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ffuse reflectance near-infrared
spectrometry and chemometrics in
characterization of micro and mesoporous ZSM-5
zeolites

Shahin Amani,a Amir Bagheri Garmarudi, *a Mohammadreza Khanmohammadia

and Fereydoon Yaripourb

Evaluation of porosity type of zeolites is one of the critical topics in catalysis science. The relationship

between external surface area and diffuse reflectance (DR) spectra in the near-infrared spectral region

has been employed to propose a method for estimation of micro or mesoporosity in ZSM-5 zeolite

samples. Linear discriminant analysis (LDA) was utilized to estimate degree of porosity based on near-

infrared diffuse reflectance spectra. The textural properties (surface area and pore volume) of micro and

mesoporous ZSM-5 samples were measured using N2 adsorption/desorption technique at 77 K and

external surface area was calculated by t-plot as a reference method in this work. Several porous ZSM-5

samples with only microporous channels or mesoporous besides them were classified in terms of

external surface area and meso pore volume derived from t-plot as “Micro” or “Micro + Meso” type

samples. It was concluded that LDA using the PCA for feature selection is capable of generalization and

could precisely predict the type of porosity in ZSM-5 zeolites.
Introduction

Aluminosilicate H-ZSM-5 zeolite is one of the most important
catalysts which has been widely used in the petrochemical
industry due to its strong acid sites and large active surfaces.
This catalyst contains uniform microporous networks which
enable size- and shape-selective catalysis.1,2 Nevertheless, the
unique presence of the microporous network with aperture
diameters below 2 nm also imposes signicant diffusion limi-
tation on reactions that can cause high back pressure on ow
systems.3,4 Ordered mesoporous aluminosilicates with pore size
between 2 and 50 nm are structures with developed pore
architecture to solve the diffusion limitation drawback associ-
ated with conventional microporous zeolites which permits
faster migration of the reactant and product molecules to and
from the active sites and enhanced accessibility for larger
molecules and viscous uids with the remarkable stability,
catalytic activity and selectivity of zeolites.3–9 Investigation and
ascertainment of mesoporous and microporous structures is
important in the eld of catalyst design and development.
Presence of mesopores in the zeolite crystallites would increase
the external surface of the zeolite in addition with increasing
cience, Imam Khomeini International
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the meso pore volume.10 In spite of several researches, the
distinction between external and internal surfaces is not always
clear and various denitions have been offered to external
surface.11 Kaliaguine et al. have proposed the most appropriate
denition of external surface area (Sex) with regard to their
quantication model of XPS data which is based on the overall
BET) Brunauer–Emmett–Teller (surface area without the
contribution of micropores.11 Several techniques have been
devised to determine external surface area (Sex) mainly based on
physisorption methods. t-Plot,12 as-method13 and conventional
nitrogen BET technique of the remaining surface area have
been used for this aim aer plugging the micropores with
a strong adsorbent prior to determination for series of zeolites
including ZSM-5.11,14,15 However, performing these approaches
is rather difficult because of the lack availability in reference
material, unsuitability of the pore-lling sorbent and experi-
mental conditions.11 In addition, they are expensive and time
consuming. Near-infrared spectrometry has been extensively
used for physicochemical characterisation studies such as
estimation of particle size and size distribution,16,17 surface area
analysis,18,19 attaining information about surface morphology of
sample20 and determination of the bulk properties of viscosity
and plasticity indices21 utilizing chemometrics approaches. In
this work it has been attempt to propose a correlation between
the external surface area and consequently micro or meso-
porosity of zeolite samples according to literature10,14,15 together
with their near infrared (NIR) spectra obtained in hydrated
This journal is © The Royal Society of Chemistry 2018
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form. The relationship between the external surface area and
near-infrared diffuse reectance spectra is mainly based on the
silanol absorbance bands which located on the external surface
in H-ZSM-5. Also the surface hydroxyl groups related to the
surface adsorbed water are proportional to zeolite's external
surface area and consequently micro or mesoporosity of zeolite
samples.18,22 This spectral correlation in combination with
linear discriminant analysis (LDA) has been employed to build
a classication model on the basis of a reduced subset of vari-
ables (wavenumbers). Feature extraction was performed by
principal component analysis (PCA) and genetic algorithm (GA).
Diffuse reectance infrared Fourier transform (DRIFT) tech-
nique was employed which provides much higher sensitivity for
weak bands in comparison with the common transmission
sampling routes.
Experimental
Sampling and analysis

Total number of ninety ZSM-5 zeolite samples was provided
from nine different original sources by weighting different
proportions of samples. Five different types of commercially
available (from Petrochemical Research and Technology
Company, Tehran, Iran) zeolite samples were labelled as (P1–
P5) and remaining 4 types of samples were prepared in labo-
ratory by different fabrication procedures as indicated in Table
1 (S1–S4). These nine original samples with different porosity
situation were then used to prepare two sets of ZSM-5 samples
of varying porosity as microporous “Micro” or mesoporous
“Micro + Meso” classes. One set of zeolites containing 40
different mixtures of mesoporous samples which have been
produced by weighting different proportions of the four primary
mesoporous samples (P1, P2, P3 and S4) and the second set of
zeolites containing 50 different mixtures of microporous
samples which have been prepared by weighting different
proportions of the ve microporous samples (P4, P5, S1, S2 and
S3) and the near infrared spectra of the mixtures were measured
according to previously report.18 An AB-Bomem (MB 160D,
Quebec, Canada) NIR instrument with quartz halogen source
and the optional TE-cooled InAs detector was employed to
Table 1 Textural properties of different porous type H-ZSM-5 sample
different zeolite samples)

Characteristic

Porosity situation
SBET
(m2 g�1)

SMicro

(m2 g�1)
S
(mSample

P1 Micro + Meso 382.9 272.2 1
P2 Micro + Meso 382.8 240.5 1
P3 Micro + Meso 366.9 250 1
P4 Micro 289.1 261.6
P5 Micro 355.6 311.3
S1 Micro 388.8 364.6
S2 Micro 372.6 361.1
S3 Micro 362.2 337.1
S4 Micro + Meso 264 129.3 1

This journal is © The Royal Society of Chemistry 2018
record the NIR spectra using spectratech diffuse reectance cell.
Diffuse reectance spectra were recorded with a resolution of
8 cm �1, cumulating 16 scans over the 4000–8000 cm�1 spectral
region with air as the background, being exported from the
WINFIRST soware. The background spectrum was acquired
from the integrating sphere using the same instrumental
conditions employed for real samples. High background
stability was observed in all the cases. Therefore, it was not
necessary to scan a new background spectrum aer the analysis
of each sample.

For each sample, the sample was leveled to achieve a spec-
trum of sample and in order to prevent the cell contamination,
the steel setup compartment was cleaned using acetone and
so tissue aer acquisition of each sample's spectrum. Also for
each sample, 3 replicated spectra were recorded, being overlaid
to be ensured of the repeatability. The average was used for data
processing. The textural properties of the samples were
measured using N2 adsorption/desorption technique at 77 K on
NOVA2000 Quanta-Chrome USA instrument. Chemometric data
processing was developed by in-house programs in MATLAB
v.8.1 (Math Works Inc).
Data set and data processing

NIR spectra of 90 different porous ZSM-5 samples were splitted
in 2 subsets in terms of micro (class 1) or mesoporosity (class 2)
according to N2 adsorption/desorption data obtained at 77 K.
The Kennard–Stone (KS) algorithm was utilized to optimum
splitting of the samples into training and test subsets. In this
regard, 50 samples were selected to form the training set while
remaining 40 ZSM-5 samples were considered as independent
test set for the evaluation of the constructed models. The
samples included in training and test sets were achieved from
mixing of micro or meso samples with different ratios as
mentioned above. So that the samples in each of the sets were
independent for example with mixing sample S1 and P4 by 1–1
ratios, the new micro sample was created which it was inde-
pendent of previous S1 and P4 samples. The rst step in che-
mometric data treatment was to evaluate the data set by
principal component analysis (PCA). Thenmultiplicative scatter
correction (MSC) pre-treatment and vector normalization were
s (five commercially (P1–P5) and four laboratory synthesized (S1–S4)

Meso
2 g�1)

VTotal
(cm3 g�1)

VMicro

(cm3 g�1)
VMeso

(cm3 g�1) Origin

10.7 0.320 0.125 0.195 Commercial
42.3 0.417 0.102 0.315 Commercial
16.9 0.321 0.109 0.212 Commercial
27.5 0.167 0.124 0.043 Commercial
44.3 0.218 0.147 0.071 Commercial
24.2 0.198 0.160 0.038 Synthesized
11.5 0.177 0.152 0.025 Synthesized
25.1 0.191 0.149 0.042 Synthesized
34.7 0.387 0.091 0.296 Synthesized

RSC Adv., 2018, 8, 34830–34837 | 34831

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c8ra03244k


RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

0 
O

ct
ob

er
 2

01
8.

 D
ow

nl
oa

de
d 

on
 7

/1
6/

20
25

 5
:5

1:
13

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
conducted. In order to achieve a reliable discrimination
between different porous ZSM-5 types supervised pattern
recognition procedures were performed.

Raw and pre-processed spectra were evaluated by so inde-
pendent modelling of class analogy (SIMCA) and linear
discriminant analysis (LDA) methods aer PCA variable
extraction in terms of overall classication errors.
Fig. 1 Nitrogen adsorption/desorption isotherms of (A) microporous
and (B) mesoporous ZSM-5 samples at 77 K, solid line: adsorption, dash
line: desorption.
Results and discussion
Porosity determination by BET and t-plot

Prior to porosity analysis, all the samples were kept at 300 �C
under N2 atmosphere for 3 h. Conventional Brunauer–Emmet–
Teller (BET) equation was used to calculate the specic surface
area (Stotal) from the linear part of plot according to IUPAC
recommendations (adsorption data in P/Po ¼ 0.05–0.25).23 Total
pore volume (VTotal) was set based on adsorbed nitrogen volume
at P/Po ¼ 0.99. The micropore area (SMicro) and micropore
volume (VMicro) were calculated from the t-plot curve. Barrett–
Joyner–Halenda (BJH) method was conducted on the adsorp-
tion branch of the isotherm to depict. Mesopore volume (VMeso)
was determined as the difference between calculated total
volume and the corresponding micropore volume. Table 1
reveals total surface area, external surface area, micropore and
mesopore volumes of the typical sample from 9 primary
different type of zeolite which have been calculated from the N2

adsorption/desorption isotherms (Fig. 1). It is notable that the
values were included in the Table 1 correspond to only one N2

adsorption–desorption measurement. As seen in Fig. 1 meso-
porous samples exhibit a loop representing the mesoporosity in
adsorption–desorption diagrams. The S1, P4 and P5 samples
are Intrinsically microporous zeolite ZSM-5 and the hysteresis
loop should not present in microporous zeolite. But these
zeolites are nano zeolite samples.

In nano zeolite samples in synthesis conditions the inter
crystalline pores are likely formed. The dimensions of the inter
crystalline pores is (2–50 nm) which would be in mesoporous
range. In consequently in S1, P4 and P5 isotherms although
they are microporous ZSM-5 in nature, mesoporous and rele-
vant loops are seen.24
Fig. 2 FT-NIR spectra of all meso andmicro samples in raw data form.
DR-FTNIR spectrometry of H-ZSM-5

As observed in Fig. 2 diffuse reectance NIR spectra obtained
from ZSM-5 samples in their hydrated form demonstrate spec-
tral characteristics due to overtones and combination
vibrations.

The samples were hydrated ZSM-5 zeolites and they were not
preheated to keep the surface adsorbed water content. The band
assignments of the surface hydroxyl groups in the near-infrared
region are given in Table 2. Conventional near FTIR (FT-NIR)
investigations of OH groups of H-ZSM-5 via diffuse reectance
spectroscopy have been conducted by preheated sample in
a vacuum for dehydration.25,26

The hydroxyl groups on the surface of ZSM-5 are polarized
and can form hydrogen bonding with water molecules.
34832 | RSC Adv., 2018, 8, 34830–34837 This journal is © The Royal Society of Chemistry 2018
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Table 2 NIR band assignments for water adsorbed on ZSM-5
samples.18,26

Spectral region
(cm�1) Band assignment

4660 Combination band (OH stretching
together with bending) of hydroxyl groups

�5300 Combination band (OH stretching together with
bending) of water molecules

7065 and 7325 Overtones of OH stretch silanol groups
and hydrogen bonded silanol groups

Fig. 3 Typical raw and MSC treated diffuse reflectance FTNIR spectra
of ZSM-5 samples in the 4000–8000 cm�1 spectral region.
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However, in this work the samples were hydrated ZSM-5
zeolites and they were not preheated to keep the surface
adsorbed water content which would enable to nd a relation-
ship between absorption band of water molecules in FT-NIR
spectra and consequently external surface area to track the
sample porosity. As the correlation between surface area and
adsorbed water in silica gel particles has been studied by
transectance sampling technique,18 it was tried to analyse the
amount of adsorbed water via diffuse reectance FT-NIR spectra
which would be proportional to zeolite's external surface area.
On the other hand, by increasing external surface area as
a result of mesoporosity enhancement, Lewis acid sites could be
increased and silanol absorbance bands would be intensied.
Brønsted acid sites (with high acidic strength) are formed by
bridging the OH groups located inside the zeolite channels,
while Lewis acid sites and weakly acidic silanol groups are
found on the external surface in H-ZSM-5.22 Variation in the
intensity of the band located around 5300 cm�1, which is the
characteristic of the combination band of water, was observed
to be more reduced in microporous crystals in comparison with
mesoporous ones.

Also similar to report27 which have been demonstrated the
intensity of the emission peak at 2200 nm (4545 cm�1) on the
surface of the bare silica particles, can be related to the specic
surface area, variation in the intensity of the band located
around 4545 cm�1 was observed to be more reduced in micro-
porous crystals in comparison with mesoporous ones.

Data pre-processing by multiplicative scatter correction (MSC)

Diffuse reectance spectroscopy is commonly associated with
scattering which may reduce its reliability. Thus it is useful to
consider this deviation and try to remove its offsets. MSC is
a pre-processing approach which removes the scattering effect
from spectral data. It is the start point of all model-based pre-
processing techniques, utilized widely in the eld of vibra-
tional spectroscopy especially diffuse reectance.28,29 The MSC
equation is:

xi ¼ a + bxref + e (1)

where xi is the NIR spectrummeasured from the sample and xref
is the reference spectrum of the ideal sample (here the mean
spectrum of the calibration set). For each sample, the values of
parameters a and b are estimated by ordinary least-squares
regression of xi onto xref over the available wavenumbers. The
This journal is © The Royal Society of Chemistry 2018
error term, e, corresponds to all other effects in the spectrum
which cannot be modelled by the physical variations (changes
in baseline/slope).

Once a and b are estimated, xcorr that is the corrected spec-
trum using MSC is calculated as:

xcorr ¼ (xi � a)/b ¼ xref + e/b (2)

where e/b is the difference between xcorr and xref which can be
considered to be independent of the scattering effect. The xref
mean spectra must be stored and used for pre-processing the
next spectra by the same route.30–32

A typical spectrum together with its MSC treated one is
shown in Fig. 3 for both micro and meso classes.

Chemometrics data processing

PCA is a common chemometrics technique for dataset size
reduction and noise ltering. The PCA output consists of
loading and score matrices which represent the principal
components (PC's) and the coordinates of the original spectra
on the new axes determined by the corresponding PC's
respectively. Spectral information was mean centered prior to
PCA.

The 3D score plot aer application of PCA on the mean
centered data set has been shown in Fig. 4.

It is notable that the wavenumber interval was considered for
PCA was the same as initial spectra. In the score plot samples
corresponding to class 2 (Micro + Meso) apparently form two or
three different clusters. It may be correlated to different micro/
meso ratios.

As observed in the score plot, an initial discrimination has
been achieved between classes by PCA model on the MSC
treated data. The rst four principal components (PCs)
explained 39.5, 27.6, 16.9 and 6.4% of data variance respec-
tively. This gure illustrates an initial separation between
classes, conrming PCA based models to be potentially capable
of utilized and improved for obtaining reliable classication
RSC Adv., 2018, 8, 34830–34837 | 34833
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Fig. 5 PRESS and covered variance plot of SIMCA model for class 1

Fig. 4 PCA 3D score plot, class 1 ( ), class 2 ( ).
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results. Another application of PCA which can be considered
here is to extract the most informative parts of data. Thus PCA
was employed to construct new dimensions of NIR spectral data
set by reducing the total number of variables into 4 PCs dis-
playing the most original variability of NIR data in a smaller
data space.

So independent modeling of class analogy (SIMCA) tech-
nique is a powerful pattern recognition approach in chemo-
metrics which is based on PCA. It aims to use many PCA disjoint
models assigning a sample spectrum to one or more available
classes. Thus SIMCA model was built to nd the class-specic
information from all NIR spectra and to model the informa-
tion separately.

This means that each group class was independently
modeled using PCA. Selection of the best number of principal
component is an important step before any model construction
by SIMCA. Predicted residual error sum-of-squares (PRESS)
value is one criterion of this selection which is calculated by
cross validation strategy.

The optimum number of components is the component for
which the PRESS is small enough, considering of large number
of factors oen leads to over tting in the model during clas-
sication of an independent test set. Fig. 5 shows PRESS plots
obtained aer the Leave-One-Out (LOO) cross-validation for
micro and meso classes in the training set. Referring to PRESS
values, more than 4 PCs were determined as optimum.
Explained variance versus principal components plot of each
class is also shown in Fig. 5.

The result of variance analysis showed considering 4 PCs
in both classes could explain the majority of cumulative
variance. However, the outcome of SIMCA model with 4 or
more PCs is not satisfactory. Therefore, several classication
models have been evaluated for training set samples,
employing different ‘number of factors’. Data set classica-
tion errors were 40%, 20% and 15% by 4, 5 and 6 PCs
respectively. Q and T2 are two common criteria in SIMCA
model constructing for discrimination of class groups from
each other. Q is the Euclidean distance of the residuals to the
PC model, computed as a squared prediction error and T2 or
34834 | RSC Adv., 2018, 8, 34830–34837
Hotelling's T2 is a normalized sum of squared errors for the
response featured models which indicates a statistical
measure of the multivariate distance of each observation
from the center of the data set. Fig. 6 shows the Q versus
hotelling T2 explaining the capability of calibration model
with 4 selected PCs based on PRESS plots. It can be
concluded from these gures that even with the high number
of PCs distinct discrimination between classes could not be
reached. The other drawback of models with large number of
PCs is the probable incorporation of unwanted data and time
consumption.
Discriminant analysis

LDA is a powerful supervised multivariate method which
employs linear decision boundaries between classes by Maha-
lanobis distance while the inter-class variance is maximized and
the intra-class variance is minimized.33

Consider x ¼ [x1, x2, . xd]
T belonging to jth class from

possible classes of DRIFT spectral data, the classication vari-
ables x1, x2, . xd correspond to reectance measurements ob-
tained at d wavenumbers. The squared Mahalanobis distance
r2(x, mj) between x and the center of the jth class is dened as:

r2(x, mj) ¼ (x � mj)
TS�1(x � mj) (3)
(micro) and 2 (meso) in training set.

This journal is © The Royal Society of Chemistry 2018
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Fig. 7 Spectral region of ZSM-5 DR-FTNIR spectra selected by GA ( ).
Fig. 6 Q versus T2 in SIMCA model for training set based on class 1 ( )
and class 2 ( ).
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where mj(d � 1) and Sj(d � d) are the mean vector and the
covariance matrix, respectively, which can be estimated from
a set of training objects of known classication. The object x is
then assigned to the class j for which r2(x, mj) has the smallest
value.34,35 PCA extracted features were introduced to LDA
method in which the number of training samples must be
larger than the number of variables included in the model to
prevent over tting.34

Considering PCA scores as input variables for LDA, the four
PC was aimed to be utilized based on PRESS and explained
variance plot which is explained more than 90% of the variance
of data. The prediction results, obtained by the proposed MSC-
LDA are detailed in Table 3.

The performance of the classier is evaluated by the correct
classication rate (CCR) statistical parameter which can be
a criterion of precision and it is calculated as follows:

Correct classification rateðCCRÞ

¼
PK

i¼1

correct classification in class i

total number of samples

The best validation results were achieved with the MSC
normalized spectra in terms of CCR, 98% in training set and
95% in test set while it was 90% and 86% before preprocessing
for training and test set respectively.
Table 3 Number of training and prediction samples in each porous
ZSM-5 type

Training Validation

LDA GA-LDA LDA GA-LDA

Error rate (%) 2 6 5 5
Sensitivity (%) 100 100 100 100
Specicity (%) 95.8 90.3 92.3 89.5

This journal is © The Royal Society of Chemistry 2018
Genetic algorithm variable selection

Genetic Algorithm (GA) has been widely applied for optimiza-
tion goals. Classication of zeolite samples according to their
porosity deals with associating a given input spectral pattern
with one of distinct sample classes (meso or micro) by a number
of NIR spectral features, representing some combination bands
Fig. 8 Probability of each two classes of zeolite samples for calibra-
tion (up) and test (down) data sets after performing LDA based on PCA.
(Misclassified cases have been marked.)
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and overtones made on the zeolite samples that are being
classied. Thus the spectral data set was proposed as a set of d-
dimensional vectors, where d is the number of different
features. Finally obtained patterns are points in this d-dimen-
sional space while classes are sub-spaces. In the other words, it
was tried to determine to which region a given sample's pattern
falls in. The nal step was to dene a decision borderline which
partitions the feature space into regions associated with each
class.36 In this work the applied GA had a population size of 100,
generation of 32, mutation rate of 0.005, being coupled with
LDA and it was resulted in three regions selected variables in
the best situation aer optimizing. Fig. 7 shows the selected
variables regions of GA, labeled in the spectrum. The reason to
perform GA on whole spectral region was to obtain the most
useful sub-regions by which the correlation between the aimed
factor the spectral feature may be achieved.

Fig. 8 shows the posterior probability of each class for cali-
bration and test sets, in which a sporadic situation is obtained
by LDA based on PCA. This may cause some doubts about the
further capabilities of the model for prediction of unknown
samples and development of practical method of analysis.

On the other hand, as seen in Fig. 9 a wider distance is ob-
tained between probability levels of the classes by GA-LDA
Fig. 9 Probability of each two classes of zeolite samples for calibration
(up) and test (down) data sets after performing LDA by genetic algo-
rithm feature selection for micro or mesoporosity recognition. (Mis-
classified cases have been marked.)

34836 | RSC Adv., 2018, 8, 34830–34837
model. While there are no major differences between the
statistical results obtained by both PCA-LDA and GA-LDA
models, it is obvious that GA selected spectral regions are
around 5300, 7000 and 7300 cm�1 which are directly correlated
to functional groups, affecting the external surface area of micro
and mesoporous samples in NIR spectral region.

Conclusions

A pattern recognition approach has been developed for porosity
based investigation of ZSM-5 samples based on their diffuse
reectance near infrared spectra. The abundance of adsorbed
O–H groups on surface of ZSM-5 zeolites is different and
strongly depends on external surface area. These changes were
evaluated by DR-FTNIR spectroscopy being employed for esti-
mation of the micro or mesoporosity by LDA chemometrics
approach. It was tried to propose a chemometric supported
procedure to generate a reliable FT-NIR-based porosity classi-
cation analysis without any physical or chemical sample
preparation. The predictive model was constructed by LDA in
combination with PCA and GA feature selection. The main
objective was to discriminate between the spectra of micro and
mesopores samples. Results showed 95% of accuracy for PCA or
GA-LDA model so it can be concluded that DR-FT-NIR spec-
troscopy would be a reliable approach for detection of porosity
variations in ZSM-5 samples. The proposed method is rapid,
easy and does not need any sample preparation, thus being
possible to be considered as a general porosity recognition tool
in catalyst industry.
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