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A facile and convenient approach has been designed for the synthesis of novel prototypes that possess the
advantage of the two pharmacophores of chromene and 1,2,3-triazole in a single molecular backbone,
were evaluated against Mycobacterium tuberculosis H37Rv strain. The new analogues 1,2,3-triazole-
fused spirochromenes were accomplished in four step synthetic strategy utilizing click chemistry ([3 + 2]
Huisgen cycloaddition) in the ultimate step. The synthesized compounds were established based on the
spectral data and X-ray crystal structure for 7a. Among the compounds tested against Mycobacterium
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inhibitory concentration (MIC) values ranging from 1.56 to 6.25 pg mL™'. Compounds exhibiting good in
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Introduction

Tuberculosis, the world's most chronic infectious disease
caused by single infectious agent Mycobacterium tuberculosis
(MTB), claimed the lives of over 1.3 million people worldwide in
2016, which ranks above HIV/AIDS." The current therapy of TB
with first-line and second-line drugs are around 50 years old
and moreover, it requires longer duration for the treatment.”
Patients often fail to complete the therapy due to drug side
effects and the complexity of the drug regimen, leading to the
emergence of multidrug resistant TB (MDR-TB), extensively
drug resistant TB (XDR-TB) and totally drug resistant TB (TDR-
TB).* Additionally, the resurgence in TB is alarming due to the
development of pathogenic synergy with human immunodefi-
ciency virus (HIV).** Although TB drug development has made
substantial progress in the past decade and different drug
classes are in development, there is still a need of novel potent
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Compounds 7a, 7d, 7i (MIC: 1.56 ug mL™Y) and 7k, 7m (MIC: 3.125 ng mL™%) exhibited promising hits.

chemical entities provided with promising antimycobacterial
activities.”

Chromene (benzopyran), an important class of benzo-fused
oxaheterocycles is an integral part of many bioactive
compounds exhibiting a wide range of biological properties
including anti-HIV,**® anticancer,"** antimicrobial,"*** anti-
tumor,” antiviral,’® anti-inflammatory’” and antioxidant'®
activities. Among naturally occurring chromene heterocycles,
molecules like dehydrolupinifolinol (I), eriosemaone A (II),
karanjachromene (III), (+)-calanolide A (IV) and benzofuro-
chromene (V) were reported as anti-tubercular agents
(Fig. 1)."** On the other hand, synthesis of triazole-fused
compounds approached through click reaction continues to
fascinate the attention of chemists, in a bid to identify mole-
cules with enhanced pharmacological properties.”® Moreover,
compounds consisting 1,2,3-triazole ring fused with various
carbocyclic moieties exhibited remarkable biological activities,
e.g.,, 1,2,3-triazolo[1,5-a]quinoxaline possess good affinity
toward benzodiazepine and adenosine receptors***® and the
morpholine-fused triazole is efficient y-secretase modulator
(GSM) for the treatment of Alzheimer's disease.>® Additionally,
1,2,3-triazoles conjugated with different sorts of heterocyclic
moieties were reported to exhibit potent anti-tubercular activity
(VI-XI) (Fig. 2).77%°

Therefore the triazole-fused structural motifs became
increasingly common in pharmaceutical targets and in a wide
array of bioactive molecules such as chemotherapeutic A,*"
antibacterial B** and cardiovascular C** agents (Fig. 3).
Inspired by the frequent occurrence of 1,2,3-triazole or

RSC Adv., 2018, 8, 16997-17007 | 16997


http://crossmark.crossref.org/dialog/?doi=10.1039/c8ra03197e&domain=pdf&date_stamp=2018-05-08
http://orcid.org/0000-0003-4703-9554
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c8ra03197e
https://rsc.66557.net/en/journals/journal/RA
https://rsc.66557.net/en/journals/journal/RA?issueid=RA008030

Open Access Article. Published on 09 May 2018. Downloaded on 7/14/2025 12:10:49 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

RSC Advances

View Article Online

Paper

OH

Benzofuro-chromene

Fig. 1 Chromene based inhibitors reported as antimycobacterial agents.

chromene framework in various biologically active anti-
tubercular agents and in continuation to our ongoing
efforts**** in exploiting the biological significance of 1,2,3-
triazole nuclei fused with various carbocyclic frameworks, we
anticipated that integration of these two frameworks in
a single molecule may provide truly effective lead structures
(Fig. 4) and they are further evaluated against the Mycobacte-
rium tuberculosis H37Rv strain. To the best of our knowledge,
synthesis and antimycobacterial activities of these 1,2,3-
triazole-fused spirochromene conjugates are unprecedented.

16998 | RSC Adv., 2018, 8, 16997-17007

Results and discussion
Chemistry

The strategy adopted for synthesis of 1,2,3-triazole-fused spi-
rochromene scaffolds, is depicted in Scheme 1. In the first step,
Kabbe condensation of substituted acetophenones 1a-c with
1,4-dioxaspiro[4.5]decan-8-one 2, in the presence of pyrrolidine
gave corresponding dispiro[chromane-2,1’-cyclohexane-4',2"-
[1,3]dioxolan]-4-ones 3a-c.***” Subsequently, these were sub-
jected to reduction using sodium borohydride (NaBH,) to afford
the spirochromanols 4a-c.*® The following spirochromanols 4a-

This journal is © The Royal Society of Chemistry 2018
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Fig. 3 Fused triazoles as potential drug candidates.

c on deprotection and dehydration with excess 6 N HCI provided
the corresponding spirochromene 5a-c.**** Thus obtained spi-
rochromenes 5a-c¢ on [3 + 2] Huisgen cycloaddition using
a catalytic amount of pyrrolidine, with various aryl azides 6a-e,*'
furnished 1,2,3-triazole-fused spirochromene scaffolds 7a-o in
low to moderate yields (Scheme 1 & Fig. 5).*>*

The synthesized 1,2,3-triazole-fused spirochromene scaf-
folds were characterized by 'H NMR, *C NMR, mass and FTIR
spectral analysis; X-ray diffractometry confirmed the structure
of compound 7a (CCDC 18200921)* as shown in Fig. 6.

This journal is © The Royal Society of Chemistry 2018

Anti-tubercular pharmacophore

| Chromene scaffold ‘

Fig. 4 Design of novel 1,2,3-triazole-fused spirochromenes as
possible antimycobacterial agents.

Anti-tubercular assay

In vitro MTB screening. Our fifteen compound library was
screened for in vitro anti-tubercular activity against Mycobacte-
rium tuberculosis H37Rv using Microplate Alamar Blue Assay
(MABA) for the determination of MIC (the lowest concentration
of an antimicrobial that will inhibit the visible growth of
a bacteria after overnight incubation).”” Upon investigation of
anti-tubercular activity data (Table 1), it was revealed that all the

RSC Adv., 2018, 8, 16997-17007 | 16999
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Scheme 1 Synthesis of 1,2,3-triazole-fused spirochromenes.

synthesized 1,2,3-triazole-fused spirochromene scaffolds (7a-o)
were found to possess moderate to high inhibitory activity.

As observed from Table 1, the tested compounds showed
antimycobacterial activity with MIC values between 4.11 and
75.80 pM. Out of the various compounds tested, compounds 7a,
7¢, 7d, 7f, 7i, 7j, 7k, 7m and 7n with MIC values varying from
4.11 to 50.40 pM possess more inhibitory efficiency compared to
that of standard pyrazinamide (MIC = 50.77 uM). Compounds
7a, 7d and 7i were found to possess excellent potency i.e. 4.74
uM, 4.34 uM and 4.11 pM respectively, while compounds 7k (8.6
puM) and 7m (7.67 uM) were close as compared to first line anti-
tubercular drug ethambutol (MIC = 7.64 uM). However, all the
compounds exhibited lower inhibitory efficiency compared to
isoniazid (MIC = 0.437 uM) and rifampicin (MIC = 0.5 pM).

In vitro cytotoxicity screening. As a result, the compounds
7a, 7d, 7f, 7i, 7k, 7m and 7n exhibited good in vitro anti-
mycobacterial potency and were further evaluated for their
toxicity in a RAW 264.7 cell line at a concentration of 50 pg mL ™"
using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) assay.* The most promising anti-TB
compounds 7a, 7d and 7i showed 30.23, 33.14 and 29.36%
cytotoxicity, respectively.

Experimental

All the reagents and solvents were purchased from commercial
sources. Reactions were monitored by thin layer chromatog-
raphy (TLC) on silica gel plates (60 F,s,), visualization done by
exposing to iodine vapour and ultraviolet light. Column chro-
matography was performed on silica gel (60-120 mesh) using
distilled hexane, acetone. "H NMR (400 MHz) and **C NMR (100
MHz) spectra were recorded in CDCl; or DMSO-d6 solvents by
using Bruker Avance II 400 spectrometer. Proton chemical
shifts (6) are relative to tetramethylsilane (TMS, 6 = 0.00) as
internal standard and expressed in ppm. Spin multiplicities are

17000 | RSC Adv., 2018, 8, 16997-17007

36-68% yield

6a-e 5a-c
R" = CeHg-, 4-Me-CeH-, 5 R=Me; R'=H
4-CHCqHy, 4-OMe-Cote-,  gp ReCl: R'=H
Benzyl '
5c R=Cl; R'=Me

given as s (singlet), d (doublet), dd (doublet of doublet), td
(triplet of doublet) and m (multiplet). Coupling constants (J) are
given in hertz. Mass spectra were recorded on GCMS-QP 1000
EX mass spectrometer. Infrared spectra were recorded on
a Shimadzu FT-IR-8400s spectrometer. Melting points were
determined using melting point apparatus and are uncorrected.

General procedure for the synthesis of compound (3a—c)

To a solution of 1,4-dioxaspiro[4.5]decan-8-one (2) (156 mg, 1
mmol) in dry ethanol, a catalytic amount of pyrrolidine was
added followed by a substituted 2’-hydroxyacetophenones (1a-
¢) (1 mmol). The reaction mixture was heated under reflux for 8-
10 h with constant stirring. The solvent was removed under
reduced pressure and the residue was dissolved in ethyl acetate.
The mixture was washed with a 1 M aqueous solution of
hydrochloric acid, with a 1 M aqueous solution of sodium
hydroxide and brine. The organic extracts were dried over
sodium sulfate, filtered, and concentrated under reduced
pressure. The resulting crude product was purified by column
chromatography (eluent: PE/acetone mixtures of increasing
polarity) to obtain the compounds 6,7-substituted dispiro
[chromane-2,1’-cyclohexane-4’,2"-[1,3]dioxolan]-4-ones (3a—c) as
white solids.

General procedure for the synthesis of compound (4a—c)

To a stirred suspension of sodium borohydride (37.83 mg, 1
mmol) in MeOH, a solution of 6,7-substituted dispiro[chro-
mane-2,1'-cyclohexane-4’,2"-[1,3]dioxolan]-4-ones  (3a-¢) (1
mmol) in MeOH was added drop wise at 0 °C through an
addition funnel. The resulting mixture was allowed to stir at
room temperature for 1 h. The reaction mixture was concen-
trated in vacuo, poured into ice and saturated NaHCO; aqueous
solution and extracted with EtOAc. The combined organics were
washed with brine, dried over anhydrous sodium sulfate, and

This journal is © The Royal Society of Chemistry 2018
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Fig. 5 1,2,3-Triazole fused spirochromenes with isolated yields.

concentrated in vacuo to give 6,7-substituted dispiro[chromane-
2,1’-cyclohexane-4',2"-[1,3]dioxolan]-4-ols (4a-c) as white solids.

General procedure for the synthesis of compound (5a-c)

In a round bottom flask the previous spiro compounds (4a—c)
dissolved in acetone was taken. To this solution excess amount
of 6 N HCl was added at room temperature. The reaction was
allowed to stir at room temperature until the ketal has
consumed totally (monitored by TLC). After completion of the
reaction, the reaction mixture was slowly quenched with satu-
rated aqueous NaHCO; until pH 7 was reached. The solution
was diluted with ethyl acetate. The phases were separated and
the aqueous phase was back-extracted with ethyl acetate twice.
The combined organic phases were washed with brine, dried
over Na,SO,, filtered and concentrated under reduce pressure.
The crude material was purified by flash chromatography (PE/
acetones as the eluents). The corresponding fractions were
combined and concentrated under reduce pressure yielding 6,7-

This journal is © The Royal Society of Chemistry 2018

substituted spiro[chromene-2,1’-cyclohexan]-4’-ones (5a-c) as
white solids.

General procedure for the synthesis of compound (7a-o0)

The catalyst pyrrolidine (0.1 mmol) was added to a solution of
aryl azides 6a-e (0.5 mmol) and compound 5a-c¢ (1 mmol) in
DMSO and the reaction mixture was stirred at 80 °C for 24 h.
The completion of the reaction was confirmed by TLC (PE/
EtOAc 5 : 2). The crude product was purified by column chro-
matography on silica gel, eluting with PE/acetone (10:1 to
4 : 1), to afford the desired products 7a-o as white solids.

Antimycobacterial activity

Invitro MTB MABA assay. Briefly, the inoculum was prepared
from fresh L] medium re-suspended in 7H9-S medium (7H9
broth, 0.1% casitone, 0.5% glycerol, supplemented oleic acid,
albumin, dextrose, and catalase [OADC]), adjusted to a McFarland

RSC Aadv., 2018, 8, 16997-17007 | 17001
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Fig.6 Aview of KA357, showing the atom-labelling scheme of compound 7a. Displacement ellipsoids are drawn at the 30% probability level and

H atoms are represented by circles of arbitrary radii.

Table 1 Anti-tubercular and toxicity evaluation of 7a—o against M.
tuberculosis H37Rv*

MIC MIC Cytotoxicity in %

Compounds (ng mL™h (nM) inhibition at 50 ug mL™"
7a* 1.56 4.74 30.23

7b >25 75.80 ND

7c 12.5 34.43 ND

7d* 1.56 4.34 33.14

7e >25 75.80 ND

7f 6.25 17.90 21.41

7g 25 68.87 ND

7h 25 65.27 ND

7i* 1.56 4.11 29.36

7j 12.5 34.43 ND

7k* 3.125 8.60 24.90

71 >25 68.96 ND

7m* 3.125 7.87 24.76

7n 6.25 15.90 22.64

70 25 66.31 ND

Isoniazid 0.055 0.437 ND

Rifampicin 0.411 0.50 ND

Ethambutol 1.56 7.64 ND

“* Represent more active compounds; MIC: minimum inhibitory
concentration (the lowest concentration that inhibited the bacterial
growth). MIC values are interpreted as an average of duplicates. ND =
not determined.

tube no. 1, and diluted 1 : 20; 100 pL was used as inoculum. Each
drug stock solution was thawed and diluted in 7H9-S at four-fold
the final highest concentration tested. Serial two-fold dilutions of
each drug were prepared directly in a sterile 96-well microtiter
plate using 100 pL 7H9-S. A growth control containing no antibi-
otic and a sterile control were also prepared on each plate. Sterile
water was added to all perimetre wells to avoid evaporation during
the incubation. The plate was covered, sealed in plastic bags and

17002 | RSC Adv., 2018, 8, 16997-17007

incubated at 37 °C in normal atmosphere. After 7 days incubation,
30 pL of alamar blue solution was added to each well, and the plate
was re-incubated overnight. A change in colour from blue (oxi-
dised state) to pink (reduced) indicated the growth of bacteria, and
the MIC was defined as the lowest concentration of drug that
prevented this change in colour.”

*Standards INH & amp; RIF (0.437 & amp; 0.5 uM).

In vitro cytotoxicity screening. The in vitro cytotoxicity of the
privileged anti-tubercular active analogues with lower MIC
value were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) assay against growth
inhibition of RAW 264.7 cells (obtained from National Centre
for Cell Science, Pune) at 50 ug mL~ " concentration.? Cell lines
were maintained at 37 °C in a humidified 5% CO, incubator
(Thermo Scientific). Detached the adhered cells and followed by
centrifugation to get cell pellet. Fresh media was added to the
pellet to make a cell count using haemocytometer and plate 100
uL of media with cells ranging from 5000-6000 per well in a 96-
well plate. The plate was incubated overnight in CO, incubator
for the cells to adhere and regain its shape. After 24 h cells were
treated with the test compounds at 25 pM diluted using the
media to deduce the percentage inhibition on human normal
cells. The cells were incubated for 48 h to assay the effect of the
test compounds on different cell lines. Zero hour reading was
noted down with untreated cells and also control with 1%
DMSO to subtract further from the 48 h reading. After 48 h
incubation, cells were treated by MTT ((4,5-dimethylthiazol-2-
yD)-2,5-diphenyltetrazolium bromide) dissolved in PBS (5 mg
mL ") and incubated for 3-4 h at 37 °C. The formazan crystals
thus formed were dissolved in 100 pL of DMSO and the viability
was measured at 540 nm on a multimode reader (Spectra max).
The values were further calculated for percentage inhibition
which in turn helps us to know the cytotoxicity of the test
compounds.*®

This journal is © The Royal Society of Chemistry 2018
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Crystallographic data

X-ray data for the compound 7a (KA357) was collected at room
temperature on a Bruker D8 QUEST instrument with an IuS Mo
microsource (A = 0.7107 A) and a PHOTON-100 detector. The
raw data frames were reduced and corrected for absorption
effects using the Bruker Apex 3 software suite programs.”” The
structure was solved using intrinsic phasing method*” and
further refined with the SHELXL*® program and expanded using
Fourier techniques. Anisotropic displacement parameters were
included for all non-hydrogen atoms. All C bound H atoms were
positioned geometrically and treated as riding on their parent C
atoms [C-H = 0.93-0.97 A, and Ujso(H) = 1.5Ueq (C) for methyl H
or 1.2U.q (C) for other H atoms].

Crystal data for KA357. C,;H;oN;O (M = 329.40 g mol )
monoclinic, space group P2,/n (no. 14), a = 12.29074(14) A, b =
6.54998(8) A, ¢ = 21.8593(3) A, 8 = 106.2989(5)°, V = 1689.04(4)
A% Z = 4, T = 294.15 K, u(Mo Ka) = 0.082 mm ™, Dye =
1.2953 g cm >, 23 247 reflections measured (4.42° < 20 =
61.14°), 5166 unique (Rinc = 0.0288, Rjgma = 0.0248) which were
used in all calculations. The final R; was 0.0560 (I > 2¢(I)) and
WR, was 0.1638 (all data). CCDC 1820092 contains supplemen-
tary crystallographic data for the structure.t

6-Methyldispiro[chroman-2,1'-cyclohexane-4',2"{1,3]dioxolan]-
4-one (3a). White solid; yield: 92%; mp 74-76 °C; Ry = 0.37 (PE/
EtOAc 5:1). IR (KBr): 2932, 2891, 1689, 1616, 1484 1285, 1136,
1090 cm ™. "H NMR (400 MHz, CDCl,): 6 = 7.65 (d, J = 2.0 Hz, 1H),
7.32-7.28 (d, ] = 8.5, 2.0 Hz, 1H), 6.88 (d, ] = 8.5 Hz, 1H), 4.01-3.92
(m, 4H), 2.69 (s, 2H), 2.30 (s, 3H), 2.15-2.07 (m, 2H), 1.98 (td, ] =
13.1, 4.3 Hz, 2H), 1.72 (td, J = 13.1, 4.3 Hz, 2H), 1.63-1.56 (m, 2H).
3C NMR (100 MHz, CDCl;): 6 = 192.5, 157.3, 137.3, 130.4, 126.2,
120.4, 118.1, 108.0, 78.5, 64.4, 64.3, 48.0, 32.1, 30.0, 20.4. MS (ESI)
mfz (%) = 289 (100) [M + H]'. Anal. calcd for C;,H,,0,: C, 70.81; H,
6.99. Found: C, 70.83; H, 6.97.

6-Chlorodispiro[chroman-2,1'-cyclohexane-4',2"{1,3]dioxolan]-
4-one (3b). White solid; yield: 88%; mp 98-100 °C; R = 0.34 (PE/
EtOAc 5 : 1). IR (KBr): 2947, 2884, 1686, 1602, 1467, 1259, 1150,
1091 cm ™. "H NMR (400 MHz, CDCl,): 6 = 7.82 (d,J = 2.7 Hz, 1H),
7.42 (dd, ] = 8.8, 2.7 Hz, 1H), 6.94 (d, J = 8.8 Hz, 1H), 4.01-3.92 (m,
4H), 2.71 (s, 2H), 2.15-2.06 (m, 2H), 1.96 (td, J = 13.1, 4.2 Hz, 2H),
1.74 (td,J = 13.1, 4.2 Hz, 2H), 1.63-1.62 (m, 1H), 1.60-1.59 (m, 1H).
3C NMR (100 MHz, CDCl;): 6 = 191.1, 157.8, 136.1, 126.5, 126.0,
121.5, 120.0, 107.8, 79.2, 64.5, 64.3, 47.6, 32.1, 29.9. MS (ESI) m/z
(%) = 309 (100) [M + H]". Anal. caled for C;6H;,ClO,: C, 62.24; H,
5.55. Found: C, 62.28; H, 5.51.

6-Chloro-7-methyldispiro[chromane-2,1’-cyclohexane-4',2"-
[1,3]dioxolan]-4-one (3c¢). White solid; yield: 89%; mp 99-100 °C;
Ry = 0.34 (PE/EtOAc 5:1). IR (KBr): 2926, 2883, 1685, 1606,
1443, 1251, 1168, 1086 cm*. *H NMR (400 MHz, CDCl,): 6 =
7.81 (s, 1H), 6.88 (s, 1H), 4.01-3.91 (m, 4H), 2.68 (s, 2H), 2.37 (s,
3H), 2.10 (dd,J = 15.7, 2.4 Hz, 2H), 1.96 (td, ] = 13.1, 4.2 Hz, 2H),
1.73 (td,J = 13.1, 4.2 Hz, 2H), 1.64-1.60 (m, 1H), 1.58-1.55 (m,
1H). **C NMR (100 MHz, CDCl;): 6 = 190.9, 157.6, 145.2, 127.2,
126.3, 120.5, 119.8, 107.9, 79.1, 64.5, 64.3, 47.6, 32.1, 29.9, 20.8.
MS (ESI) m/z (%) = 323 (100) [M + H]". Anal. caled for
C,1,H,4ClO,: C, 63.26; H, 5.93. Found: C, 63.28; H, 5.91.

This journal is © The Royal Society of Chemistry 2018
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6-Methyldispiro[chromane-2,1'-cyclohexane-4’,2"-[1,3]dioxolan]-
4-0l (4a). White solid; yield: 99%; mp 70-72 °C; R¢ = 0.20 (PE/EtOAc
5:1). IR (KBr): 3253, 2930, 2858, 1612, 1441, 1248, 1140,
1090 cm ™. "H NMR (400 MHz, DMSO-d6): 6 = 7.20 (d, J = 2.0 Hz,
1H), 6.91 (dd, J = 8.3, 2.0 Hz, 1H), 6.63 (d, /] = 8.3 Hz, 1H), 5.27 (d, ]
= 6.3 Hz, 1H), 4.67-4.58 (m, 1H), 3.92-3.81 (m, 4H), 2.21 (s, 3H),
2.02 (dd, J = 13.4, 6.3 Hz, 1H), 1.89-1.44 (m, 9H). *C NMR (100
MHz, CDCL): 6 = 150.5, 130.1, 129.8, 128.0, 124.4, 117.2, 108.6,
74.4,64.3, 64.2, 63.5, 41.9, 34.2, 31.4, 30.0, 20.6. MS (ESI) m/z (%) =
313 (100) [M + Na]'. Anal. caled for Cy;H,,0,: C, 70.32; H, 7.64.
Found: C, 70.35; H, 7.61.
6-Chlorodispiro[chromane-2,1"-cyclohexane-4',2"{1,3]dioxolan}-
4-0l (4b). White solid; yield: 98%; mp 90-92 °C; Ry = 0.28 (PE/EtOAc
5:1). IR (KBr): 3254, 2934, 2886, 1608, 1475, 1241, 1173,
1092 cm ™. "H NMR (400 MHz, DMSO-d6): 6 = 7.39 (d, ] = 2.7 Hz,
1H), 7.15 (dd, J = 8.7, 2.7 Hz, 1H), 6.79 (d, ] = 8.7 Hz, 1H), 5.50 (d, J
= 6.2 Hz, 1H), 4.62-4.70 (m, 1H), 3.92-3.81 (m, 4H), 2.06 (dd, J =
13.5, 6.3 Hz, 1H), 1.89-1.45 (m, 9H). *C NMR (100 MHz, CDCl,):
0 = 151.4, 129.3, 127.6, 126.2, 125.3, 118.7, 108.4, 75.2, 64.4, 64.3,
63.1, 41.5, 34.3, 31.3, 30.0. MS (ESI) m/z (%) = 333 (100) [M + NaJ".
Anal. caled for C;gH;4ClO,: C, 61.84; H, 6.16. Found: C, 61.89; H,
6.11.
6-Chloro-7-methyldispiro[chromane-2,1'-cyclohexane-4',2"1,3]
dioxolan]-4-ol (4c). White solid; yield: 99%; mp 56-58 °C; Ry = 0.22
(PE/EtOAc 5 : 1). IR (KBr): 3254, 2928, 2861, 1616, 1444, 1252, 1168,
1091 cm ™. "H NMR (400 MHz, DMSO-d6): 6 = 7.36 (s, 1H), 6.77 (s,
1H), 5.43 (d,J = 6.1 Hz, 1H), 4.67-4.59 (m, 1H), 3.90-3.84 (m, 4H),
2.23 (s, 3H), 2.04 (dd, J = 13.5, 6.2 Hz, 1H), 1.90-1.45 (m, 9H). °C
NMR (100 MHz, CDCly): 6 = 151.2,137.2,127.9,125.7,123.8, 119.4,
108.4,75.0, 64.4, 64.3, 63.0, 41.7, 34.2, 31.3, 30.0, 19.9. MS (ESI) m/z
(%) = 347 (100) [M + Na]". Anal. calcd for C,;H,;ClOy: C, 62.86; H,
6.52. Found: C, 62.84; H, 6.54.
6-Methylspiro[chromene-2,1'-cyclohexan]-4’-one (5a). White
solid; yield: 80%; mp 72-74 °C; Ry = 0.57 (PE/EtOAc 5 : 1). IR
(KBr): 3024, 2938, 2868, 1716, 1635, 1485, 1241, 1138 cm™ *. 'H
NMR (400 MHz, CDCl,): 6 = 6.97 (dd, J = 8.1, 1.7 Hz, 1H), 6.85
(d,J = 1.7 Hz, 1H), 6.78 (d, ] = 8.1 Hz, 1H), 6.42 (d,J = 9.7 Hz,
1H), 5.58 (d,J = 9.7 Hz, 1H), 2.90 (td, ] = 14.3, 6.3 Hz, 2H), 2.47-
2.36 (m, 2H), 2.32-2.28 (m, 1H), 2.27 (s, 3H), 2.28-2.24 (m, 1H),
1.85 (td,J = 13.8, 5.1 Hz, 2H). *C NMR (100 MHz, CDCl,): 6 =
210.8, 149.9, 130.8, 129.8, 128.5, 127.1, 124.4, 121.6, 116.1, 74.8,
36.5, 35.3, 20.5. MS (ESI) m/z (%) = 229 (100) [M + H]". Anal.
caled for C,5H;40,: C, 78.92; H, 7.06; found: C, 78.97; H, 7.01.
6-Chlorospiro[chromene-2,1'-cyclohexan]-4-one (5b). White
solid; yield: 75%; mp 58-60 °C; Ry = 0.42 (PE/EtOAc 5 : 1). IR
(KBr): 2944, 2863, 1708, 1630, 1475, 1246, 1199 cm ™. "H NMR
(400 MHz, CDCl,): 6 = 7.11 (dd, J = 8.5, 2.5 Hz, 1H), 7.01 (d, ] =
2.5 Hz, 1H), 6.81 (d,J = 8.5 Hz, 1H), 6.39 (d,J = 9.8 Hz, 1H), 5.65
(d,J = 9.8 Hz, 1H), 2.81 (td, J = 14.2, 6.3 Hz, 2H), 2.47-2.36 (m,
2H), 2.34-2.25 (m, 2H), 1.87 (td, J = 13.8, 5.1 Hz, 2H). *C NMR
(100 MHz, CDCl3): 6 = 210.2, 150.6, 129.7, 129.0, 126.3, 123.4,
123.1,117.7, 75.4, 36.4, 35.3. MS (ESI) m/z (%) = 249 (100) [M +
H]'. Anal. caled for C;4H;5ClO,: C, 67.61; H, 5.27. Found: C,
67.64; H, 5.24.
6-Chloro-7-methylspiro[chromene-2,1’-cyclohexan]-4’-one
(5¢). White solid; yield: 78%; mp 68-70 °C; Ry = 0.51 (PE/EtOAc
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5:1). IR (KBr): 3021, 2925, 2858, 1720, 1634, 1486, 1226,
1147 cm™". "H NMR (400 MHz, CDCl3): 6 = 7.01 (s, 1H), 6.77 (s,
1H), 6.38 (d,J = 9.8 Hz, 1H), 5.59 (d,J = 9.8 Hz, 1H), 2.81(td, ] =
14.2, 6.3 Hz, 2H), 2.44-2.36 (m, 2H), 2.32 (s, 3H), 2.31-2.25 (m,
2H), 1.86 (td, J = 13.8, 5.1 Hz, 2H). *C NMR (100 MHz, CDCl,):
6 = 210.5, 150.5, 137.1, 128.7, 126.5, 126.4, 123.2, 120.9, 118.7,
75.2, 36.4, 35.3, 20.1. MS (ESI) m/z (%) = 262 (100) [M + H]".
Anal. caled for C15H,5ClO,: C, 68.57; H, 5.75. Found: C, 68.54; H,
5.78.
6'-Methyl-1-phenyl-1,4,6,7-tetrahydrospiro[benzo[d][1,2,3]-
triazole-5,2'-chromene] (7a). White solid; yield: 45%; mp 126—
128 °C; Ry = 0.31 (PE/EtOAc 5 : 2). IR (KBr): 3021, 2925, 2858,
1634, 1486, 1226, 1147 cm™'. "H NMR (400 MHz, CDCl;): 6 =
7.65-7.44 (m, 5H), 6.92 (dd, J = 8.1, 1.7 Hz, 1H), 6.86 (d, J =
1.7 Hz, 1H), 6.66 (d, ] = 8.1 Hz, 1H), 6.47 (d,] = 9.7 Hz, 1H), 5.69
(d,J = 9.7 Hz, 1H), 3.42 (d, J = 16.3 Hz, 1H), 3.08-2.92 (m, 2H),
2.81-2.73 (m, 1H), 2.39-2.30 (m, 1H), 2.26 (s, 3H), 1.97-1.86 (m,
1H). "*C NMR (100 MHz, CDCl3): 6 = 149.9, 141.7, 136.9, 130.9,
130.7, 129.9, 129.5, 128.7, 128.1, 127.1, 124.6, 123.0, 121.2,
116.3, 75.9, 33.6, 32.3, 20.5, 18.0. MS (ESI) m/z (%) = 330 (100)
[M + H]". Anal. caled for C,;H;oN30: C, 76.57; H, 5.81; N, 12.76.
Found: C, 76.61; H, 5.82; N, 12.71.
6'-Methyl-1-(p-tolyl)-1,4,6,7-tetrahydrospiro[benzo[d][1,2,3]-
triazole-5,2'-chromene] (7b). White solid; yield: 57%; mp 162—
164 °C; Ry = 0.34 (PE/EtOAc 5 : 2). IR (KBr): 3036, 2923, 2855,
1645, 1491, 1225, 1150 cm ™', "H NMR (400 MHz, CDCL,): § =
7.48 (d, J = 8.2 Hz, 2H), 7.33 (d, J = 8.2 Hz, 2H), 6.91 (d, ] =
8.1 Hz, 1H), 6.85 (s, 1H), 6.65 (d, J = 8.1 Hz, 1H), 6.46 (d, ] =
9.7 Hz, 1H), 5.68 (d, J = 9.7 Hz, 1H), 3.40 (d, J = 16.5 Hz, 1H),
3.04-2.90 (m, 2H), 2.78-2.68 (m, 1H), 2.44 (s, 3H), 2.37-2.28 (m,
1H), 2.26 (s, 3H), 1.96-1.86 (m, 1H). ">*C NMR (100 MHz, CDCl,):
0 = 149.9, 141.5, 138.8, 134.4, 130.9, 130.6, 130.1, 129.9, 128.1,
127.1,124.5,122.9,121.2,116.3, 75.9, 33.6, 32.2, 21.2, 20.5, 17.9.
MS (ESI) m/z (%) = 344.30 (100) [M + H]'. Anal. caled for
C,,H,;N;0: C, 76.94; H, 6.16; N, 12.24. Found: C, 76.98; H,
6.15; N, 12.27.
1-(4-Chlorophenyl)-6'-methyl-1,4,6,7-tetrahydrospiro[benzo[d]-
[1,2,3]triazole-5,2'-chromene] (7c). White solid; yield: 48%; mp
122-124 °C; R¢ = 0.40 (PE/EtOAc 5 : 2). IR (KBr): 3031, 2938,
2866, 1595, 1496, 1223, 1147 cm ™. "H NMR (400 MHz, CDCl,):
0 = 7.62-7.48 (m, 4H), 6.95-6.89 (d, J = 8.1 Hz, 1H), 6.85 (s, 1H),
6.64 (d, J = 8.1 Hz, 1H), 6.47 (d, J = 9.7 Hz, 1H), 5.68 (d, ] =
9.7 Hz, 1H), 3.41 (d, J = 16.5 Hz, 1H), 3.08-2.89 (m, 2H), 2.79-
2.70 (m, 1H), 2.40-2.31 (m, 1H), 2.44 (s, 3H), 1.96-1.85 (m, 1H).
BC NMR (100 MHz, CDCl;): 6 = 149.9, 141.9, 135.4, 134.6,
130.9, 130.7, 130.0, 129.8, 128.0, 127.1, 124.6, 124.1, 121.1,
116.3, 75.7, 33.5, 32.2, 20.5, 18.0. MS (ESI) m/z (%) = 364 (100)
[M + H]". Anal. caled for C,;H;3CIN;O: C, 69.32; H, 4.99; N,
11.55. Found: C, 69.30; H, 4.97; N, 11.59.
1-(4-Methoxyphenyl)-6'-methyl-1,4,6,7-tetrahydrospiro[benzo[d]
[1,2,3]triazole-5,2"-chromene] (7d). White solid; yield: 42%; mp
116-118 °C; Ry = 0.22 (PE/EtOAc 5 : 2). IR (KBr): 3015, 2924, 2854,
1590, 1482, 1252, 1149 cm™ ", "H NMR (400 MHz, CDCl;): § = 7.50
(d,J= 9.0 Hz, 2H), 7.03 (d, ] = 9.0 Hz, 2H), 6.91 (d, J = 8.1 Hz, 1H),
6.85 (s, 1H), 6.65 (d,J = 8.1 Hz, 1H), 6.46 (d,/ = 9.7 Hz, 1H), 5.68 (d,
J=9.7 Hz, 1H), 3.88 (s, 3H), 3.40 (d, ] = 16.4 Hz, 1H), 3.01-2.91 (m,
2H), 2.75-2.66 (m, 1H), 2.36-2.29 (m, 1H), 2.26 (s, 3H), 1.96-1.85
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(m, 1H). *C NMR (100 MHz, CDCl,): 6 = 159.8, 149.9, 141.4, 131.0,
130.6, 129.9, 129.9, 128.1, 127.1, 124.6, 124.5, 121.2, 116.3, 114.6,
75.9, 55.6, 33.7, 32.2, 20.5, 17.8. MS (ESI) m/z (%) = 360 (100) [M +
H]". Anal. caled for C,,H,,N;0,: C, 73.52; H, 5.89; N, 11.69. Found:
C, 73.56; H, 5.90; N, 11.64.
1-Benzyl-6'-methyl-1,4,6,7-tetrahydrospiro[benzo[d][1,2,3]-
triazole-5,2'-chromene] (7e). White solid; yield: 36%; mp 158-
160 °C; Ry = 0.14 (PE/EtOAc 5 : 2). IR (KBr): 3025, 2937, 2855,
1590, 1488, 1221, 1111 cm™'. "H NMR (400 MHz, CDCl,): 6 =
7.40-7.30 (m, 3H), 7.23-7.18 (m, 2H), 6.88 (dd, J = 8.2, 1.7 Hz,
1H), 6.81 (d,J = 1.8 Hz, 1H), 6.51 (d,J = 8.1 Hz, 1H), 6.41 (d, ] =
9.7 Hz, 1H), 5.60 (d, ] = 9.7 Hz, 1H), 5.59 (d, ] = 2.4 Hz, 2H), 3.31
(d,J = 16.4 Hz, 1H), 2.87 (d, ] = 16.4 Hz, 1H), 2.67-2.54 (m, 1H),
2.49-2.39 (m, 1H), 2.24 (s, 3H), 2.20 (m, 1H), 1.89-1.78 (m, 1H).
C NMR (100 MHz, CDCl;): 6 = 149.8, 141.5, 134.8, 131.0,
130.6, 129.8, 130.0, 128.4, 128.0, 127.4, 127.0, 124.4, 121.2,
116.2, 75.9, 52.0, 33.6, 31.8, 20.5, 16.5. MS (ESI) m/z (%) = 344
(100) [M + H]". Anal. calcd for C,,H,;N;0: C, 76.94; H, 6.16; N,
12.24. Found: C, 76.89; H, 6.18; N, 12.27.
6'-Chloro-1-phenyl-1,4,6,7-tetrahydrospiro[benzo[d][1,2,3]-tri-
azole-5,2'-chromene] (7f). White solid; yield: 45%; mp 128-
130 °C; Ry = 0.28 (PE/EtOAc 5 : 2). IR (KBr): 3026, 2929, 2845,
1588, 1463, 1206, 1109 cm~'. "H NMR (400 MHz, CDCL,): 6 =
7.64-7.45 (m, 5H), 7.07 (dd, J = 8.5, 2.5 Hz, 1H), 7.02 (d, J =
2.5 Hz, 1H), 6.69 (d, ] = 8.5 Hz, 1H), 6.45 (d, ] = 9.8 Hz, 1H), 5.76
(d,J = 9.8 Hz, 1H), 3.41 (d, ] = 16.7 Hz, 1H), 3.09-2.94 (m, 2H),
2.84-2.75 (m, 1H), 2.39-2.31 (m, 1H), 1.99-1.89 (m, 1H). **C
NMR (100 MHz, CDCl3): 6 = 150.6, 141.3, 136.8, 130.8, 129.6,
129.3,129.1, 128.8, 126.2, 126.2, 123.5, 123.0, 122.7, 117.8, 76.4,
33.6, 32.4, 18.0. MS (ESI) m/z (%) = 350 (100) [M + H]". Anal.
caled for C,0H;6CIN;0: C, 68.67; H, 4.61; N, 12.01. Found: C,
68.65; H, 4.60; N, 12.04.
6'-Chloro-1-(p-tolyl)-1,4,6,7-tetrahydrospiro[benzo[d][1,2,3]-tri-
azole-5,2'-chromene] (7g). White solid; yield: 60%; mp 116-
168 °C; Ry = 0.28 (PE/EtOAc 5 : 2). IR (KBr): 3033, 2931, 2847,
1591, 1477, 1209, 1117 cm™". "H NMR (400 MHz, CDCl,): 6 =
7.50-7.45 (m, 2H), 7.36, 7.31 (m, 2H), 7.06 (dd, J = 8.5, 2.5 Hz,
1H), 7.02 (d,J = 2.5 Hz, 1H), 6.69 (d,J = 8.5 Hz, 1H), 6.44 (d,] =
9.8 Hz, 1H), 5.75 (d, J = 9.8 Hz, 1H), 3.40 (d, J = 17.0 Hz, 1H),
3.05-2.93 (m, 2H), 2.80-2.72 (m, 1H), 2.44 (s, 3H), 2.37-2.30 (m,
1H), 1.93 (m, 1H). **C NMR (100 MHz, CDCl,): = 150.7, 141.1,
139.0, 134.4, 130.7, 130.1, 129.3, 129.1, 126.2, 123.5, 122.9,
122.7,117.8, 76.5, 33.6, 32.4, 21.2, 17.9. MS (ESI) m/z (%) = 364
(100) [M + H]". Anal. caled for C,,H;3CIN;0: C, 69.32; H, 4.99; CI,
9.74; N, 11.55. Found: C, 69.30; H, 4.97; Cl, 9.74; N, 11.59.
6'-Chloro-1-(4-chlorophenyl)-1,4,6,7-tetrahydrospiro[ benzo[ d]-
[1,2,3]triazole-5,2"-chromene] (7h). White solid; yield: 54%; mp
142-144°C; Ry = 0.37 (PE/EtOAc 5 : 2). IR (KBr): 3016, 2955, 2847,
1589, 1486, 1219, 1102 cm . '"H NMR (400 MHz, CDCl,): 6 =
7.60-7.49 (m, 4H), 7.06 (dd, J = 8.5, 2.6 Hz, 1H), 7.02 (d, J =
2.6 Hz, 1H), 6.68 (d, ] = 8.5 Hz, 1H), 6.45 (d, ] = 9.8 Hz, 1H), 5.75
(d,J = 9.8 Hz, 1H), 3.41 (d, J = 16.6 Hz, 1H), 3.07-2.90 (m, 2H),
2.82-2.73 (m, 1H), 2.40-2.31 (m, 1H), 1.98-1.88 (m, 1H). "*C NMR
(100 MHz, CDCl,): 6 = 150.6, 141.6, 135.3, 134.7, 130.8, 129.8,
129.1, 126.3, 124.1, 123.6, 122.6, 117.8, 76.3, 33.5, 32.3, 18.0. MS
(EST) m/z (%) = 384 (100) [M + H]". Anal. calcd for C,,H;5Cl,N;O:
C, 62.51; H, 3.93; N, 10.94. Found: C, 62.55; H, 3.92; N, 10.91.
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6'-Chloro-1-(4-methoxyphenyl)-1,4,6,7-tetrahydrospiro[benzo[d]-
[1,2,3]triazole-5,2'-chromene] (7i). White solid; yield: 36%; mp 138-
140 °C; Ry = 0.14 (PE/EtOAc 5 : 2). IR (KBr): 3012, 2942, 2841, 1604,
1476, 1219, 1114 cm ™. *H NMR (400 MHz, CDCl,): § = 7.54-7.46
(m, 2H), 7.09-7.00 (m, 4H), 6.68 (d, J = 8.5 Hz, 1H), 6.44 (d, ] =
9.8 Hz, 1H), 5.76 (d, J = 9.8 Hz, 1H), 3.88 (s, 3H), 3.40 (d, J =
16.1 Hz, 1H), 3.02-2.90 (m, 2H), 2.79-2.68 (m, 1H), 2.37-2.29 (m,
1H), 1.98-1.88 (m, 1H). *C NMR (100 MHz, CDCL): § = 159.9,
150.7, 141.0, 130.9, 129.3, 129.1, 126.2, 124.6, 123.5, 117.8, 114.7,
76.5, 55.6, 33.6, 32.4, 17.7. MS (ESI) m/z (%) = 380 (100) [M + H]".
Anal. caled for C,;H;4CIN;O,: C, 66.40; H, 4.78; N, 11.06. Found: C,
66.45; H, 4.77; N, 11.10.
1-Benzyl-6'-chloro-1,4,6,7-tetrahydrospiro[benzo[d][1,2,3]tri-
azole-5,2'-chromene] (7j). White solid; yield: 54%; mp 114-
116 °C; R = 0.10 (PE/EtOAc 5 : 2). IR (KBr): 3040, 2941, 2865,
1588, 1482, 1208, 1112 cm ™ *. "H NMR (400 MHz, CDCl,): 6 = 'H
NMR (400 MHz, CDCl;) 6 7.40-7.31 (m, 3H), 7.23-7.17 (m, 2H),
7.04-7.00 (dd, J = 8.5, 2.5 Hz, 1H), 6.99-6.97 (d, J = 2.5 Hz, 1H),
6.54 (d, J = 8.5 Hz, 1H), 6.39 (d, J = 9.8 Hz, 1H), 5.67 (d, J =
9.8 Hz, 1H), 5.49 (d, J = 3.1 Hz, 2H), 3.29 (d, J = 16.5 Hz, 1H),
2.88 (d,J = 16.5 Hz, 1H), 2.66-2.54 (m, 1H), 2.52-2.42 (m, 1H),
2.26-2.17 (m, 1H), 1.90-1.81 (m, 1H). "*C NMR (100 MHz,
CDCly): 6 = 150.6, 141.2, 134.7, 130.9, 129.2, 129.0, 128.4, 127.4,
126.1, 126.1, 123.4, 122.7, 117.7, 76.5, 52.1, 33.5, 31.9, 16.5. MS
(ESI) m/z (%) = 364 (100) [M + H]". Anal. calcd for C,,H;3CIN;O:
C, 69.32; H, 4.99; N, 11.55; O, 4.40. Found: C, 69.38; H, 4.97; N,
11.59.
6'-Chloro-7"-methyl-1-phenyl-1,4,6,7-tetrahydrospiro[benzo[d]-
[1,2,3]triazole-5,2"-chromene] (7k). White solid; yield: 54%; mp
156-158 °C; R = 0.31 (PE/EtOAc 5 : 2). IR (KBr): 3076, 2921, 2849,
1600, 1494, 1251, 1158 cm ™. 'H NMR (400 MHz, CDCL): 6 =
7.64-7.45 (m, 5H), 7.01 (s, 1H), 6.65 (s, 1H), 6.43 (d, J = 9.8 Hz,
1H), 5.70 (d, J = 9.8 Hz, 1H), 3.40 (d, ] = 16.5 Hz, 1H), 3.08-2.91
(m, 2H), 2.83-2.75 (m, 1H), 2.39-2.30 (m, 1H), 2.28 (s, 3H), 1.97-
1.87 (m, 1H). **C NMR (100 MHz, CDCL;): 6 = 150.5, 141.4, 137.2,
136.8, 130.8, 129.6, 128.8, 128.3, 126.5, 126.3, 123.4, 123.0, 120.5,
118.9, 76.3, 33.5, 32.3, 20.1, 18.0. MS (ESI) m/z (%) = 364 (100) [M
+ H]". Anal. calcd for C,,H,4CIN;O: C, 69.32; H, 4.99; N, 11.55.
Found: C, 69.35; H, 4.98; N, 11.57.
6/-Chloro-7'-methyl-1-(p-tolyl)-1,4,6,7-tetrahydrospiro[benzo[d]-
[1,2,3]triazole-5,2"-chromene] (71). White solid; yield: 57%; mp
208-210 °C; Ry = 0.34 (PE/EtOAc 5 : 2). IR (KBr): 3081, 2926, 2864,
1605, 1488, 1256, 1158 cm ™', 'H NMR (400 MHz, CDCl,): 6 = 7.51—
7.46 (m, 2H), 7.31-7.36 (m, 2H), 7.01 (s, 1H), 6.65 (s, 1H), 6.42 (d, J
= 9.8 Hz, 1H), 5.69 (d, J = 9.8 Hz, 1H), 3.39 (d, J = 16.6 Hz, 1H),
3.04-2.91 (m, 2H), 2.80-2.72 (m, 1H), 2.44 (s, 3H), 2.37-2.29 (m,
1H), 2.28 (s, 3H), 1.97-1.87 (m, 1H). "*C NMR (100 MHz, CDCl,):
6 = 150.5, 141.3, 138.9, 137.1, 134.4, 130.8, 130.1, 128.3, 126.4,
126.3, 123.4, 122.9, 120.5, 118.9, 76.3, 33.6, 32.3, 21.2, 20.1, 17.9.
MS (ESI) m/z (%) = 378 (100) [M + H]". Anal. caled for C,,H,,CIN;O:
C, 69.93; H, 5.33; N, 11.12. Found: C, 69.97; H, 5.35; N, 11.06.
6'-Chloro-1-(4-chlorophenyl)-7'-methyl-1,4,6,7-tetrahydrospiro-
[benzo[d][1,2,3]triazole-5,2 -chromene] (7m). White solid; yield:
68%; mp 182-184 °C; Ry = 0.40 (PE/EtOAc 5 : 2). IR (KBr): 3089,
2922, 2848, 1606, 1494, 1257, 1156 cm™'. 'H NMR (400 MHz,
CDCl,): 6 = 7.60-7.49 (m, 4H), 7.01 (s, 1H), 6.64 (s, 1H), 6.44 (d, ] =
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9.8 Hz, 1H), 5.69 (d,J = 9.8 Hz, 1H), 3.40 (d,J = 16.6 Hz, 1H), 3.07-
2.89 (m, 2H), 2.82-2.73 (m, 1H), 2.39-2.32 (m, 1H), 2.28 (s, 3H),
1.96-1.87 (m, 1H). "*C NMR (100 MHz, CDCl): 6 = 150.4, 141.7,
137.2,135.3, 134.7, 130.8, 129.8, 128.2, 126.5, 126.3, 124.1, 123.5,
120.5, 118.8, 76.1, 33.4, 32.3, 20.1, 18.0. MS (ESI) m/z (%) = 398
(100) [M + H]". Anal. caled for C,,H;,CLLN;0: C, 63.33; H, 4.30; N,
10.55. Found: C, 63.31; H, 4.29; N, 10.58.

6'-Chloro-1-(4-methoxyphenyl)-7'-methyl-1,4,6,7-tetrahydrospiro
[benzo[d][1,2,3]triazole-5,2'-chromene] (7n). White solid; yield:
38%; mp 148-150 °C; Ry = 0.17 (PE/EtOAc 5 : 2). IR (KBr): 3058,
2926, 2844, 1609, 1445, 1256, 1159 cm ‘. "H NMR (400 MHz,
CDCLy): 6 = 7.55-7.47 (m, 2H), 7.07-6.99 (m, 3H), 6.64 (s, 1H), 6.43
(d,J = 9.8 Hz, 1H), 5.70 (d, ] = 9.8 Hz, 1H), 3.88 (s, 3H), 3.39 (d, ] =
16.6 Hz, 1H), 3.01-2.90 (m, 2H), 2.78-2.68 (m, 1H), 2.37-2.28 (m,
1H), 2.28 (s, 3H), 1.96-1.87 (m, 1H). *C NMR (100 MHz, CDCl,):
6 = 159.8, 150.5, 141.1, 137.1, 130.9, 129.9, 128.3, 126.4, 126.3,
124.6,123.4,120.5,118.9, 114.7, 76.3, 55.6, 33.6, 32.3, 20.1,17.7. MS
(EST) m/z (%) = 394 (100) [M + H]". Anal. calcd for C,,H,,CIN;0,: C,
67.09; H, 5.12; N, 10.67. Found: C, 67.12; H, 5.13; N, 10.71.

1-Benzyl-6'-chloro-7'-methyl-1,4,6,7-tetrahydrospiro[benzo[d]-
[1,2,3]triazole-5,2'-chromene] (70). White solid; yield: 42%; mp
184-186 °C; Ry = 0.11 (PE/EtOAc 5 : 2). IR (KBr): 3053, 2924, 2851,
1602, 1490, 1252, 1156 cm™ . "H NMR (400 MHz, CDCl,): 6 =
7.41-7.32 (m, 3H), 7.23-7.18 (m, 2H), 6.97 (s, 1H), 6.49 (s, 1H),
6.37 (d, J = 9.8 Hz, 1H), 5.61 (d, J = 9.8 Hz, 1H), 5.49 (d, ] =
6.0 Hz, 2H), 3.29 (d, J = 16.4 Hz, 1H), 2.86 (d, J = 16.4 Hz, 1H),
2.67-2.56 (m, 1H), 2.50-2.41 (m, 1H), 2.24 (s, 3H), 2.17-2.34 (m,
1H), 1.89-1.79 (m, 1H). "*C NMR (100 MHz, CDCl;): 6 = 150.4,
141.3,137.0, 134.8, 130.9, 129.0, 128.4, 128.2, 127.5, 126.4, 126.2,
123.3, 120.5, 118.8, 76.3, 52.1, 33.5, 31.9, 20.1, 16.5. MS (ESI) m/z
(%) = 378 (100) [M + H]". Anal. calcd for C,,H,,CIN;O: C, 69.93;
H, 5.33; N, 11.12. Found: C, 69.99; H, 5.30; N, 11.09.

Conclusion

In conclusion, a series of 1,2,3-triazole-fused spirochromene
motifs were synthesized for the first time in four steps via [3 + 2]
Huisgen cycloaddition starting from 2-hydroxy acetophenone
and all these new compounds were confirmed by '"H NMR, '*C
NMR, IR and MS spectra. The single X-ray diffraction study was
used to confirm the molecular structure of a representative
compound 7a unambiguously. The in vitro antimycobacterial
evaluation showed that most of the synthesized 1,2,3-triazole-
fused spirochromenes exhibited moderate to good anti-
mycobacterial activity. Noticeably, compounds 7a, 7d and 7i
most potent compound in vitro with MIC of 1.56 ng, against
MTB. These findings demonstrated that 1,2,3-triazole-fused
spirochromenes have biological significance; further optimiza-
tion of these identified hits as well as structural modifications
are in progress in order to enhance the efficacy against M.
tuberculosis.
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