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s in catalysis: a simple surfactant-
free synthesis of sub 3 nm Pd nanocatalysts
supported on carbon†

Jonathan Quinson, *a Søren B. Simonsen, b Luise Theil Kuhn, b

Sebastian Kunz c and Matthias Arenz *d

Supported Pd nanoparticles are prepared under ambient conditions via a surfactant-free synthesis.

Pd(NO3)2 is reduced in the presence of a carbon support in alkaline methanol to obtain sub 3 nm

nanoparticles. The preparation method is relevant to the study of size effects in catalytic reactions like

ethanol electro-oxidation.
A key achievement in the design of catalytic materials is to
optimise the use of resources. This can be done by designing
nanomaterials with high surface area due to their nanometre
scale. A second achievement is to control and improve catalytic
activity, stability and selectivity. These properties are also
strongly inuenced by size.1–3 To investigate ‘size effects’ it is
then important to develop synthesis routes that ensure well-
dened particle size distribution, especially towards smaller
sizes (1–10 nm).

Metal nanoparticles are widely studied catalysts. In several
wet chemical syntheses, NP size can be controlled using
surfactants. These additives are, however, undesirable for many
applications4,5 since they can block active sites and impair the
catalytic activity. They need to be removed in ‘activation’ steps
which can negatively alter the physical and catalytic properties
of the as-produced NPs. Surfactant-free syntheses are well
suited to design catalysts with optimal catalytic activity6 but
their widespread use is limited by a challenging size control.3

Palladium (Pd) NPs are important catalysts for a range of
chemical transformations like selective hydrogenation reac-
tions and energy applications.7–9 It is however challenging to
obtain sub 3 nm Pd NPs, in particular without using surfac-
tants.2 Surfactant-free syntheses are nevertheless attracting
a growing interest due to the need for catalysts with higher
performances.10–14
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Promising surfactant-free syntheses of Pd NPs were recently
reported.8,15 The NPs obtained in these approaches are in the
size range of 1–2 nm and show enhanced activity for acetylene
hydrogenation8 and dehydrogenation of formic acid.15

Enhanced properties are attributed to the absence of capping
agents leading to readily active Pd NPs. The reported syntheses
consist in mixing palladium acetate, Pd(OAc)2, in methanol and
the reduction of the metal complex to NPs occurs at room
temperature. The synthesis is better controlled in anhydrous
conditions to achieve a fast reaction in ca. 1 hour. Another
drawback is that the synthesis must be stopped to avoid over-
growth of the particles. Therefore, a support material needs to
be added aer the synthesis has been initiated and no simple
control over the NP size is achieved.8,15

In this communication a more straightforward surfactant-
free synthesis leading to sub 3 nm carbon-supported Pd NPs
in alkaline methanol at ambient conditions is presented. A
solution of Pd(OAc)2 in methanol undergoes a colour change
from orange to dark, indicative of a reduction to metallic Pd,
aer ca. a day. However, only ca. 1 hour is needed with
Pd(NO3)2, Fig. 1 and UV-vis data in Fig. S1.† The fast reduction
of the Pd(NO3)2 complex in non-anhydrous conditions is a rst
Fig. 1 Pictures of 4 mM Pd metal complexes in methanol without or
with a base (as indicated).

This journal is © The Royal Society of Chemistry 2018
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benet of the synthesis presented as compared to previous
approaches.

For particle suspensions prepared with Pd(OAc)2 or Pd(NO3)2
the NPs agglomerate and quickly sediment leading to large
‘ake-like’ materials. When the reduction of Pd(NO3)2 in
methanol is performed in presence of a carbon support and
aer reduction the solution is centrifuged and washed in
methanol, a clear supernatant is observed indicating that no
signicant amount of NPs are le in methanol. Transmission
electron microscope (TEM) analysis conrms that NPs are
formed and well-dispersed on the carbon support surface and
no unsupported NPs are observed, Fig. 2a. Likely, the reduction
of the NPs proceeds directly on the carbon support. However,
the size of the NPs is in the range 5–25 nm, which is still
a relatively large particle size and broad size distribution.

Assuming a ‘nucleation and growth’ mechanism, the NPs
should become larger over time.16 But the reaction is so fast that
by stopping the reaction before completion, size control is not
achieved and unreacted precious metal is observed, Fig. S2.† To
achieve a ner size control and more efficient use of the Pd
resources, a base was added to the reaction mixture, e.g. NaOH.3

In alkaline media, the formation of Pd NPs is slower; it takes ca.
60 minutes to observe a dark colour for a 5 mM Pd(NO3)2
solution with a base/Pd molar ratio of 10 in absence of
a support, Fig. 1.

Also in alkaline methanol, the NPs agglomerate over time in
absence of a support material. However, if the alkaline solution
of Pd(NO3)2 is le to stir in presence of a carbon support the
desired result is achieved, i.e. Pd NPs with a signicantly
smaller size and size distribution of ca. 2.5 � 1.0 nm, Fig. 2b.
Fig. 2 TEMmicrographs of Pd NPs obtained by stirring 4mMPd(NO3)2
in methanol and a carbon support for 3 hours, (a) without NaOH and
(b) with 20 mM NaOH. Size distribution histograms are reported in
Fig. S4.† The same samples after electrochemical treatments are
characterised in (c) and (d) respectively. Size distribution histograms
are reported in Fig. S7.†

This journal is © The Royal Society of Chemistry 2018
The NPs homogeneously cover the carbon support and no
unsupported NPs are observed by TEM suggesting that the NPs
nucleate directly on the carbon surface. Furthermore, the
supernatant aer centrifugation is clear, indicating an efficient
conversion of the Pd(NO3)2 complex to NPs, Fig. S3.† Further-
more, there is no need for an extra reducing agent as in other
approaches, for instance in alkaline aqueous solutions.9

The benets of surfactant-free syntheses of Pd NPs for
achieving improved catalytic activity have been demonstrated
for heterogeneous catalysis.8,15 Surfactant-free syntheses are
also well suited for electrochemical applications where fully
accessible surfaces are required for fast and efficient electron
transfer. Several reactions for energy conversion benet from Pd
NPs. An example is the electro-oxidation of alcohols,7 in
particular ethanol17 (see also Table S1†).

Previous studies optimised the activity of Pd electrocatalysts
by alloying,18–20 by using different supports17,21–23 or crystal
structures.24,25 Investigating NPs with a diameter less than 3 nm
was challenging.2,26,27 The surfactant-free synthesis method
presented here allows to further study the size effect on Pd NPs
supported on carbon (Pd/C) for electrocatalytic reactions.

In Fig. 3, results for ethanol electro-oxidation in 1 M ethanol
solution mixed with 1 M KOH aqueous electrolyte are reported
based on cyclic voltammetry (CV) and chronoamperometry (CA)
with Pd/C catalysts exhibiting 2 signicantly different size
distributions. The electrode preparation, the measurement
procedure and the sequence of electrochemical treatments are
detailed in the ESI.† In order to highlight size effects, we
compare geometric and Pd mass normalized currents (Fig. 3a
and c) as well as the oxidation currents normalized to the Pd
surface area (Fig. 3b).

It is clearly seen that based on the geometric current density,
the smaller Pd NPs exhibit signicantly higher currents for
ethanol oxidation than the larger NPs. To differentiate if this
observation is a sole consequence of the different surface area,
the electrochemically active surface area (ECSA) has been esti-
mated based on “blank” CVs (without ethanol) recorded
between 0.27 and 1.27 V vs. RHE in pure 1 M KOH aqueous
electrolyte and integrating the area of the reduction peak at ca.
0.68 V, Fig. S5.† As conversion factor, 424 mC cm�2 was used.28

Using this method, the smaller NPs with a size around
2.5 nm exhibit an ECSA of 92m2 g�1 whereas the larger NPs with
a size in the range 5–25 nm exhibit an ECSA of 47 m2 g�1,
consistent with a larger size. Normalising the ethanol electro-
oxidation to these ECSA values instead of the geometric
surface area, Fig. 3b, still indicates a size effect. It is clearly seen
that the smaller Pd NPs exhibit higher surface specic ethanol
oxidation currents, in particular at low electrode potentials.
Furthermore, a clear difference in the peak ratios in the CVs is
observed. The ratio in current density of the forward anodic
peak (jf, around 0.9 V) and the backward cathodic peak (jb,
around 0.7 V vs. SCE) is around one for the smaller NPs, whereas
it is about 0.5 for the larger NPs. The forward scan corresponds
to the oxidation of chemisorbed species from ethanol adsorp-
tion. The backward scan is related to the removal of carbona-
ceous species not fully oxidised in the forward scan. The higher
jf/jb ratio therefore conrms that the smaller NPs are more
RSC Adv., 2018, 8, 33794–33797 | 33795
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Fig. 3 Electrochemical characterisation of carbon supported Pd NPs
with 5–25 nm (grey) and 2.5 nm (dark) size in 1 M KOH + 1 M ethanol
aqueous electrolyte. (a) 2nd CV before chronoamperometry (CA), (b)
current normalised by the electrochemically active surface area of Pd,
(c) CA recorded at 0.71 V vs. RHE after 50 cycles between 0.27 and
1.27 V.
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active for ethanol electro-oxidation and less prone to poisoning,
e.g. by formation of carbonaceous species that accumulate on
the catalyst surface.29,30 This observation is further supported by
a chronoamperometry (CA) experiment, Fig. 3c, at 0.71 V per-
formed aer continuous cycling (50 cycles between 0.27 and
1.27 V at a scan rate of 50 mV s�1). In the CA testing of the thus
aged catalysts at 0.71 V, the ethanol oxidation current on the
two catalysts starts at around the same values, however, its
decay rate is signicantly different. The Pd mass related
oxidation currents for the smaller NPs are aer 30 minutes
almost twice as high (ca. 200 A gPd

�1) as for the larger ones (ca.
130 A gPd

�1), conrming that the small Pd NPs are less prone to
poisoning. In particular a factor up to 4 in the Pd mass related
ethanol oxidation currents aer 1800 s of continuous operation
is achieved compared to a recently characterised commercial Pd
33796 | RSC Adv., 2018, 8, 33794–33797
catalyst on carbon,20 Table S1.† Despite different testing
procedure reported in the literature, it can be concluded from
these investigations that the surfactant-free synthesis presented
shows promising properties for electrocatalytic ethanol oxida-
tion even aer extended cycling.

The extended cycling, however, has different consequences
for the two catalysts. For the small (2.5 nm) NPs of the Pd/C
catalyst, a massive particle loss, but only moderate particle
growth is observed as highlighted in Fig. 2 (see also Fig. S6†).
TEM micrographs of the two Pd/C samples recorded before and
aer the complete testing (CVs and CAs, for details see Fig. S7†)
show that the catalyst with small Pd NPs exhibits a pronounced
particle loss as well as a particle growth to ca. 6 nm probably due
to sintering. By comparison, for the Pd/C catalyst with the large
Pd NPs, no signicant inuence of the testing on particle size or
particle density is apparent.

Conclusions

Using alkaline methanol and Pd(NO3)2 a fast, simple,
surfactant-free method is presented to prepare at ambient
conditions sub 3 nm carbon supported Pd NPs. It is shown that
the NPs uniformly cover the carbon support. Furthermore, the
preparation method leads to readily active nanocatalysts
without the need to remove surfactants. The NPs show prom-
ising catalytic activity for electro-oxidation of ethanol when
compared with larger nanoparticles obtained without using
NaOH. The sub 3 nm particles are more active and more
important they are less prone to contamination by unreacted
carbonaceous species. Interestingly, even if normalised to the
electrochemical surface area, the activity of the small Pt NPs is
still higher.

Further studies of the effect of NaOH concentration and
nature of the carbon support could bring more control on the
size and possibly morphology of the nanoparticles. It is general
challenge to follow the reduction of Pd2+ to Pd0 and the effect of
a base on the nucleation and growth.2 However the simplicity of
the method proposed should allow in situ studies to get a deeper
understanding of the role and inuence of the Pd(NO3)2
precursor on the reaction mechanism and kinetics.

The simple and relatively fast synthesis presented is prom-
ising to design, study and optimise a range of Pd based catalysts
for electrochemical purposes (alcohol oxidation, O2 reduction,
etc.) but also heterogeneous catalysis (hydrogenation, coupling
reactions, etc.).
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