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bility of off-resonant gap-
enhanced Raman tags
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Stefan A. Maierbd and Jian Ye *ae

Surface-enhanced Raman scattering (SERS) nanoprobes show promising potential for biosensing and

bioimaging applications due to advantageous features of ultrahigh sensitivity and specificity. However,

very limited research has been reported on the SERS photostability of nanoprobes upon continuous laser

irradiation, which is critical for high-speed and time-lapse microscopy. The core–shell off-resonant gap-

enhanced Raman tags (GERTs) with built-in Raman reporters, excited at near-infrared (NIR) region but

with a plasmon resonance at visible region, allow decoupling the plasmon resonance behaviors with the

SERS performance and therefore show ultrahigh Raman photostability during continuous laser

irradiation. In this work, we have synthesized five types of off-resonant GERTs with different embedded

Raman reporters, numbers of shell layer, or nanoparticle shapes. Via thorough examination of time-

resolved SERS trajectories and quantitative analysis of photobleaching behaviors, we have demonstrated

that double metallic-shell GERTs embedded with 1,4-benzenedithiol molecules show the best

photostability performance, to the best of our knowledge, among all SERS nanoprobes reported before,

with a photobleaching time constant up to 4.8 � 105 under a laser power density of 4.7 � 105 W cm�2.

Numerical calculations additionally support that the local plasmonic heating effect in fact can be greatly

minimized using the off-resonance strategy. Moreover, double-shell BDT-GERTs are highly potential for

high-speed and high-resolution Raman-based cell bioimaging.
The surface-enhanced Raman scattering (SERS) effect strongly
boosts the Raman signal of reporter molecules adsorbed on the
surface of metallic plasmonic nanoparticles with the intense
electromagnetic eld enhancement.1–7 With the unique nger-
print spectral feature, SERS nanoprobes, namely, metallic
nanoparticles together with molecules as Raman reporters,
have been extensively investigated for the biomedical applica-
tions including biosensing and bioimaging similar to the uo-
rescent nanoprobes.8–14 In contrast to uorophores, SERS
nanoprobes exhibit a much larger multiplexing capability due
to the narrow spectral linewidth. In addition, SERS nanoprobes
show better stability than uorophores since uorophores
easily suffer the photobleaching issue caused by modication of
covalent bonds or non-specic reactions between the
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uorophores and surrounding molecules upon singlet state-
triplet state transition,15,16 which is especially problematic in
time-lapse microscopy.17 Typically the photobleaching in SERS
nanoprobes does not follow this process and is much less
problematic than that in uorophores. It can be further mini-
mized by decreasing the laser power and prolonging the laser
exposure time. However, the photobleaching is still not favor-
able for high-contrast SERS-based bioimaging, which recently
shows great potential for intraoperative precise identication of
tumor margins and microscopic tumor invasion18–21 and inevi-
tably requires high-speed and a number of imaging cycles.

Recently a new type of SERS nanoprobes, namely, gap-
enhanced Raman tags (GERTs), have been reported to show
excellent SERS enhancement,7,22,23 which is favorable for high-
speed SERS imaging.13,22,24 GERTs are composed of plasmonic
Au core–shell nanomatryoshka structures25–27 with a uniform
and nanometer-sized interior gap between themetallic core and
the shell in addition to an external mesoporous silica layer if
needed.22 Such nanoprobes show strong near-infrared (NIR)
Raman enhancement due to the combined near-eld electro-
magnetic and chemical enhancement in the subnanometer
core–shell junction geometry while they only present one
localized surface plasmon resonance (LSPR) in the visible range
in the far-eld spectrum.27 Therefore GERTs with the built-in
nanogap geometry allow decoupling the LSPR spectrum with
This journal is © The Royal Society of Chemistry 2018
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the SERS performance. This off-resonance NIR excitation
strategy is able to minimize the excitation laser induced photo-
thermal effect to GERTs, leading to their ultrahigh SERS pho-
tostability during 30 min continuous cell and tumor SERS
imaging without being photobleached.22 The off-resonant NIR
GERTs as imaging probes are also favorable for generating
minimal photothermal damage to the biological samples
during the imaging process, as demonstrated by monitoring the
changes in mitochondrial membrane potential of cancer cells
during imaging.28 The core–shell structure of GERTs addition-
ally offers a variety of embedded Raman reporters and the
numbers of shell layer,29 but it remains a question and a chal-
lenge to understand how these factors of nanoprobe composi-
tion and morphology affect their SERS photostability.

In this work, we synthesized ve types of off-resonant GERTs
either with different embedded Raman reporters (including 1,4-
benzenedithiol (BDT), 4,40-biphenyldithiol (BPDT), 4,40-terphe-
nyldithiol (TPDT), and 4-nitrobenzenethiol (NBT)), numbers of
shell layer, or nanoparticle (NP) shapes. We have compared
their particle morphologies, optical properties, and SERS pho-
tostability under continuous laser irradiation. Careful exami-
nation of time-resolved SERS trajectories and quantitative
analysis of photobleaching behaviors indicate that double
metallic-shell GERTs embedded with BDT molecules show the
best photostability performance to the best of our knowledge.
Numerical calculations are additionally performed to estimate
the local laser-induced lattice temperature change of GERTs at
on-resonance and off-resonance conditions. Further investiga-
tions of Raman-based cell imaging have demonstrated that
those double-shell GERTs are great nanoprobes for high-speed
and high-resolution Raman bioimaging.
Experimental section
Materials and instrumentation

CTAC (99%) was received from J&K Chemical Ltd (Shanghai,
China). Chloroauric chloride (HAuCl4$4H2O) was obtained
from Sinopharm Chemical Reagent Co. Ltd (Shanghai, China).
Ascorbic acid (>99%) was purchased from Aladdin (China). 1,4-
Benzenedithiol (BDT, 98%) was acquired from TCI (Tokyo,
Japan). 4-Nitrobenzenethiol (NBT) was received from Sigma-
Aldrich (Shanghai, China). Silver nitrate (AgNO3, >99%) was
obtained from Alfa Aesar (Shanghai, China). All materials were
used as received without any further purication. Nanopure
water (18.2 MU) was used for all experiments. UV-Vis extinction
spectra were measured from a UV1900 UV-Vis spectrophotom-
eter (Aucybest, Shanghai, China). Transmission electron
microscopy (TEM) images were collected on a JEM-2100F
transmission electron microscope (JEOL, Tokyo, Japan) oper-
ated at 200 kV.
Synthesis of GERTs

Single-shell BDT-decorated GERTs (BDT-GERTs), BPDT-
decorated GERTs (BPDT-GERTs) and TPDT-decorated GERTs
(TPDT-GERTs) were prepared according to the protocols pre-
sented in our preceding work except for the increasing
This journal is © The Royal Society of Chemistry 2018
adsorption time of Raman reporters from 20 minutes to 3 hours
for BDT-GERTs. Double-shell BDT-decorated GERTs (double-
shell BDT-GERTs) were also synthesized in accordance with
our previous work with some minor adjustments. First, the
obtained BDT-GERTs were rst centrifuged to reduce the
concentration of CTAC from 50 mM to 10 mM. Second, the
amount ratio of BDT-GERTs and 1,4-BDT alcoholic solution (4
mM) was 20 : 1, and the incubation time was 30 minutes. Third,
the Raman reporter modied BDT-GERTs were resuspended in
CTAC of 50 mM aer the washing process. Fourth, the growth
solution of double gold shell consisted of 9 mL CTAC (50 mM),
450 mL HAuCl4 (4.86 mM) and 1200 mL ascorbic acid (40 mM).
NBT-decorated GERTs (NBT-GERTs) were prepared by the
method proposed in our published paper. The synthesized
10 mL Nanorods (NRs) were mixed with 300 mL NBT alcoholic
solution (2 mM) under vigorous sonication, followed by the
incubation for 30 minutes at 50 �C. Next, the mixture was
washed three times and dispersed in 100 mM CTAC solution.
Then, 200 mL AgNO3 solution (100 mM) was added into 4 mL
functionalized NRs with 12 mL H2O, followed by the addition of
four times molar excess of ascorbic acid. Aer the synthesis of
GERTs, mesoporous silica coating was applied to all ve types of
particles based on the procedures described in our previous
work.

Photostability measurements of GERTs

Raman measurements were performed on a LabRAM XploRA
INV system (Horiba, China) to analyze the photostability char-
acteristics of various GERTs. 6 mL samples (0.2 nM) were drop-
cast on a silicon wafer and dried before measurement.
Continuous irradiation with a 785 nm laser was applied to all
ve types of GERTs, with 15 minutes for NBT-GERTs and 30
minutes for the other four samples. All Raman spectra were
normalized to the laser power, the exposure time, and the
concentration of Raman reporters. Photobleaching time
constant is obtained by tting the decay curve to the equation I
¼ Ae(�t/s) aer evaluation of three different locations on the
substrate.

Calculations of plasmonic heating effect

The plasmonic photothermal heating of the GERT by laser
irradiation during the Raman measurement was calculated by
coupling the Radio Frequency module with Heat Transfer
module in Comsol Multiphysics (version 4.4).30 In order to
validate our numerical method in the air-silicon interfaces,
modelling results in the water environment have been
compared with the ref. 30 and 31. The temperature dependent
parameters of Au, Si, and silica were taken from the Comsol
material library. The refractive index of the embedded Raman
reporter was set as 1.6 based on our previous investigation.32

Cell culture and Raman imaging

The HeLa cell line was purchased from Cell library of the
Chinese Academy of Sciences (Shanghai, China) and cultured in
a Dulbecco's modied Eagle's medium (DMEM) with 10% fetal
bovine serum (FBS) and antibiotics (100 mg mL�1 penicillin and
RSC Adv., 2018, 8, 14434–14444 | 14435
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100 mg mL�1 streptomycin) (Sigma, St. Louis, MO). The cells
were cultivated in 10 cm culture dishes in a water-jacketed
incubator at 37 �C with 5% CO2-humidied atmosphere. For
cell Raman imaging purposes, the cells were allowed to adhere
to the quartz-bottomed plates for at least 24 h and then incu-
bated with double-shell BDT-GERTs at a nal concentration of
0.02 nM for 15 h. Following the incubation, the cells were
washed thoroughly with phosphate-buffered saline (PBS) and
xed with 4% paraformaldehyde for 15 minutes at room
temperature. Excess paraformaldehyde was removed with PBS
and then sterile water, and the samples were air-dried before
SERS measurements. The Raman image of a whole cell could be
acquired in a SWIFT mode within 51 s with a 10 ms exposure
time per pixel (51 � 50 pixels, 4.7 � 105 W cm�2, 100� objective
lens), and the imaging time could be further reduced to 36 s
with a 5 ms exposure time per pixel.

Results and discussion

We have synthesized ve different types of GERTs, either with
different embedded Raman reporter molecules, shell thick-
nesses, or nanoparticle (NP) shapes using the slightly modied
procedures we described before.22,28 Fig. 1a shows the schematic
illustration of GERTs and the corresponding molecular struc-
tures of embedded Raman reporters: (i) single-shell 1,4-
benzenedithiol-decroated GERTs (BDT-GERTs), (ii) 4,40-
biphenyldithiol-decorated GERTs (BPDT-GERTs), (iii) 4,40-
terphenyldithiol-decorated GERTs (TPDT-GERTs), (iv) double-
shell 1,4-benzenedithiol-decroated GERTs (double-shell BDT-
GERTs), and (v) 4-nitrobenzenethiol-decorated GERTs (NBT-
GERTs). BDT, BPDT, and TPDT are selected because they have
similar molecular structures but with different molecular chain
lengths. NBT is selected also because of a similar structure and
with a much larger Raman cross section.33 BDT-GERTs, BPDT-
GERTs, TPDT-GERTs, and double shell BDT-GERTs all have
a spherical shape but the former three have only a single-layer
metallic shell. NBT-GERTs have a rodlike NP shape. All NPs
are coated with a mesoporous silica layer in order to have
a better bio-compatibility and the capability of further bio-
functionalization. Fig. 1b shows the representative trans-
mission electron microscopy (TEM) images of all GERTs, which
indicates that all NPs are well dispersed and isolated without
aggregation. Each NP has an external silica layer of around
15 nm in thickness and its mesoporous morphology is clearly
observed. The Raman reporter molecule has a great impact on
the gap morphology of inside the GERTs. From our previous
work,27 we have well conrmed that BDT molecule can lead to
a uniform gap in single-shell GERTs with a gap size of �0.7 nm.
Very similarly, BPDT can also form a uniform internal gap in
BPDT-GERTs with a slightly larger gap size of �0.8 nm because
it has a slightly longer molecular length than BDT (Fig. 1b(ii)).32

However, the gap becomes discontinuous for TPDT-GERTs
when the molecular length of the Raman reporter further
increases (Fig. 1b(iii)). This is probably because of that TPDT
molecules are not rigid structures and may form various
orientations, therefore resulting in an uneven molecular layer
on Au cores. For double-shell BDT-GERTs, the gap structure
14436 | RSC Adv., 2018, 8, 14434–14444
appears indistinct due to the increased thickness of the Au shell
and the total particle size up to around 120 nm, relatively larger
than others (Fig. 1b(iv)). More interestingly, we have no obser-
vation of the gap morphology between the Au core and the Ag
shell in rodlike NBT-GERTs (Fig. 1b(v)), which is consistent to
the results previously reported.28 This important feature has
been conrmed before by the high-resolution TEM but without
a clear explanation yet.28,34 The corresponding high-resolution
inverted TEM images of GERTs are shown in the insets of
Fig. 1a, which further conrm the observation of the gap
morphology above.

The photographs in Fig. 1c show typical colors of the corre-
sponding ve GERTs (i–v): blue, pink, purple, red, and green,
respectively. UV-Vis extinction spectra in Fig. 1c indicate only
one localized surface plasmon resonance (LSPR) peak from the
visible to NIR range for all samples. Single-shell spherical
GERTs typically have a single LSPR in the range of 540–560 nm.
For example, single-shell BDT-GERTs, BPDT-GERTs, and TPDT-
GERTs exhibit a LSPR at 553, 541, and 551 nm, respectively.
Their difference is most likely due to the variation of particle
size, particle shape, and gap morphology. NBT-GERTs show
a LSPR at 663 nm, which is mainly determined by the aspect
ratio of NPs and the thickness of Ag shell.28 Double-shell BDT-
GERTs present the LSPR at 656 nm and their spectral line-
width is much broader than that of the other four samples
because of the polydispersed particle size and the irregular
shape effect. We have observed that a slight redshi (typically,
3–5 nm) of the LSPR occurs aer the coating of mesoporous
silica layer for all but NBT-GERTs due to the increase of the
refractive index around the NPs. It can be also noted that all
samples except double-shell BDT-GERTs are entirely under off-
resonance condition relative to the NIR excitation laser wave-
length (785 nm, indicated by the dashed line in Fig. 1c) used in
the Raman measurement in this work, which is favorable for
biomedical applications with a large penetration depth. In
contrast, double-shell BDT-GERTs are under slightly off-
resonance condition (their LSPR maximum is even around
130 nm far away from the excitation wavelength 785 nm), since
they still show moderate absorption at 785 nm.

SERS photostability measurements were performed on solid
GERTs drop-cast on a silicon substrate under continuous laser
irradiation for 30 min with a laser power density of 3 � 105 W
cm�2. This test condition is more challenging than most of
biological environment SERS nanoprobes applied in, such as
buffer media and biological tissue, where the environmental
media absorbs a part of light. All GERTs deposited on the Si
substrate may randomly form aggregations, but it should be
also noted that all GERTs used in this work are coated with
a mesoporous silica layer with an average shell thickness of
15 nm, which keeps all NPs on the Si substrate with a dielectric
distance of at least 30 nm between the metal–metal surfaces.
This indicates that the LSPR of GERTs on the substrate is weakly
affected by the state of NPs (e.g., aggregation), since the LSPR
coupling is a near-eld effect.35,36 Therefore, all GERTs on the
substrate maintain the off-resonance condition relative to
785 nm excitation wavelength even when some aggregations
form. This is also very similar to the situation of performing
This journal is © The Royal Society of Chemistry 2018
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Fig. 1 Structures and optical properties of five off-resonant GERTs: (i) BDT-GERTs, (ii) BPDT-GERTs, (iii) TPDT-GERTs, (iv) double-shell BDT-
GERTs, and (v) rodlike NBT-GERTs. (a) Schematic illustration of nanoparticles, inverted TEM image of nanoparticles, and molecular structure of
Raman reporters. (b) TEM images of GERTs. All scale bars are 50 nm. (c) Extinction spectra of GERTs before (black) and after (red) silica coating.
Dashed line indicates the laser wavelength (785 nm) used in the Raman measurements. Insets in panel c are the corresponding photos of
aqueous GERTs solutions.

Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

7 
A

pr
il 

20
18

. D
ow

nl
oa

de
d 

on
 7

/2
3/

20
25

 1
:3

3:
57

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
SERS cell imaging, where GERTs as nanoprobes are internalized
by cells and form aggregations inside the cell. Raman spectra
were collected every 2 s using a 785 nm laser and a 60� objective
lens. All spectra were background-subtracted and their inten-
sities were normalized to the exposure time, laser power, and
concentration of embedded Raman reporters. From bright-eld
photo images of ve types of solid GERTs on silicon wafer
(Fig. 2a), negligible changes have been found before (top) and
aer (bottom) 30 min continuous laser irradiation. This indi-
cates an improved photostability of GERTs stabilized by the
mesoporous silica than Au nanospheres functionalized by other
stabilizing agents (e.g., rhodamine 6G, cetyltrimethyl-
ammonium chloride) we have reported before.22 Fig. 2b pres-
ents time-resolved SERS trajectories of ve types of GERTs.
Three notable Raman bands from BPDT-GERTs and TPDT-
GERTs at 1080, 1277, and 1585 cm�1 are ascribed to the vibra-
tional mode of C–S stretching (n1 mode), C–C stretching (n8a
This journal is © The Royal Society of Chemistry 2018
mode), and stretching of C–C connecting the phenyl rings,
respectively (Fig. 2b(ii) and (iii)).37–39 Two strong characteristic
Raman bands of single-shell and double-shell BDT-GERTs at
1055 and 1555 cm�1 and one weak band at 1178 cm�1 corre-
spond to the phenyl-ring breathing mode (C–H in-plane
bending and C–S stretching), the phenyl-ring stretching
motion (8a vibrational mode), and the CH bending motion (9a
vibrational mode), respectively (Fig. 2b(i) and (iv)). In close
agreement with previous ndings,28,40,41 the SERS spectra of
NBT-GERTs are dominated by n (C–S) at 1081 cm�1, n (NO2) at
1338 cm�1, and n (C–C) at 1569 cm�1 (Fig. 2b(v)). Although
obvious SERS signals remain aer continuous laser irradiation,
we nd different photostability behaviors of all GERTs in this
work. Raman intensity of single-shell BDT-GERTs gradually
decreases and remains about 60% of the initial signal during
30 min irradiation. It is worth noting that the single-shell BDT-
GERTs in this work show a slight degradation of SERS
RSC Adv., 2018, 8, 14434–14444 | 14437
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Fig. 2 SERS photostability measurements of five off-resonant GERTs: (i) BDT-GERTs, (ii) BPDT-GERTs, (iii) TPDT-GERTs, (iv) double-shell BDT-
GERTs, and (v) NBT-GERTs. (a) Bright-field images of solid GERTs on a silicon wafer before (top) and after (bottom) 15 min continuous irradiation
for NBT-GERTs and 30 min for the other four samples. The red circles indicate the positions where laser illuminates. All scale bars are 10 mm. (b)
Time-resolved SERS spectra of solid GERTs on a silicon wafer during continuous laser irradiation for BDT/BPDT/TPDT-GERTs (30 min, 3� 105 W
cm�2), double-shell BDT-GERTs (30 min, 4.7 � 105 W cm�2) and NBT-GERTs (15 min, 3 � 105 W cm�2). (c) Three representative SERS spectra at
selected irradiation times in panel b.
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photostability compared with our previous results.22 BPDT-
GERTs and TPDT-GERTs exhibit pronounced Raman signals
at the initial stage but a rapid diminish occurs aer around
14438 | RSC Adv., 2018, 8, 14434–14444
2 min; three notable Raman bands remain on the trajectory
aer 30 min irradiation. NBT-GERTs provide faster but unstable
decays where the SERS signal does not always decrease
This journal is © The Royal Society of Chemistry 2018
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Fig. 3 Comparison of SERS photostability of different off-resonant GERTs. Time-dependent variation of integrated area of Raman bands for
BPDT-GERTs ((a) 1080 cm�1; (b) 1585 cm�1), TPDT-GERTs ((a) 1080 cm�1; (b) 1585 cm�1), single-shell BDT-GERTs ((a) 1055 cm�1; (b) 1555 cm�1),
double-shell BDT-GERTs ((a) 1055 cm�1; (b) 1555 cm�1), and rodlike NBT-GERTs ((a) 1338 cm�1). (c) Photostability of double-shell BDT-GERTs
(top: 1055 cm�1 band, bottom: 1555 cm�1 band) under different laser power densities. All solid curves are obtained by fitting the decay curves to
the equation I ¼ Ae(�t/s).

Table 1 Raman photobleaching time constants of various GERTsa

Samples s1
b [s] s2

c [s]

BDT-GERTs 5623 7628
BPDT-GERTs 1054 1003
TPDT-GERTs 1290 1526
NBT-GERTs 667
Double-shell BDT-GERTsd 22 271 48 686
Double-shell BDT-GERTse 4488 5866

a All measurements are performed with a laser power density of 3 �
105 W cm�2 except for double-shell BDT-GERTs. b s1 is obtained by
tting the Raman band of 1055 cm�1 for BDT-GERTs and double-shell
BDT-GERTs, 1080 cm�1 for BPDT-GERTs and TPDT-GERTs, and
1338 cm�1 for NBT-GERTs. c s2 is obtained by tting the Raman band
of 1555 cm�1 for BDT-GERTs and double-shell BDT-GERTs,
1585 cm�1 for BPDT-GERTs and TPDT-GERTs. d Measurements are
performed with a laser power density of 4.7 � 105 W cm�2.
e Measurements are performed with a laser power density of 1.2 �
106 W cm�2.
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monotonically during 15 min irradiation. In contrast, double-
shell BDT-GERTs show extraordinary photostability without
any noticeable Raman blinking or uctuation phenomena
during 30 min irradiation. This can be explained by the fact that
the metallic shell can not only enhance the SERS signal but also
protect the reporter molecules from the oxygen and moisture
and avoid possible desorption, which was demonstrated previ-
ously.22 Their photostable SERS properties can be additionally
demonstrated by the three representative SERS spectra, recor-
ded before, in the middle of, and aer irradiation, with almost
negligible change (Fig. 2c(iv)). The representative SERS spectra
from the other four samples clearly indicate a remarkable signal
weakening aer the irradiation (Fig. 2c(i)–(iii) and (v)). We
emphasize that such extraordinary photostability of double-
shell BDT-GERTs is highlighted with a large laser power
density of 4.7 � 105 W cm�2 and an ultrashort integration time
of 10 ms per spectrum, which is greatly favorable for SERS-
based cell bioimaging.

Quantitative analysis of the photostability of all GERTs is
carried out by plotting their photobleaching behaviors aer
normalization. As shown in Fig. 3a and b, the integrated areas
of Raman bands at 1080 and 1585 cm�1 for BPDT and TPDT,
1055 and 1555 cm�1 for BDT, and 1338 cm�1 for NBT were
selected as representative for investigating the photobleaching
behaviors from their time-resolved SERS spectra in Fig. 2. We
have nd out different photobleaching time constants (s) from
these GERTs (see Table 1), which is obtained by tting the SERS
decay curves to the equation I ¼ Ae(�t/s) (solid lines).42 The time
constants obtained are 1054 and 1003 s for BPDT-GERTs
(Raman bands of 1080 and 1585 cm�1), 1290 and 1526 s for
TPDT-GERTs (Raman bands of 1080 and 1585 cm�1), 5623 and
7628 s for single-shell BDT-GERTs (Raman bands of 1055 and
1555 cm�1), 22 271 and 48 686 s for double-shell BDT-GERTs
(Raman bands of 1055 and 1555 cm�1), respectively. It is rst-
time demonstrated that the photobleaching time constant of
This journal is © The Royal Society of Chemistry 2018
SERS nanprobes can reach a value larger than 4.8 � 105.
Although all GERTs are operated in the off-resonant conditions,
distinct photobleaching behaviors of GERTs can be observed:
(1) the length of Raman reporters – a better photostability of
BDT-GERTs than BPDT- and TPDT-GERTs, where a shorter
molecular length forms a more rigid and dense monolayer. It
can be also reasonably understood that more C–C bonds with
a lower bond energy (compared to C]C and C–H)43 connecting
the benzene rings exist in the molecular structure (such as
TPDT) with increased benzene ring, which produces more
possibilities of molecular decomposition due to the breaking of
C–C bond. (2) The layer of the shells – a better photostability of
double-shell GERTs than single-shell GERTs, where metallic
shell protection and isolation of Raman reporters reduce the
plausible interactions with the surrounding environment; (3)
the type of vibrational Raman bonds – a better photostability of
RSC Adv., 2018, 8, 14434–14444 | 14439
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the phenyl-ring C–C stretching mode (1555 cm�1 for BDT,
1585 cm�1 for BPDT and TPDT) than the C–S stretching mode
(1055 cm�1 for BDT, 1080 cm�1 for BPDT and TPDT), where the
closed-loop structure of the phenyl ring is more conservative
than the single C–S bond under continuous irradiation.
Surprisingly, the photobleaching time constant of NBT-GERTs
(1338 cm�1) is only around 667 s, which is in line with the
fact that the oxidization of the Ag shell in NBT-GERTs easily
occurs during the continuous laser illumination and causes the
dramatic decrease of SERS signal. We have previously demon-
strated that the mesoporous silica shell plays a certain role to
some extent in improving the photostability of the GERTs.22 But
the photostability result of NBT-GERTs herein implies that the
oxygen still possibly penetrates through the mesoporous silica
layer and consequently accelerates the oxidization under the
laser illumination. We further increase the laser power density
up to 1.2 � 106 W cm�2 to examine the photostability of double-
shell BDT GERTs. Their photobleaching time constants signif-
icantly decline to 4488 and 5866 s for the Raman bands at 1055
and 1555 cm�1 (Fig. 3c), respectively. We also notice that the
tting of decay curves can be further improved by utilizing
a two-exponential mode44 and more investigation will be per-
formed in future work.

It is essential to understand the contributions from plas-
monic heating in the SERS photobleaching effect.42,45–49

Accordingly, we performed numerical calculations using the
commercial Comsol Multiphysics to examine the local
temperature variation (DT) of GERTs induced by laser excitation
under the on-resonance and off-resonance conditions at room
temperature. Fig. 4 shows the calculated heat source density
Fig. 4 Numerical calculations of plasmonic heating by laser irradiation
temperature (DT) of a GERT on the Si substrate under on-resonant (532
105 W cm�2. Dashed circles indicate the diameter of the GERT.

14440 | RSC Adv., 2018, 8, 14434–14444
and increased temperature of a GERT (Au core: 25 nm in
diameter, gap size: 0.7 nm, Au shell: 16 nm in thickness, and
silica shell: 12 nm in thickness) on a Si substrate excited by
a laser with a power density of 3 � 105 W cm�2. The non-
radiative decay of absorbed optical energy is concentrated in the
internal Au core–shell with a maximal value of 3.8� 1018 Wm�3

at on-resonance (532 nm) condition. Followed by resistive
(ohmic) heating, the lattice temperature elevation of the GERT
(including the silica layer) seems to reach beyond 900 K and is
highly localized in a volume close to the NP. This surprisingly
high temperature is reasonable due to 15 folds less thermal
conductivity in the air, which facilitates fast photobleaching
during the conventional SERS measurement with a large power
density in ambient atmosphere. The lattice temperature eleva-
tion of the GERT dramatically drops to merely 27 K at off-
resonance condition (785 nm) and the corresponding absor-
bed energy also decreases to 1.0 � 1017 W m�3, leading to more
than one order of magnitude lower than that of on-resonance
condition, which provides limited thermal effects on the gap
molecules. Such signicantly distinct photothermal activities
are corroborated with high photostability of the off-resonant
GERTs, outperforming normal on-resonant SERS nanoprobes.

Besides stable key Raman bands of GERTs, notable uctua-
tions of side Raman bands including the intensity variation of
Raman bands and the appearance/disappearance of Raman
bands have been observed during the photostability measure-
ments of GERTs. Fig. 5a shows a number of representative SERS
spectra of BPDT-GERTs during continuous measurements, for
example, from 376 to 424 s, from 1160 to 1172 s, and from 1650
to 1702 s. The three main Raman bands at 1080, 1277, and
. (a and c) Heat source density distribution and (b and d) increased
nm) or off-resonant (785 nm) excitation with a power density of 3 �

This journal is © The Royal Society of Chemistry 2018
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1585 cm�1 from BPDT are always detectable and remain
constantly decreasing in general during 30 min of measure-
ment. But Raman bands at the optical regions of 550–900 cm�1,
1100–1400 cm�1, and 1450–1580 cm�1 become variable. For
example, the intensity of the Raman band at 1200 cm�1

continuously increases during 376–378 s and even becomes
stronger than that at 1080 and 1585 cm�1 (two main bands)
when t¼ 380 s. It can be also noticed that extra Raman bands at
Fig. 5 SERS spectral fluctuation of (a) BPDT-GERTs and (b) TPDT-GERT

This journal is © The Royal Society of Chemistry 2018
679, 746, 784, 838 cm�1 emerge when t ¼ 422 s and they
suddenly disappear during the next 2 s (t ¼ 424 s). Another
Raman band at�1520 cm�1 blinks from time to time during the
measurement (Fig. 5a). Similar phenomena of Raman spectral
variation can be found during the photostability test for TPDT-
GERTs (Fig. 5b). For example, the Raman mode at 841 cm�1

unexpectedly emerges when t ¼ 14 s, but becomes silent when t
¼ 12, 16, 18, 20 and 22 s, and reoccurs during 268–270 and
s during the photostability measurements.

RSC Adv., 2018, 8, 14434–14444 | 14441

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c8ra02260g


Fig. 6 Raman imaging for HeLa cells stained with double-shell GERTs. (a) Bright-field image, (b and d) Raman images and (c and e) the cor-
responding overlay images of a single cell. Raman images were acquired with exposure time of (b) 10 ms and (d) 5 ms per pixel, plotted using the
Raman band at 1055 cm�1. All scale bars are 5 mm.
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1640–1646 s. Multiple vibrational modes in the range of 550–
900 cm�1 (for example, 590, 659, 707, and 814 cm�1) also appear
during 506–514 s. The “blinking” effect has been previously
reported in the SERS detection of single molecule mainly due to
the diffusion of molecules into and out of the electromagnetic
“hot spot”.4,5,50,51 However, all GERTs used in this work are solid
samples on the silicon substrate, where the Raman reporters are
embedded into the nanogaps of GERTs and isolated from air
and moisture by metallic shell and mesoporous silica shell.
Aer thorough examination of all these switchable Raman
spectra, we found that the blinking effect is much more favor-
able for both BPDT-GERTs and TPDT-GERTs than BDT-GERTs.
The most plausible reason is the fact that the molecular struc-
ture of BPDT and TPDT is longer andmore exible and includes
more decomposable C–C bonds43 (connecting the benzene
rings) compared to BDT, more easily inducing the reorientation
and decomposition of adsorbed Raman molecules during laser
irradiation,52–54 such as the variation of the torsion angle
between two phenyl rings of BPDT and TPDT52 and p–p

coupling and Raman cross-sections relative to light incident
direction.34,52–54 In contrast, BDT molecule itself is simply rigid
due to the double Au-thiol bounding. It should be pointed out
that we cannot exclude the photo-reactions of the reporters
during the irradiation process although they are completely
embedded into the nanogaps of metallic nanoparticles.

Previously we have demonstrated that double-shell BDT-GERTs
exhibit excellent SERS performance, even one order of magnitude
stronger than single-shell BDT-GERTs.29 Therefore, together with
their ultraphotostability during laser irradiation herein, we choose
double-shell BDT-GERTs as optical nanoprobes for fast cell Raman
imaging. Fig. 6 shows the bright-eld and Raman images of
a single HeLa cell stained with double-shell BDT-GERTs. The
SWIFT technology fromLabRAMXploRA INV system combines the
fast readout rates and enhanced signal to greatly improve Raman
imaging speed and quality.55 In our experiments, the Raman image
of a single cell labeled with double-shell BDT-GERTs could be
14442 | RSC Adv., 2018, 8, 14434–14444
obtained within 51 s (2550 spectra acquired from an area of 28 mm
� 51 mm) with an exposure time of 10 ms per pixel (Fig. 6b). The
bright-eld image and Raman image of the cell also coincided well
in the overlay image (Fig. 6c). Moreover, we could further shorten
the imaging time on a single cell with a high-resolution (51 � 50
pixels) down to 36 s at an exposure time of 5 ms per pixel (Fig. 6d
and e). Such imaging capability with double-shell BDT-GERTs
show great potential for high-speed and high-resolution Raman
imaging of cells and tissues.
Conclusions

In summary, we have successfully prepared ve types of GERTs
with different embedded Raman reporters, numbers of metallic
shell, and NP shapes including single-shell BDT-GERTs, BPDT-
GERTs, TPDT-GERTs, double-shell BDT-GERTs, and rodlike
NBT-GERTs. With a single plasmon resonance in the visible
range, they all show superior off-resonant NIR SERS properties
when excited by 785 nm laser. By comparing their SERS pho-
tostability under continuous laser irradiation up to 30 min with
a laser power density of larger than 3 � 105 W cm�2, we have
concluded that double-shell BDT-GERTs show the best photo-
stability with a photobleaching time constant up to 4.8 � 105.
This is mainly attributed to the excellent protection of Raman
reporters by two layers of metallic shell and the off-resonant
SERS property that efficiently minimizes the plasmonic photo-
thermal damage during the SERS measurement, which is sup-
ported by our numerical calculations. Finally, we have
demonstrated that double-shell BDT-GERTs can be utilized for
Raman cell bioimaging at a high speed of 36 s and a high
resolution of 51 � 50 pixels.
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