Next is irreversible deprotonation:
Pd(u) inserts into the C-H bond of the arene to give cyclo-
biarylpalladium intermediate IV,***> accompanied by elimina-
tion of HOAc. Under the effect of produced HOAc, Pd
presumably kicks off Boc and coordinates to nitrogen to give
intermediate V, which finally undergoes reductive elimination
to provide the desired product and regenerates the Pd(0)
catalyst.'**%*?

Conclusions

In summary, we have developed a palladium catalyzed C-H
arylation method for synthesis of N-H phenanthridinones from
Boc protected diaryl amide. There are four advantages of using
Boc as protection group: (1) the protection stage gives quantitive
yield and just simple workup produces pure product; (2) the
protection group is stable to some extent compared with acetyl
group; (3) the coupling stage directly gives de-protection final
targets, additional de-proctection is unnecessary; (3) in contrast
to the system of radical pathway without protection reported by
Bhakuni et al., the regioisomer is not a concern, only a single
desired target was obtained. The catalyst Pd(t-BusP), is
commercial available, inexpensive and the catalyst loading is
reasonable; a second phosphine ligand is not required
compared to published method.* This practical and convenient
method can be easily scaled up, applicable for versatile
substrates and produces high yields. Most important of all, it
could be applied for the less reactive o-chlorobenzamides which
greatly extend the substrates scope.

This journal is © The Royal Society of Chemistry 2018
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Experimental
General experimental details

Unless otherwise noted, all materials were obtained from
commercial suppliers and used without further purification.
The 'H and "*C NMR spectra were recorded on a Bruker Avance
400 spectrometer at 25 °C using DMSO-d; or CDCl; as the
solvent. Chemical shifts (6) are reported in ppm relative to
Me,Si (internal standard), coupling constants (J) are reported in
hertz, and peak multiplicity are reported as s (singlet),
d (doublet), t (triplet), q (quartet), m (multiplet), or br s (broad
singlet). High resolution mass analysis is performed on
a Waters Q-TOF Premier mass spectrometer with electron spray
ionization (ESI). Thin layer chromatography (TLC) was per-
formed on 0.20 mm silica gel F-254 plates (Qingdao Haiyang
Chemical, China). Visualization of TLC was accomplished with
UV light and/or aqueous potassium permanganate or I, in silica
gel. Column chromatography was performed using silica gel 60
of 300-400 mesh (Qingdao Haiyang Chemical, China).

General procedure for synthesis of 4xy'*>*

To suspension of 1x (5 mmol) in SOCI, (5 ml) was added with 2
drops of DMF. The mixture was heated under reflux for 3 h. Then
the mixture was concentrated and diluted with DCM and
concentrated, then diluted and concentrated again to give light
brown semi-solid. The residue was dissolved in anhydrous DCM
(10 ml), added dropwise to a mixture of 2y (5 mmol) and Et;N (12.5
mmol) in DCM (10 ml). The resulting suspension was stirred for
another 1 h after addition finished. The mixture was diluted with
water, washed with 1 N HC, 2 N NaOH and brine successively. The
organic layer was dried over Na,SOy, filtered and concentrated to
give the crude amide 3xy which was used for next step directly.

To the above crude 3xy was added anhydrous DCM (20 ml),
DMAP (0.05 eq., 0.25 mmol), and Boc,O (1.2 eq., 6 mmol). The
suspension was stirred until the bubbling was not observed
which indication completion of the reaction. TLC showed a less
polar product which was also confirmed by LCMS. The mixture
was concentrated, diluted with hexane and water. After stirring
for a couple of minutes a precipitate deposited. The solid was
filtered, washed with water and hexane, dried under vacuum to
give off-white solid 4xy.

General procedure for synthesis of product 5 (Tables 2 and 3)

To a 50 ml two necked flask equipped with a thermometer was
added 4xy (1 mmol), DMA (10 ml), KOAc (4 eq., 4 mmol), Pd(t-
BuzP), (0.05 mmol, 0.05 eq.). The mixture was heated under
argon at 120-135 °C for 2 h. It was diluted with H,O (30 ml),
filtered and the solid was washed with H,O and ethanol
successively. The crude product was dissolved in DCM/MeOH
(5 : 1), filtered through celite to remove catalyst residue, then
concentrated and re-crystallized from hexane/ethyl acetate to
give almost pure compound 5xy.

Most of the final compound can be purified by crystallization
easily, for those compounds which has good solubility, a short
silica gel column purification is necessary.
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Representative gram scale procedure for synthesis of 5

To a three necked 500 ml flask equipped with a thermometer
was added 41b (9.13 g, 20 mmol, 1 eq.), DMA (200 ml), anhy-
drous KOAc (azeotroped with toluene prior to use) (7.85 g,
80 mmol, 4 eq.), Pd(¢-Bu;P), (511.05 mg, 1 mmol, 0.05 eq.). The
mixture was heated under argon at 120 °C for 2 h. The mixture
was diluted with H,O (30 ml) to precipitate the product, filtered
and the solid was washed with H,O and ethanol successively.
The crude product was dissolved in DCM/MeOH (5 : 1), filtered
through celite to remove catalyst residue, then concentrated
and re-crystallized from hexane/ethyl acetate to give pure
compound 51b (5.23 g, 19 mmol, 95% yield).
Phenanthridin-6(5H)-one (5aa). Off-white solid, 129 mg, 66%
yield, TLC R¢ 0.5 (2 : 1, petroleum ether : EtOAc); "H NMR (400
MHz, DMSO-dg): 6 11.69 (s, 1H), 8.52 (d, J = 8.0 Hz, 1H), 8.40 (d,
J = 8.0 Hz, 1H), 8.33 (d, / = 7.6 Hz, 1H), 7.86 (t, ] = 7.2 Hz, 1H),
7.65 (t,J = 7.4 Hz, 1H), 7.50 (t, ] = 7.4 Hz, 1H), 7.38 (d, ] = 8.0 Hz,
1H), 7.27 (t, J = 7.4 Hz, 1H). "*C NMR (100 MHz, DMSO-d,):
6 160.8, 136.5, 134.2, 132.8, 129.6, 127.9, 127.5, 125.7, 123.2,
122.6,122.3,117.5, 116.1. ESI-HRMS: calculated for C;3;HoNNaO
[M + Na]' 218.0576, found 218.0576.
2-Methoxyphenanthridin-6(5H)-one (5ab). Off-white solid,
198 mg, 88% yield, TLC R 0.3 (2 : 1, petroleum ether : EtOAc);
'H NMR (400 MHz, CDCl;): 6 11.23 (s, 1H), 8.61 (d, ] = 7.6 Hz,
1H), 8.26 (d, J = 8.0 Hz, 1H), 7.83-7.79 (m, 1H), 7.68-7.62 (m,
2H), 7.38 (d, J = 8.8 Hz, 1H), 7.14-7.11 (m, 1H), 3.93 (s, 3H); **C
NMR (100 MHz, DMSO-dy): 6 160.3, 154.8, 134.1, 132.5, 130.7,
127.9,127.5,125.9, 123.0, 118.3, 117.7, 117.3, 106.2, 55.6; HRMS
(ESI) m/z caled for C14H;;NNaO, [M + Na]' 248.0682, found
248.0690.
3-Isopropylphenanthridin-6(5H)-one (5ae-a). Off-white solid,
123 mg 52% yield, TLC R¢ 0.5 (2 : 1, petroleum ether : EtOAc);
'H NMR (400 MHz, DMSO-d,): 6 11.60 (s, 1H), 8.46 (d,J = 8.0 Hz,
1H), 8.31-8.29 (m, 2H), 7.83 (t,/ = 7.6 Hz, 1H), 7.61 (t,] = 7.4 Hz,
1H), 7.23 (s, 1H), 7.17 (d, ] = 8.4 Hz, 1H), 2.93-3.00 (m, 1H), 1.25
(d, ] = 6.8 Hz, 6H); "*C NMR (100 MHz, DMSO-d,): 6 160.9,
150.2, 136.6, 134.3, 132.7, 127.4, 125.3, 123.2, 122.4, 120.9,
115.6, 113.4, 33.3, 23.6; HRMS (ESI) m/z caled for C,¢H;sNNaO
[M + Na]* 260.1046, found 260.1033.
1-Isopropylphenanthridin-6(5H)-one (5ae-b). Off-white solid,
62 mg, 26% yield, TLC R; 0.5 (2 : 1, petroleum ether : EtOAc); 'H
NMR (400 MHz, CDCl;): 6 10.37 (s, 1H), 8.56 (d, J = 7.6 Hz, 1H),
8.24 (d,J = 8.0 Hz, 1H), 7.71 (t,] = 7.6 Hz, 1H), 7.55 (t,] = 6.8 Hz,
1H), 7.38 (t, ]/ = 7.8 Hz, 1H), 7.28 (d, J = 7.6 Hz, 1H), 7.11 (d, ] =
7.6 Hz, 1H), 3.98-3.93 (m, 1H), 1.39 (d, ] = 6.8 Hz, 6H); *C NMR
(100 MHz, DMSO-dg): 6 160.4, 147.0, 137.2, 134.4, 131.9, 128.8,
127.6, 127.2, 127.0, 121.0, 116.1, 113.8, 30.0, 24.5; HRMS (ESI)
m/z caled for C;6H;sNNaO [M + Na]* 260.1046, found 260.1046.
Thieno[3,2-clisoquinolin-5(4H)-one (5af). Off-white solid,
169 mg, 84% yield, TLC R; 0.5 (20 : 1, DCM : MeOH); 'H NMR
(400 MHz, DMSO-d): 6 12.01 (s, 1H), 8.27 (d, J = 7.6 Hz, 1H),
7.79-7.75 (m, 3H), 7.54-7.50 (m, 1H), 7.06 (d, J = 5.2 Hz, 1H);
3C NMR (100 MHz, DMSO-d;): 6 161.4, 138.4, 133.1, 133.0,
128.2, 127.7, 126.3, 123.6, 122.4, 117.9, 115.0; HRMS (ESI) m/z
caled for C;;H,NNaOS [M + Na]" 224.0141, found 224.0137.
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3-tert-Butylphenanthridin-6(5H)-one (5aj). Off-white solid,
206 mg, 82% yield, TLC R; 0.7 (2 : 1, petroleum ether : EtOAc);
'H NMR (400 MHz, CDCl;): 6 10.99 (s, 1H), 8.51 (d, J = 8.0 Hz,
1H), 8.20 (d, J = 8.0 Hz, 1H), 8.17 (d, J = 8.4 Hz, 1H), 7.74-7.69
(m, 1H), 7.54-7.50 (m, 1H), 7.33-7.27 (m, 2H), 1.35 (s, 9H); **C
NMR (100 MHz, CDCl;): 6 163.4, 153.3, 136.0, 135.0, 132.8,
128.2, 127.4, 125.5, 122.6, 121.9, 120.7, 116.2, 113.4, 35.0, 31.2;
HRMS (ESI) m/z caled for C;,H,4NO [M + H]" 252.1383, found
252.1395.
6-0x0-5,6-dihydrophenanthridine-2-carbonitrile (5ci). Brow
solid, 88 mg, 40% yield, TLC R¢ 0.4 (10 : 1, DCM : MeOH); 'H
NMR (400 MHz, DMSO-dg): 6 12.07 (s, 1H), 8.98 (d, J = 1.6 Hz,
1H), 8.65 (d, J = 8.0 Hz, 1H), 8.34-8.32 (m, 1H), 7.93-7.88 (m,
2H), 7.75-7.71 (m, 1H), 7.48 (d, J = 8.4 Hz, 1H); "*C NMR (100
MHz, DMSO-d,): 6 160.9, 139.7, 133.2, 132.9, 132.4, 129.0, 128.6,
127.4, 125.7, 123.2, 119.1, 118.2, 117.1, 104.5; HRMS (ESI) m/z
caled for C;,HgN,NaO [M + Na]" 243.0529, found 243.0516.
2-Methoxy-10-methylphenanthridin-6(5H)-one (5db). Grey
white solid, 194 mg, 81% yield, TLC R; 0.4 (2 : 1, petroleum
ether : EtOAc); '"H NMR (400 MHz, DMSO-dq): 6 11.59 (s, 1H),
8.32 (d, J = 7.6 Hz, 1H), 7.94 (d, J = 1.6 Hz, 1H), 7.71 (d, ] =
7.6 Hz, 1H), 7.55 (t,] = 7.8 Hz, 1H), 7.36 (d,/ = 8.8 Hz, 1H), 7.19-
7.16 (m, 1H), 3.85 (s, 3H), 2.97 (s, 3H); *C NMR (100 MHz,
DMSO-d,): 6 160.4, 153.8, 136.9, 135.1, 133.0, 131.0, 127.5,
127.3, 126.1, 119.4, 117.1, 116.1, 111.3, 55.3, 25.4; HRMS (ESI)
m/z caled for C;5H;3NNaO, [M + Na]' 262.0838, found 262.0842.
2-Methoxy-4,10-dimethylphenanthridin-6(5H)-one (5dc). Off
white solid, 220 mg, 87% yield, TLC R¢ 0.7 (1:1, petroleum
ether : EtOAc); 'H NMR (400 MHz, DMSO-d): 6 8.77 (s, 1H), 8.51
(d,J = 7.6 Hz, 1H), 7.86 (s, 1H), 7.63 (d, J = 6.8 Hz, 1H), 7.50 (t, ]
=7.6 Hz, 1H), 6.98 (s, 1H), 3.89 (s, 3H), 2.99 (s, 3H), 2.51 (s, 3H);
13C NMR (100 MHz, DMSO-de): 6 160.9, 153.2, 137.1, 135.1,
133.6,129.2, 127.4, 127.3, 126.1, 125.2, 119.5, 117.6, 109.2, 55.3,
25.6, 18.2; HRMS (ESI) m/z caled for C;¢H;5NNaO, [M + Na]"
276.0995, found 276.1007.
9-Methylthieno[3,2-c]isoquinolin-5(4H)-one  (5df). Brown
solid, 153 mg, 71% yield, TLC R¢ 0.7 (10 : 1, DCM : MeOH); 'H
NMR (400 MHz, DMSO-dg): 6 12.10 (s, 1H), 8.25 (d, J = 8.0 Hz,
1H), 7.90 (d, ] = 5.2 Hz, 1H), 7.68 (d, ] = 7.2 Hz, 1H), 7.44 (t,] =
7.6 Hz, 1H), 7.15 (d,J = 5.6 Hz, 1H), 2.75 (s, 3H); "*C NMR (100
MHz, DMSO-dq): 6 161.3,138.2, 134.7, 132.6, 132.1, 128.6, 126.3,
125.6, 124.6, 117.2, 113.9, 22.0; HRMS (ESI) m/z calcd for C,,-
HoNNaOS [M + Na:|+ 238.0297, found 238.0318.
2,7-Dimethoxy-4-methylphenanthridin-6(5H)-one (5ec). Off-
white solid, 247 mg, 92% yield, TLC Ry 0.7 (20:1,
DCM : MeOH); 'H NMR (400 MHz, DMSO-dq): 6 10.08 (s, 1H),
8.06 (d,J = 8.0 Hz, 1H), 7.73 (t, ] = 8.2 Hz, 1H), 7.63 (d, ] =
2.4 Hz, 1H), 7.18 (d,] = 8.4 Hz, 1H), 6.99 (d, ] = 2.0 Hz, 1H), 3.89
(s, 3H), 3.84 (s, 3H), 2.42 (s, 3H); *C NMR (100 MHz, DMSO-d,):
6 160.9, 159.3, 153.9, 137.2, 133.4, 129.7, 125.0, 119.2, 117.8,
114.9, 114.7, 110.8, 104.4, 56.0, 55.5, 17.5; HRMS (ESI) m/z caled
for C,¢H1NO; [M + H]" 270.1125, found 270.1118.
6-Methoxythieno[3,2-c]isoquinolin-5(4H)-one (5ef). Brown
solid, 141 mg, 61% yield, TLC R 0.7 (10 : 1, DCM : MeOH); 'H
NMR (400 MHz, DMSO-d): 6 11.63 (s, 1H), 7.73 (d, J = 5.2 Hz,
1H), 7.65 (t, ] = 8.2 Hz, 1H), 7.25 (d, J = 8.0 Hz, 1H), 7.03 (d, ] =
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8.4 Hz, 1H), 6.96 (d,J = 5.2 Hz, 1H). 3.86 (s, 3H); "*C NMR (100
MHz, DMSO-d,): 6 161.3, 160.2, 138.9, 135.6, 134.0, 127.9, 117.5,
114.6, 114.3, 112.5, 108.9, 55.8; HRMS (ESI) m/z calcd for Cq,-
HoNNaO,S [M + Na]* 254.0246, found 254.0257.
8-Methoxythieno[3,4-c]quinolin-4(5H)-one  (5fb). Brown
solid, 143 mg, 62% yield, TLC R¢ 0.6 (10 : 1, DCM : MeOH); 'H
NMR (400 MHz, DMSO-dy): 6 11.06 (s, 1H), 8.49-8.47 (m, 2H),
7.66 (d,J = 2.8 Hz, 1H), 7.22 (d, J = 8.8 Hz, 1H), 7.03-7.00 (m,
1H), 3.84 (s, 3H); **C NMR (100 MHz, DMSO-dy): 6 157.7, 154.7,
136.3, 130.9, 130.2,129.9, 119.6, 117.3,117.2,116.1, 107.5, 55.6;
HRMS (ESI) m/z caled for C;,Ho,NNaO,S [M + Na]" 254.0246,
found 254.0246.
8-Methoxy-6-methylthieno[3,4-c]quinolin-4(5H)-one  (5fc).
Brown solid, 142 mg, 58% yield, TLC Ry 0.7 (10:1,
DCM : MeOH); 'H NMR (400 MHz, DMSO-d): 6 10.08 (s, 1H),
8.52 (d, J = 2.0 Hz, 1H), 8.47 (s, 1H), 7.52 (s, 1H), 6.89 (s, 1H),
3.82 (s, 3H), 2.40 (s, 3H); "*C NMR (100 MHz, DMSO-d): § 158.1,
154.3, 136.6, 130.7, 130.0, 128.5, 125.8, 119.7, 117.5, 117.3,
105.3, 55.4, 17.9; HRMS (ESI) m/z caled for C;3H,;NNaO,S [M +
Na]* 268.0403, found 268.0398.
4-Chloro-7-fluoro-2-methoxyphenanthridin-6(5H)-one (5hd).
Light grey solid, 247 mg, 89% yield, TLC R; 0.5 (1 : 1, petroleum
ether : EtOAc); '"H NMR (400 MHz, DMSO-dg): 6 10.50 (s, 1H),
8.43 (d, J = 8.0 Hz, 1H), 7.89-7.85 (m, 2H), 7.45 (dd, J = 11.6,
8.4 Hz, 1H), 7.36 (d, J = 2.0 Hz, 1H); 3.89 (s. 3H); **C NMR was
not obtained due to low solubility; HRMS (ESI) m/z caled for
C14HoCIFNNaO, [M + Na]* 300.0198, found 300.0208.

Dithieno[3,2-b:3',2'-d|pyridin-5(4H)-one (5if). Brown solid,
176 mg, 85% yield, TLC R¢ 0.6 (10 : 1, DCM : MeOH); *"H NMR
(400 MHz, DMSO-dq): 6 12.23 (s, 1H), 8.17 (d, J = 4.0 Hz, 1H),
7.79 (d, J = 4.8 Hz, 1H), 7.61 (d, J = 4.4 Hz, 1H), 7.11 (d, J =
4.4 Hz, 1H); *C NMR (100 MHz, DMSO-d¢): 6 156.0, 139.9,
135.3,127.5,127.1, 122.6, 117.4, 113.3; HRMS (ESI) m/z calcd for
CoH;NNaOS, [M + Na]' 229.9705, found 229.9718.

8-Methyl-6-0xo0-5,6-dihydrophenanthridine-4-carbonitrile
(5jh). Brown solid, 87 mg, 37% yield, TLC R¢ 0.6 (20:1,
DCM : MeOH); "H NMR (400 MHz, CDCl3): 4 8.93 (s, 1H), 8.42
(d,J = 8.0 Hz, 1H), 8.36 (s, 1H), 8.18 (d, J = 8.0 Hz, 1H), 7.75-
7.68 (m, 2H), 7.36 (t,J = 7.8 Hz, 1H), 2.57 (s, 3H); "*C NMR was
not obtained due to low solubility; HRMS (ESI) m/z calcd for
C15H,oN,NaO [M + Na]* 257.0685, found 257.0696.

8-Methoxy-6-methylthieno[3,2-c]quinolin-4(5H)-one  (5kc).
Brown solid, 204 mg, 83% yield, TLC Ry 0.7 (10:1,
DCM : MeOH); 'H NMR (400 MHz, DMSO-d,): 6 10.73 (s, 1H),
7.78 (d, J = 5.6 Hz, 1H), 7.60 (d, J = 5.2 Hz, 1H), 7.11 (d, ] =
2.4 Hz, 1H), 7.01 (d,J = 2.0 Hz, 1H), 3.83 (s, 3H), 2.46 (s, 3H); °C
NMR (100 MHz, DMSO-d): 6 158.1, 154.1, 145.8, 131.1, 129.0,
126.7, 126.4, 125.3, 119.3, 116.8, 103.1, 55.4, 17.8; HRMS (ESI)
m/z caled for C;3H;;NNaO,S [M + Na]" 268.0403, found
268.0411.

Dithieno[3,2-b:2/,3'-d]pyridin-5(4H)-one (5kf). Brown solid,
174 mg, 84% yield, TLC R¢ 0.6 (10 : 1, DCM : MeOH); *"H NMR
(400 MHz, DMSO-dg): 6 12.15 (s, 1H), 7.79 (d, J = 5.2 Hz, 1H),
7.62 (d, J = 5.2 Hz, 1H), 7.54 (d, J = 4.8 Hz, 1H), 7.09 (d, ] =
5.2 Hz, 1H); *C NMR (100 MHz, DMSO-dg): 6 158.4, 142.1,
139.4, 128.5, 127.6, 125.3, 124.1, 117.6, 112.2; HRMS (ESI) m/z
caled for CoHgNOS, [M + H]" 207.9885, found 207.9880.
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6-Chlorothieno[3,2-c]quinolin-4(5H)-one (5kg). Brown solid,
167 mg, 71% yield, TLC R¢ 0.6 (20 : 1, DCM : MeOH); 'H NMR
(400 MHz, DMSO-dy): 6 10.91 (s, 1H), 7.88-7.86 (m, 2H), 7.66—
7.63 (m, 2H), 7.27 (t,J = 7.8 Hz, 1H). ">*C NMR (100 MHz, DMSO-
dg): 6157.9,145.3,132.5,131.5, 129.4, 128.0, 125.3, 123.1, 122.6,
119.3, 117.9. ESI-HRMS: calculated for C;;H¢CINNaOS [M + Na]"
257.9751, found 257.9739.
2-Methoxybenzo[k]phenanthridin-6(5H)-one (51b). Off-white
solid, 250 mg, 91% yield, TLC R¢ 0.5 (2 : 1, petroleum ether-
: EtOAc); 'H NMR (400 MHz, DMSO-dq): 6 11.85 (s, 1H), 9.01 (d,
J=7.2Hz, 1H), 8.33 (d, ] = 8.8 Hz, 1H), 8.17-8.08 (m, 3H), 7.80~
7.78 (m, 2H), 7.47 (d,J = 8.8 Hz, 1H), 7.28-7.25 (m, 1H), 3.90 (s,
3H); "*C NMR (100 MHz, DMSO-de): 6 160.4, 154.2, 135.7, 132.5,
131.5, 129.0, 128.6, 128.4, 128.1, 127.4, 126.9, 124.9, 122.9,
118.1, 117.4, 117.2, 111.1, 55.5; HRMS (ESI) m/z caled for
C15H14NO, [M + H]" 276.1019, found 276.1028.
Benzo[f]thieno[3,2-clisoquinolin-5(4H)-one  (5If). Brown
solid, 229 mg, 91% yield, TLC R 0.7 (20 : 1, DCM : MeOH); 'H
NMR (400 MHz, DMSO-dg): 6 12.55 (s, 1H), 8.89 (d, J = 8.4 Hz,
1H), 8.39 (d, J = 8.8 Hz, 1H), 8.17 (d, J = 7.6 Hz, 1H), 8.04-8.01
(m, 2H), 7.90 (t,] = 7.4 Hz, 1H), 7.83 (t,/ = 7.4 Hz, 1H), 7.26 (d, ]
= 5.6 Hz, 1H); >C NMR (100 MHz, DMSO-d,): 6 161.2, 140.1,
135.1, 131.8, 129.4, 129.2, 128.4, 127.6, 127.1, 126.8, 125.5,
124.1,122.1, 117.4, 112.8; HRMS (ESI) m/z caled for C,5sH,NNaO
[M + Na]* 274.0297, found 274.0314.
4-Chlorobenzo[k]phenanthridin-6(5H)-one (51g). Grey solid,
210 mg, 75% yield, TLC R; 0.4 (2 : 1, petroleum ether : EtOAc);
"H NMR (400 MHz, DMSO-dg): 6 11.08 (s, 1H), 8.89-8.87 (m, 1H),
8.58 (d, J = 8.0 Hz, 1H), 8.33 (d, J = 8.4 Hz, 1H), 8.20-8.15 (m,
2H), 7.83-7.74 (m, 3H), 7.38 (t, / = 8.0 Hz, 1H); "*C NMR (100
MHz, DMSO-d,): 6 156.2, 131.3, 128.2, 127.7, 124.3, 123.9, 123.7,
123.1, 122.2, 122.0, 121.9, 119.6, 118.0, 117.0, 115.1, 114.9,
113.6; HRMS (ESI) m/z caled for C;,H;;CINO [M + H]" 276.1019,
found 276.1026.
2,8-Dimethoxyphenanthridin-6(5H)-one (5mb). Light yellow
solid, 174 mg, 68% yield, TLC R; 0.4 (1: 1, petroleum ether-
: EtOAc); 'H NMR (400 MHz, DMSO-dq): 6 11.58 (s, 1H), 8.49 (d,
J=9.2 Hz, 1H), 7.80-7.76 (m, 2H), 7.45-7.42 (m, 1H), 7.28 (d,] =
8.8 Hz, 1H), 7.08 (dd, J = 8.8, 2.8 Hz, 1H), 3.92 (s, 3H), 3.86 (s,
3H); **C NMR (100 MHz, DMSO-d): 6 160.1, 159.0, 154.9, 129.6,
127.5,127.3,124.9, 121.3, 118.5, 117.1, 116.5, 108.7, 105.7, 55.6,
55.4; HRMS (ESI) m/z caled for C;sH;3NNaO; [M + Na]
278.0788, found 278.0797.
2,8-Dimethoxy-4-methylphenanthridin-6(5H)-one (5mc).
Light yellow solid, 180 mg, 67% yield, TLC R¢ 0.5 (1 : 1, petro-
leum ether : EtOAc); "H NMR (400 MHz, CDCl;): 6 8.66 (s, 1H),
8.08 (d, J = 8.8 Hz, 1H), 7.86 (d, J = 2.8 Hz, 1H), 7.40 (d, ] =
2.4 Hz, 1H), 7.31 (dd, J = 8.8, 2.8 Hz, 1H), 6.84 (d, J = 2.0 Hz,
1H), 3.90 (s, 3H), 3.83 (s, 3H), 2.40 (s, 3H); *C NMR (100 MHz,
DMSO-dg): 6 160.5, 159.0, 154.3, 128.0, 127.8, 127.0, 125.7,
125.2, 121.7, 118.5, 117.9, 108.4, 103.5, 55.5, 17.7; HRMS (ESI)
m/z calcd for C1¢H;5NNaO; [M + Na]* 292.0944, found 292.0954.
2-Isopropyl-8-methoxyphenanthridin-6(5H)-one (5mk). Off-
white solid, 120 mg, 45% yield, TLC R; 0.6 (1 : 1, petroleum
ether : EtOAc); "H NMR (400 MHz, CDCl,): 6 11.16 (s, 1H), 8.27
(d, J = 9.2 Hz, 1H), 8.03 (d, J = 2.0 Hz, 1H), 7.99 (s, 1H), 7.42-
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7.35 (m, 3H), 4.02 (s, 3H), 3.10-3.03 (m, 1H), 1.36 (d, J = 6.8 Hz,
6H); '*C NMR (100 MHz, CDCl3): 6 159.3, 143.5, 133.1, 128.6,
127.0, 123.8, 122.6, 119.6, 118.5, 116.7, 108.7, 55.7, 34.1, 24.3;
HRMS (ESI) m/z caled for C;;H;;NNaO, [M + Na]" 290.1151,
found 290.1147.
3-tert-Butyl-10-methylphenanthridin-6(5H)-one (5nj). Off-
white solid, 207 mg, 78% yield, TLC R; 0.7 (1: 1, petroleum
ether : EtOAc); "H NMR (400 MHz, DMSO-d): 6 11.58 (s, 1H),
8.39 (d, J = 8.8 Hz, 1H), 8.29 (d, J = 7.2 Hz, 1H), 7.69 (d, J =
7.2 Hz, 1H), 7.51 (t,] = 7.6 Hz, 1H), 7.45 (d, ] = 1.6 Hz, 1H), 7.32
(dd, J = 8.8, 2.0 Hz, 1H), 2.92 (s, 3H), 1.34 (s, 9H); *C NMR (100
MHz, DMSO-d): 6 161.0, 151.5, 136.9, 136.8, 134.9, 133.2,127.1,
126.8,126.0,119.3, 116.4, 112.7, 34.4, 30.8, 25.5; HRMS (ESI) m/
z caled for C,gH;oNNaO [M + Na]" 288.1359, found 288.1370.
8-Methoxythieno[3,2-c]quinolin-4(5H)-one  (50b). Brown
solid, 123 mg, 53% yield, TLC R 0.7 (10 : 1, DCM : MeOH); 'H
NMR (400 MHz, DMSO-d): 6 11.63 (s, 1H), 7.79 (d, J = 5.2 Hz,
1H), 7.58 (d,J = 5.2 Hz, 1H), 7.36 (d, ] = 8.8 Hz, 1H), 7.26 (d, ] =
2.4 Hz, 1H), 7.14 (dd, J = 8.8, 2.8 Hz, 1H), 3.85 (s, 3H); '*C NMR
(100 MHz, DMSO-d): 6 157.7, 154.6, 145.1, 131.4, 130.4, 126.7,
125.3,118.2, 117.6, 116.8, 105.2, 55.6; HRMS (ESI) m/z calcd for
C1,HoNNaO,S [M + Na]" 254.0246, found 254.0252.
8-Isopropylthieno[3,2-c]quinolin-4(5H)-one  (50k). Brown
solid, 124 mg, 51% yield, TLC R 0.5 (20 : 1, DCM : MeOH); 'H
NMR (400 MHz, DMSO-d): 6 11.67 (s, 1H), 7.77 (d, J = 5.2 Hz,
1H), 7.63 (d, J = 2.8 Hz, 1H), 7.58 (d, J = 5.2 Hz, 1H), 7.42-7.35
(m, 2H), 3.04-2.97 (m, 1H), 1.26 (d, J = 6.8 Hz, 6H); *C NMR
(100 MHz, DMSO-d,): 6 158.1, 145.6, 142.7, 134.4, 131.1, 127.9,
126.4, 125.3, 120.3, 116.3, 116.1, 32.9, 23.9; HRMS (ESI) m/z
caled for C,4H;3NNaOS [M + Na]' 266.0610, found 266.0641.
4-Fluoro-7-methoxyphenanthridin-6(5H)-one (5pl). Light
yellow solid, 93 mg, 38% yield, TLC R 0.5 (1:1, petroleum
ether : EtOAc); "H NMR (400 MHz, DMSO-d): 6 11.12 (s, 1H),
8.14 (d, J = 8.0 Hz, 1H), 8.04 (d, J = 8.0 Hz, 1H), 7.78 (t, ] =
8.2 Hz, 1H), 7.38-7.34 (m, 1H), 7.24 (d, ] = 8.4 Hz, 1H), 7.20-7.15
(m, 1H), 3.90 (s, 3H); *C NMR (100 MHz, DMSO-d,): 6 161.0,
159.0, 150.0, 147.6, 136.4, 133.9, 125.8, 125.7, 121.4, 121.3,
119.5,114.9, 114.8, 114.7, 111.5, 56.0; HRMS (ESI) m/z caled for
C14H;,FNNaO, [M + Na]" 266.0588, found 266.0599.
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