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Organic chemistry can be represented as a network of reactions and studied by mathematical tools of
graph theory. In this paper, the structure of a network of organic reactions has been studied using several
graph theory metrics. The network was based on a section of chemical space downloaded from Reaxys.
The studied area of chemistry corresponds to the chemistry of terpenes and includes 12238 931 species
and 12939 422 reactions after filtering of an initial set of 35 million reactions. The analysis of the network
statistics confirmed that the network was scale-free, as was reported in the earlier literature from the anal-
ysis of a much smaller network. Many networks in other technological or non-technological areas show
that nodes have a preference as to whether they connect to highly connected or scarcely connected
nodes, but for chemistry no such trend was observed. It was found that the network of reactions exhibits
“small world” behaviour and in simile to the ‘six degrees of separation” encountered in social networks, on
average, any molecule could be made from any other molecule in six synthesis steps. Scale-free networks
have hubs in their wiring pattern. By investigating whether these hubs are not only well studied but also
frequently used, it was found that they concentrated a large share of the network’s load onto themselves,
showing that the network’s structure impacts the usage of chemistry, or vice versa, implying a hierarchy of
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1. Introduction

With the growth of online reaction databases, an increasing
amount of reaction data are available to assist in the design of
synthetic routes: Reaxys alone contains in excess of 40 million
reactions.”” The way how we currently use databases is to
search for individual transformations, or for possible multi-step
syntheses using a stepwise search through the available data-
base interfaces, such as SciFinder, Reaxys, Wiley ChempPlanner,’
ChemSpider or SPRESI. However, it has recently been shown
that using the data as a whole by means of network traversal al-
gorithms allows a researcher to ask more questions of the
data.*™" Thus, one can look at optimisation of a range of feed-
stocks used by a company,’ optimising parallel synthesis
routes,'® identifying one-pot conversions,® monitoring the use
of controlled substances more effectively,” or investigating reac-
tivity trends of functional groups.” In our own work, we have
shown the use of large chemical datasets to develop reaction se-
quences by running a targeted network search, taking molecular
structural information into account; the reaction sequences are
then evaluated in terms of a range of performance metrics.">"?
In addition to synthesis planning, an alternative potential
use of chemical data networks is the discovery of new reac-
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tions. This is an inverse problem: instead of asking a chemi-
cal question from the network, we intend to ask a mathemat-
ical question, with a hypothesis that the structure of the
chemical network contains implicit chemical information,
which we may reveal in the form of yet unknown transforma-
tions. In order to proceed with such an investigation, we
think that it is important to understand the structure of the
data better. It ought to be noted that the use of graph theory
in the case of reaction networks is different from, and should
not be confused with, the retrosynthesis approach of Corey
and Wipke, where molecules were represented as graphs.

The algorithmic uses of chemical data published to date
exploit the fact that chemical data can be represented by a
network and traversed as a graph. This was first discussed in
ref. 4-6 using a dataset of 9293 250 reactions from what was
then the Beilstein database. The dataset used in these early
studies was fairly small, compared to the size of, for example,
the Reaxys database today."* It is, therefore, useful to exam-
ine the larger dataset available today and to expand the anal-
ysis to the metrics of graphs not used in the earlier analyses
of the chemistry data, as this may reveal further general
trends in the development of organic synthesis.

This paper will repeat some of the analyses carried out
earlier," ® but on a larger data set, and will investigate a num-
ber of additional graph theoretical metrics to quantify and
study the network's dynamics. Though the metrics employed
have differing levels of granularity, they are all statistical in
nature and, thus, provide averages. Investigation of these
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metrics is a necessary step to allow the application of either
more sophisticated graph theoretical concepts or an in-depth
study of a certain area of chemistry using the network, but in
themselves cannot be expected to yield information about a
specific reaction or class of reactions.

More specifically, this paper will aim to answer the ques-
tion what statistical properties can be observed for the sec-
tion of the network studied here. It will seek to reassess if
the network is indeed scale-free, whether it exhibits ‘small-
world’ behaviour, and if it displays evidence of a hierarchy of
nodes. This will be accomplished by investigating the degree
distribution of the network, its assortativity, the existence of
degree correlations and the shortest path lengths observed.
Furthermore, the clustering coefficient and betweenness cen-
trality will be investigated. Taking the results from these
analyses, it will be possible to form a more complete picture
of the network. Ultimately, this can be used to gain a better
understanding of the chemical knowledge contained within
the network. We deliberately do not focus on the historical
development of the network, for example, the development of
network ‘hubs’, as we are aware of a separate focused study
on this sole topic to be completed shortly.

Given that graph theoretical tools do not form part of the
standard chemistry or chemical engineering toolset, each of
the investigated metrics is introduced in detail and its theoreti-
cal background is given in the following section. The methods
used to quantify the statistics are described in the Methodology
section and an interpretation of their relevance to our under-
standing of chemistry is given in detail in the Results and dis-
cussion section. However, a brief outline of their significance is
as follows: scale-free networks follow precisely defined evolu-
tion patterns allowing conclusions about further development
of the chemical landscape to be made, while also implying the
existence of ‘hubs’, meaning that the average distance between
two molecules is greatly reduced. The assortativity and the de-
gree correlation, collectively, measure the mixing patterns of
the network. This means that it reveals information whether a
given molecule, on average, is more likely to connect to a hub
or a molecule in the periphery; in other words, it might reveal
whether a platform molecule is likely to react into a specialised
molecule or another platform molecule. Studying the small-
world behaviour of the network is very important in under-
standing how long the paths between two molecules are on av-
erage, i.e. how many reactions it takes to synthesise one out of
the other, thus giving insights into how the network can be
navigated more optimally. Analysing the betweenness centrality
finally allows an assessment of the importance of molecules to
synthesis routes in general by quantifying what share of paths
runs via them.

2. Theory

2.1. Introduction to graph theory

The foundation of the field of graph theory is often associ-
ated with Leonhard Euler who “discovered” it in 1736.">"°
From initially being a purely mathematical topic, it has sub-
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sequently spread into fields as wide as the internet, sociology,
biology, chemistry, physics, neuroscience and even history
and English literature.">'”2° The terms “graph” and “net-
work” are often used interchangeably, although there is a
subtle difference between them. A graph is primarily an ab-
stract mathematical object that does not necessarily consider
its realisation in nature. A network, on the other hand, is a
“real-life” object as opposed to a purely mathematical one.”*

The first formal model generating a graph was that of a
random graph, also referred to as the Erdés-Rényi model.*
In it, N nodes (the terms node and vertex are used inter-
changeably in the literature) are added to a network and then
edges are added between two nodes according to a probabil-
ity p.”*> This means that the node degrees, i.e. the number of
connections a given node has, follow a Poisson distribution'”
roughly centred around an average degree, k.>*

With the rise in computing power, it became clear that
most networks do not follow the trends of a random graph.
Instead, many networks deviate by showing “small world” be-
haviour, a degree distribution that follows a power-law rather
than a Poisson distribution, high degrees of clustering, and
degree correlations between connected vertices.'”**** These
clear, non-random deviations in topology required the field
of graph theory to develop new models to describe the
organising principles of real networks."”'%?®

A large number of real networks exhibit a power-law de-
gree distribution, in stark contrast to the Poisson distribution
predicted by the Erdés-Rényi model.>® This was first discov-
ered by de Solla Price in 1965.>° It was independently
rediscovered in 1999 (ref. 27) and subsequently achieved
prominence as the Barabasi-Albert model, describing what
was termed a ‘scale-free network’.'”'®*® Though this name
may appear counter-intuitive, it acknowledges the fact that
while a random network has a characteristic scale in the aver-
age degree, around which its degree distribution is centred,
the scale-free network has no such single scale. An important
caveat is that though the overall network may have no scale
in its degree distribution, both the other properties of the
network and the degree distribution of sub-networks may
have scales present.*®*’

The power-law degree distribution means that many nodes
have very few connections, while a few nodes have a very
large number of connections. This means that a scale-free
network exhibits hubs, which are vertices that are linked to a
significant fraction of the total number of edges in the net-
work,"” affecting the properties of the network. For example,
this means that the average distance between nodes, i.e. the
number of edges that need to be traversed en route between
the two, is lower than that in a random network,*® or that the
network exhibits a much greater degree of clustering than
might be expected of a comparable random network.*'

A number of recent studies have shown the existence of a
hierarchical structure in many real-life networks,>* in
which groups of vertices can be subdivided into smaller clus-
ters of vertices, which each divide into yet smaller groups
over several iterations.”>***® This phenomenon was first

React. Chem. Eng., 2018, 3, 102-118 | 103


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c7re00129k

Open Access Article. Published on 19 January 2018. Downloaded on 7/13/2025 11:58:07 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

observed when examining metabolic networks.’” These net-
works on the one hand exhibited very high degrees of cluster-
ing, indicative of a modular architecture, while on the other
hand having a power-law degree distribution. This was sur-
prising as a highly modular architecture greatly restricts the
degree distribution, while a scale-free architecture runs coun-
ter to a modular organisation. This apparent contradiction
was overcome by using a heuristic model that combined
nodes into densely connected local clusters, which in turn
combined into less dense, larger groups, which again com-
bined into even less cohesive larger groups, thus allowing
communication between the densely clustered modules via a
small number of hubs.>**? As a consequence, a hierarchical
network is able to explain local clustering and modularity,
short path lengths, and scale-free degree distributions.>***3%

Clustering can be quantified with the clustering coeffi-
cient, which measures the amount of interlinking between
neighbours of a given node. It has been argued that a key sig-
nature of a hierarchical network is the existence of an inverse
scaling between the clustering coefficient and the degree.
This is caused by the fact that increasing the cluster size,
which means an increase in the degree, leads to a decreasing
degree of interlinking, meaning a decreasing clustering coef-
ficient. This gives rise to a power-law behaviour. Evidence of
this was reported in a number of sources,”****7*7*> though
Soffer and Vazquez contest this claim, arguing that the trend
observed is merely a consequence of correlations between the
degrees of neighbouring nodes.**

In practice, real-life networks do not necessarily exactly fit
into one of the presented categories and are thus classified as
“complex networks”.** Despite spanning a vast field of dispa-
rate topics, it has been found that many of these networks are
characterised by the same topological properties.** One such
property, for example, is the “small world effect”, first
popularised in sociology. It describes the fact that most nodes
can be connected via only a few edges,** far fewer than
expected by chance. This was found to be the case in virtually
all computational or biological networks.'>** Similarly, a very
common phenomenon in complex networks is a degree correla-
tion, where it is possible to establish a correlation between a
vertex's degree and the degree of the vertices it connects to, i.e.
a correlation between the number of connections of a node
and the number of connections of its neighbours.*****>

Another interesting question is estimating the importance
of a given vertex to the network. This is possible by finding
the shortest route connecting all possible combinations of
vertices in the network and then measuring the fraction of
these routes running via this vertex. The result of this is re-
ferred to as ‘betweenness centrality’.’® The metrics used to
study the network of organic chemistry in this paper are in-
troduced in detail below.

2.2. Degree distribution

One of the fundamental properties of a network is the so-
called “degree”. The degree of node i, k; gives the number
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of edges connected to a given node. In the case of a di-
rected network, such as is the case here, each edge has a
“source” and a “target” with the directionality representing,
in this case, the direction in which a reaction proceeds.
This means that it is not merely sufficient to count the
number of edges connected to a node, but that the measure
needs to be further refined into an “out-degree”, ko, giving
the number of edges emanating from the node, and an “in-
degree”, ki,, giving the number of edges which have the
node as the target.

According to ref. 4 and 6, the Network of Organic Chemis-
try exhibits scale-free behaviour and thus its degree distribu-
tion follows a power law, where the probability, P(k), of ob-
serving a given degree, k, is given by eqn (1) for both the in-
degree, ki,, and the out-degree, koy.

P(k) oc k7 (1)

According to the literature,™® the respective power-law ex-
ponents, yi, and y.y, take the approximate values of 2.7 and
2.1, respectively. The network will therefore be analysed to
see if the same behaviour can be observed to verify its scale-
free nature.

For wuncorrelated networks, the degree distribution
completely describes the statistical properties of the network.
For most real networks, however, there is a correlation be-
tween the degrees of neighbouring nodes,*® which shall be
further analysed in the following section.

2.3. Assortativity

In any given network, one would expect to find a difference
in vertex properties between neighbouring vertices. This is of
particular interest in sociology, where a question of interest
might be whether people with many social connections
largely connect with other people with many connections or
with people with few connections. In epidemiology, the study
of this variation could be very useful in giving insights into
how quickly an epidemic might spread or how effective a vac-
cination campaign might be, whilst in technology networks,
such as the internet, it could lend insights into the resilience
of the network against random node failure, by servers going
off-line, or against directed node failure, through targeted
hacking attacks or computer viruses.

Linking of nodes of similar properties to nodes with sim-
ilar properties occurs in networks exhibiting assortative
mixing (as shown in Fig. 1).*® In sociology, this might be
the case of gregarious people connecting largely to other
gregarious people. The case of nodes with a given magni-
tude for a given vertex property preferentially linking to
nodes with a different magnitude for the same vertex prop-
erty is called disassortative mixing (as illustrated in
Fig. 2).*° This can be observed, for example, in the internet,
where the backbone structure of the internet means that
nodes of high degree counts link to nodes of low degree
counts.

This journal is © The Royal Society of Chemistry 2018
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Fig. 1 Within the shown section of a network, nodes 1 and 2 exhibit
assortative mixing in that two nodes of similar degree connect to each
other.

Fig. 2 Within this section of a network, nodes 1 and 3 exhibit
disassortative mixing in that two nodes of similar degree preferentially
connect to a node of a different degree count.

In order to quantify this effect, Newman proposed an
assortativity coefficient, r, which quantifies whether the net-
work exhibits assortative, no, or disassortative mixing.*” In
the case of a directed network, r takes the form of eqn (2),*

r= 2 klex—arar) (2)
TinOou
where e is the probability that a randomly chosen edge
connects a node of in-degree j and out-degree k (i.e. P(kl|j))
and o is the standard deviation of the corresponding
distribution.
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Finally, g; and g; can be found as follows:

q;,= zeﬂ»’
3

qr = Ze]k
J

As a consequence, we find that 0 < r < 1 for all networks
with assortative mixing, zero in the absence of a mixing
structure, and -1 < r < 0 in the case of disassortative
mixing.*’

The definition is complicated by the fact that it has to deal
with directed networks. In the undirected case, the definition
is intuitive in that it considers only a single quantity, the de-
gree. The reader is referred to ref. 47 for the form of the un-
directed assortativity coefficient. When expanding it to di-
rected networks, the above given definition now measures
similarity in terms of two different quantities for a given
node pair, in-degree and out-degree. To alleviate this contra-
diction, Piraveenan et al. proposed an out- and an in-
assortativity, ro, and rj,, respectively, which now measure
the propensity to link to a node by considering only a single
property.*® This form shall be used in the further analysis:

: out out . ‘out
> k(e —aa™)

poo==

out O_;ng;)yut
4
k in __in_rin ( )
X ke —alg
fn = in__in

g4

out

where ej;" now is the probability distribution of a link from a

node with out-degree j going into a node with out-degree k.
¢;7"* remains the probability distribution of a link emanating
from a node with out-degree j while ¢ is the probability dis-
tribution of an edge going into a node of out-degree k. Fur-
thermore, 05" is the standard deviation of ¢ and 63" is
that of ¢;™". Similar definitions apply to r;,.

It appears to be the case that social networks are largely
assortative while biological and technological networks ex-
hibit disassortative mixing.'”***” The reason for the internet
displaying disassortative mixing is that the high-degree verti-
ces are connectivity providers, or directories, which by defini-
tion tend to connect to the “little people™.*” However, the ob-
served disassortative behaviour may be an artefact of the
sampling carried out.*”

Other authors caution that the often observed assortative
trend may simply be an artefact caused by the fact that many
of the studied cases were, in fact, implicit projections of bi-
partite networks. This illustrates the danger of placing too
much importance on generalisations about the assortativity
or disassortativity structures of given classes of networks, or
not considering how the studied data has actually been col-
lected and presented.*’

If the constraint that no two vertices may be connected by
more than one edge is imposed, then high-degree vertices

React. Chem. Eng., 2018, 3, 102-118 | 105
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seemingly repel one another, leading to disassortative
mixing. In the case of the internet, for example, crawlers of-
ten record websites linking to another website multiple times
only once. As a consequence, the observed behaviour, at least
in parts, may be an artefact of the chosen representation as
opposed to the underlying properties of the network.*”>°

2.4. Degree correlation

As can be observed from the previous section, the
assortativity of a network is closely related to the correlation
of degrees between connected vertices, ej. This correlation
can be further analysed by studying the nearest neighbour av-
erage connectivity, kun, which is related to the degree correla-
tion as follows, but is in practice easier to calculate than the
degree correlation:'”>">>

K (K) = 2HP(KK) (5)

where P(k'|k) is the conditional probability of a node of de-
gree k connecting to a node of degree k',>> and thus is an al-
ternate notation of ej.

2.5. Average shortest path length

The average shortest path length, or average shortest path

distance, ¢ is a metric useful in assessing a network's topol-

ogy. This is defined as follows:>***

- d(u.v)
AT ©
“where |F| is the set of distinct nodes u, v with the property
that the distance d(u, v) between u and v is finite”,”* thus ex-
cluding all unconnected nodes.

In 1967, Milgram described a phenomenon termed “small
world network”.>>>® It was first used in the context of “six de-
grees of separation”, the idea that any person could pass a
message to any other person via, on average, six other people.
Though the parallel to social networks might be striking, the
small world network phenomenon is by no means restricted
to an average shortest path length of six. More rigorously de-
fined, a network is considered to exhibit small world effects
if the average shortest path length scales with the logarithm

of the number of vertices, i.e. 7 o« logN or slower.'®?%3>57

2.6. Clustering coefficient

A related concept to that of whether well-connected people
are more likely to form friendships with other well-connected
people or not is the question whether the friend of your
friend is also your friend. By expressing this in graph theoret-
ical terms, it is often found in real networks that if vertex A is
connected to vertex B and vertex B to vertex C, then there is a
heightened probability of vertex A also connecting to vertex
C."® In order to express this mathematically, it is possible to
study whether the number of triangles in a network is greater
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than expected by measuring the mean probability that two
vertices that are neighbours of the same other vertex are

neighbours themselves.”® This is measured by the global
clustering coefficient, C, as follows:*®

C- 6 x number of triangles in the network

(7)

number of paths of length two

where a path of length two is a directed path, starting from a
specified vertex.

A useful modification of the clustering coefficient is the lo-
cal clustering coefficient calculated for each vertex i, c;, as pro-
posed by Watts and Strogatz."®* In the case of an undirected
network, it is defined as the fraction of the number of edges,
n; amongst the nearest neighbours of the given vertex i and
the maximum possible number of edges should all of node i's

neighbours be connected to each other, @:23’37’52'59
o= 2n, g
I k; (ki - 1) ( )

In this case, the network is directed, meaning that the di-
rection of the edges needs to be considered too, changing the
overall expression. The literature on the topic, however, can-
not agree on the equation for a directed network (ref. 43 and
60 use conflicting versions). The literature precedent of ref.
32 and 52 is followed in this study, and the network is
treated as undirected.

While the shortest path length gives a measure of the
number of friends in a typical chain of connections linking
two people, the clustering coefficient, continuing the simile
of social networks, can be described more intuitively as a
measure of how much the friends of user i are also friends
with each other, and thus provides an estimate of the “cliqu-
ishness” of a friendship circle.*®

Though this undoubtedly is a figure describing the net-
work topography, it is merely an average. A more interesting
question is how the clustering coefficient varies with a node's
degree.**?

Re-examining eqn (8), it becomes apparent that for a de-
gree of 1, ¢ needs to be defined as 0. Having done so, it is
possible to define the degree-dependent average clustering
coefficient, ¢(k):>>°*

F(k) =S, . )

n i

In eqn (9), n; denotes the number of nodes of degree &,
while the summation term is the sum of the clustering coeffi-
cients across all N nodes in the network; J;,  is the
Kronecker delta and k; is the degree of node i. The degree-
dependent average clustering coefficient in turn is related to
the average clustering coefficient, ¢, as follows:**

This journal is © The Royal Society of Chemistry 2018
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(10)

E=Zk:P(k)E(k)

2.7. Betweenness centrality

The betweenness of a given vertex i, b;, is the number of
shortest paths between all pairs of vertices in the network
that go through this vertex. If there are multiple paths be-
tween a given pair, then the paths that do pass through the
vertex contribute fractionally.>”

If we accept the supposition that the shortest path is an
indicator of the ideal route between two vertices, then the be-
tweenness of a given vertex is a measure of the amount of
traffic that it sees. Therefore, it is a measure of its centrality
in the network leading to the term betweenness centrality.””
Similarly, it is possible to define an edge centrality.'®*” This
concept has been discussed in intuitive terms since at least
1948.°> However, an algebraic definition was first published
only in 1977 by Freeman,®® in the context of relaying informa-
tion in a social network. If we take a pair of points, i, j, then
the number of shortest paths connecting these points, so-
called geodesics, shall be denoted by g(7, j). If we assume that
all paths are equally likely to be the path along which the
message is transmitted, then the probability of a given path

1
being used is m If we consider a point k, then the likeli-

hood that this point is along the path “chosen” by the mes-
sage is the number of geodesics between i and j on which k
lies, with g; (i, j) multiplied by the likelihood of any of these
paths being the “chosen” path.®® This value shall be called
partial betweenness of k, b;. (i, j):

.. gk(i’j)
D)

(11)

To determine the betweenness centrality of a point, k, with
regards to the entire network, we need to sum all the partial
betweennesses for all pairs of vertices where i # j # k:°>**

(12)

b= b(i.j)= —gk((i’JS)

i#j#k i#j#k g 15]

Calculating the betweenness centrality requires knowledge
of the shortest paths in the network. If this is unknown, a
search algorithm must instead be used. The betweenness of a
vertex or edge can also be expressed in terms of the likeli-
hood of it being visited by the used search algorithm."”

This measure is obviously sensitive to the number of
nodes in a network and the number of connections involving
k. Particularly the former can have an undesirable impact on
the meaning of the magnitude of the betweenness when com-
paring the value across networks. Freeman illustrates this
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with a short example: if we take a node i, in a network of five
nodes, with a betweenness value of b; = 6, and a node j in a
network of 25 nodes, also with a betweenness value of b; = 6,
then both points have the same importance in absolute
terms, when it comes to their ability to control communica-
tions. Their relative potential, however, is very different.
While i is involved in more than half of the communications,
Jj is only involved in slightly more than 1%.% It may therefore
be desirable to normalise b; by the number of pairs of verti-

(n—l)(n - 2):63
2

ces in the network, not including &,

b 2b,

) )

Another property of potential interest is the central point
dominance. It gives a measure of a network’s centrality to the
extent that a single point can control its communications. It
is defined as the difference in the normalised centrality of a
given point k, b;, and the normalised centrality of the vertex
v*, which is the vertex with the largest normalised between-
ness centrality, summed across all vertices, divided by the
number of vertices minus one:*?

bl.—b
b/ zl( v 1)

n—1

(14)

The central point dominance is, in other words, the aver-
age difference in centrality between the most central point
and all others, taking a value of 1 for a wheel or star, and
0 for a completely decentralised network where the centrali-
ties of all nodes are equal.®®

As mentioned previously, the internet is a major example
of a network whose suspected scale-free behaviour has been
extensively studied in the literature. The internet is composed
of central “backbones”, for example transatlantic cables,
connecting different regions, for example countries, that in
turn connect smaller subsections of the network, for example
regions within a country. As a consequence, one would expect
that the backbones would carry a greater load as a propor-
tionally greater number of connections in the internet might
be expected to run via these. Or, if analysing the internet in
terms of nodes rather than edges, one might expect that the
“entrance” and “exit” nodes carry a greater load. Though it
can be difficult to measure the load in a network, one might
expect that this variation of load, and the resulting hierarchy
of connections, might manifest itself in the structure of the
network itself. The question of interest here is whether the
hub molecules that have already been identified in the de-
gree analysis do indeed also carry a greater share of the load
of the network, which would provide quantitative evidence
for the existence of a hierarchy of nodes.

As outlined earlier, the number of geodesics running
through a given node, as measured by the betweenness
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centrality, can serve as a proxy measure for the load of a
given node in a network. In order to investigate a potential
hierarchical organisation, the average degree-dependent be-
tweenness is of greater interest. Mathematically, this quantity
is defined as follows:**

(15)

where J;, ; is the Kronecker delta which takes a value of 1
whenever the degree of node i equals to k and of zero other-
wise. The expression thus equals the sum, across all N nodes,
of the betweenness centrality of each node multiplied by the
Kronecker delta and divided by the degree distribution
function, P(k), and the number of nodes, N.

3. Methodology
3.1. Degree distribution

A network of reactions was constructed based on the reac-
tions contained in Reaxys.” All reactions involving limonene
as the reactant were downloaded. The choice of the starting
point in the data search was dictated by the specific problem
statement within a project on developing potential transfor-
mations of terpene sources as a waste bio-feedstock into use-
ful chemicals.™ All product species from these reactions were
individually queried to obtain all reactions starting from each
of these species. This was repeated to obtain data containing
four reaction steps to obtain a network of adequate size. This
was written to a file and incomplete reactions were deleted.
The data mapped the network explicitly, depicting all
contained products. Information about the reactants, how-
ever, existed only implicitly in so far as that they featured as
information in the reactions retrieved for the products, but
there was no guarantee that this was a complete set. To over-
come this issue an additional search was run and all species
that had been searched for as products were now searched
for as reactants too. Thus, it was ensured that a complete
and accurate picture of the reactions contained in Reaxys for
the species searched for had been obtained.

This process retrieved 50296 475 reactions. After removing
the duplicate entries in that list, 34260049 reactions
remained. This equates to close to 80% of reactions in Reaxys
at the time.®” In its early phases, Reaxys sometimes aggre-
gated reactions comprising several steps, created a new, du-
plicate entry for these and then marked these as multistep re-
actions to improve manual searchability. For this reason,
inclusion of the multistep reactions skews the network's sta-
tistics and, thus, they were excluded from the analysis set.
This brought the number of reactions down to 13770205.
Deletion of incomplete reactions, namely those that had ei-
ther no products or no reactants declared in Reaxys, left the
total number of reactions analysed at 12 939 422.

The condensed and sanitised data set was converted into
a network using Python scripts and an implementation of
graph-tool in Python2.7.°° This was carried out by assigning
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each chemical species contained in the data set as a vertex in
the network and then for each reaction connecting all reac-
tants to all products via a directed edge going from the reac-
tant to the product. Each node and edge was then annotated
with various properties, such as Reaxys IDs, to allow their
matching to a database entry. Multiple different wiring
schemes are of course possible, ranging from the “all to all”
scheme employed here on the one end of the spectrum to a
“one to one” scheme, where only the heaviest reactant and
product of each reaction are added to and linked in the net-
work resulting in only one edge per reaction. Fialkowski et al.
have carried out an investigation of the effects of the choice
of the wiring scheme on the properties of the network and
found them to be negligible.*®

In order to analyse the degree distribution, the in-degree
of every node in the network was then written to one file and
the out-degree to another file. Firstly, given the fact that a
power law is undefined for a value of k£ = 0, all nodes that
had a degree of 0 were deleted from the respective file. Subse-
quently, the data were analysed using the Python package
“powerlaw” in Python2.7.%”

Seeing as the degree distribution is necessarily discrete,
discrete=True the code and
estimate_discrete=False. Furthermore, it was specified that
kmin = 1.0 as this represents the lowest possible degree a
node can have under the power-law model. The “powerlaw”
package was then used to fit the data to a power-law model.
An important fact to bear in mind is that the probability den-
sity functions (pdf) of heavy-tailed distributions are notori-
ously noisy in their tail as the number of observations of a
given value, in this case the degree, is very low in the tail.
This makes it more convenient to use cumulative distribution
functions (cdfs), expressing the likelihood of observing a
value less than or equal to the given value.”>*”*® Using the
cdf, it is possible to determine the slope, 1 — y, and thus the
degree exponent with far greater accuracy compared to using
the degree distribution, while also showing possible trunca-
tion of the tail more clearly.® The other approach towards
smoothing out the fluctuation in the tail of the pdf is to use
binning if employing bins of exponential length.®® Both tech-
niques were employed here.

Perhaps more relevant is the question whether the data is
best described using a power law. The log-likelihood ratio be-
tween two candidate models, R, was computed along with its
significance value (p-value) using the “powerlaw” package.®’
A positive value of the logarithm of the ratio of the likelihood
of the first distribution and the likelihood of the second dis-
tribution indicates that the data is more likely to be de-
scribed by the first distribution, in this case a power law, and
a negative value indicates that the other candidate model
provides a better explanation.®”®® Though R gives us an esti-
mate of which distribution is more likely, it, like any other
quantity, is subject to statistical fluctuations. Thus, if the true
value of R is close to zero, a fluctuation can lead to a sign
change, meaning that we cannot trust the value of R.®® For
this reason, we also require the p-value as a measure of

was set in
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whether the observed sign of R is statistically significant. This
means that if we observe a small value of p (ref. 68 suggests a
cut-off of 0.1, in ref. 67 a cut-off of 0.05 was suggested), it is
unlikely that the sign of R is the result of a chance fluctua-
tion and, hence, is able to tell which model is favoured. If
the p-value is large, the sign is most likely the result of a sta-
tistical fluctuation, and the test does not favour either model
as a description of the observed data.

The defining feature of a power law is the fact that it dis-
plays a heavy-tailed distribution. For this reason, the good-
ness of fit using a power law is compared to that of a lognor-
mal distribution and a stretched exponential distribution,
which both exhibit heavy tails without following a power
law.®” By definition, a heavy tail is not exponentially
bounded. Thus, if the data is described more accurately by
an exponential distribution, there is little argument for ob-
serving a heavy-tailed distribution, meaning that the data
does not follow a power law.®” Finally, a truncated power law
is tested for, representing a mixture of the exponential distri-
bution and the power law.%”

3.2. Assortativity

The assortativity was calculated for both the in- and the out-
degree as well as the combined degree using a function
implemented in graph-tool. This was done both when
allowing parallel edges and when allowing only one edge so
as to allow conclusions about the wiring scheme's impact on
the value of the assortativity.

3.3. Degree correlation

In practice, eqn (5) can be evaluated more easily by averaging
the degree of all nearest neighbours of all nodes of degree k
for all values of k, which can then be plotted against each
other. If no correlation exists between the two degrees, kny
(k) will be independent of k (ie. r = 0),°"*>°* while an in-
creasing function in k corresponds to assortative mixing and
a decreasing function to disassortative mixing.">**%* For a
perfectly assortative network, one would expect the points to
fall onto the x-y diagonal. Naturally, this function can be cal-
culated for the in-, out- and total-degree. The results of doing
so will be shown subsequently.

3.4. Average shortest path length

The average shortest path length of the network under inves-
tigation was computed using the “distance_histogram” func-
tion in graph-tool,*® generating the number of shortest paths
of a certain length existing in the network, which thus allows
computation of ¢ . Similar to the degree distribution, it is pos-
sible to plot the probability distribution of obtaining a given
shortest path length, P({), against the shortest path length, ¢,
which was also carried out.

In order to analyse the variation of ¢ with the number of
nodes in the network, all nodes were labelled with the date
in which they first appeared in this network. Seeing as the
publication dates of all the reactions in the network were re-
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trieved from Reaxys, the earliest date of all edges incident
and emanating from a given node was determined and used
to label the given node. With this information, it was then
possible to progressively add nodes and edges to the network
by stepping forward in time and observing the change in 7.
The network corresponding to the year 1900 contains 106 224
nodes gradually increasing to 12238 929 in the year 2016.

The distance histogram function allows computation of
the histogram based on a pre-defined number of random
samples of vertices drawn from the network, which was nec-
essary in this case to reduce the overall computational time
as, due to the very large size of the network, direct computa-
tion would be prohibitively expensive.

To analyse the variation in results with the number of
nodes sampled, a number of trials were conducted, the re-
sults of which can be found in Table 1. In this case, a section
of the NOC was used containing a total of 9012 439 nodes.

As can be seen very clearly from Table 1, the deviation
from the actual value of ¢ is minor even when sampling only
10000 nodes, or 0.11% of the total network, with the devia-
tion amounting to only 0.61%. When sampling roughly 3%
of the nodes in the network, the error drops to around 0.10%
while requiring a computational time of only 28 minutes.

Consequently, it was decided to sample 3% of the nodes
for the study of the variation of ¢ with the number of nodes
in the network providing a good trade-off between accuracy
and speed.

In order to compute the average shortest path length for a
number of given points in time, the network was sampled as
described above and the average shortest path length was
computed using eqn (6). This was repeated three times for
each point in time, calculating the mean of the three values
and the standard deviation. The standard deviation of these
three points was used to give an idea of the spread of the
measured samples.

Table 1 The average shortest path length, 7 and the required compu-

tation time for a given number of nodes sampled out of a sample net-
work comprising a total of 9012 439 nodes. These values were computed

Mx 100 gives
/fmal

the deviation of the current value from the value when sampling all

nodes in percent

using parallel processing on up to 24 cores. Al =

AT

Number of  Fraction of sampled Computation
samples nodes [%] 7 [%] time [s]
10000 0.11 5.301 0.61 79
75000 0.83 5.227 -0.80 550

100 000 1.11 5.313 0.84 705
250000 2.77 5.273 0.08 1700
500000 5.55 5.277 0.15 3243
750000 8.32 5.277 0.15 5940
1000000 11.10 5.272 0.06 11297
3000000 33.29 5.274 0.09 26179
6000000 66.57 5.269 0.00 57565
9012439 100.00 5.269 0.00 87031
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3.5. Clustering coefficient

In order to analyse the clustering observed in the network,
firstly, the global clustering coefficient was calculated using
graph-tool. Next, in order to analyse the degree-dependent aver-
age clustering coefficient, the local clustering coefficient of each
node was calculated in graph-tool. Having done so, a loop
was written to cycle through all nodes in the graph. For each
node, its total degree (as the local clustering coefficient has
been defined for an undirected network, the combined degree
needs to be used in the case of a directed network) and the pre-
viously calculated local clustering coefficient were looked up.
The local clustering coefficients of all nodes of k = 1 were writ-
ten to a list, those of all nodes of k = 2 to another list, and so
forth. Finally, the average local clustering coefficient in each list
was calculated. This yielded a set of average local clustering co-
efficients for each degree existing in the network, making it
possible to plot the average degree-dependent local clustering
coefficient.

3.6. Betweenness centrality

The betweenness centrality was calculated using graph-tool
and subsequently the betweenness centrality value for
each node was written to a text file. Having done so, these
values were imported into “powerlaw” where a power law was
fitted to the values assuming a continuous distribution. Simi-
larly, “powerlaw” permits the fitting of a power law to only
parts of the parameter range of b;. For any given fit, the log-
likelihood ratios and p-values were produced in “powerlaw”
for a power law and the competing candidate distributions.

Eqn (15) is equivalent to plotting the sum of the between-
ness centrality values, of all nodes of degree k, divided by the
number of nodes of degree k against k for every value of k ob-
served in the network. This was done for both in-degree and
out-degree using functions implemented in graph-tool
and plotted. Error bars shown in the graphs correspond to
the standard deviation of the set of b; values observed for a
given value of k.

4. Results and discussion
4.1. Degree distribution

Having converted the raw data into a network, an incredibly
sparse network is obtained. The network contains 12238931
nodes and, if permitting parallel edges, 27872169 edges.
This would lead to a density, the ratio of existing edges to
possible edges,"® of 1.86 x 107, If allowing only one entry for
each reaction, regardless of whether it has been reported un-
der several conditions or not, the number of edges drops to
24884365, which leads to a density of 1.66 x 10~". In both
cases, the density is very low with only a fraction of mathe-
matically possible edges existing in the network. Hence, the
chemical space recorded in the current data, on average, is
very sparsely connected.

Based on the above data, the average degree for this net-
work is found to be roughly two, meaning that each node
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has, on average, two connections, which could chemically
correspond to the immediate precursor and a further prod-
uct, or two precursors, or two decomposition products. How-
ever, due to the large range of degrees and their power-law
distribution, the average degree is a highly uninformative
metric in the case of a scale-free network, meaning that both
the average degree and the density are limited in their
usefulness.

Simply counting the number of occurrences of a given de-
gree and plotting it as a histogram, as has been done in
Fig. 3 and 4, can reveal the first pieces of information about
the type of network at hand. In this case, it appears to be fol-
lowing a power-law decay, which might hint at a scale-free
network architecture. However, a more thorough investiga-
tion is required before drawing such a conclusion, which was
done by analysing P(k) to determine .

In the case of the out-degree, ko, Your Was estimated to be
Yout = 2.1, which produces good agreement between the data
and the model (see Fig. 5). This also agrees well with the
values from the literature.*°

Table 2 shows the R values normalised by their standard
deviations along with the p-value of each R value. For several
large values of R, the p-value is zero. This is most likely
caused by the p-value being so small as to be rounded to zero
by the software, as might be expected if the normalised R
value deviates greatly from zero. The only distribution scoring
a negative log-likelihood ratio in Table 2 is that of the trun-
cated power law which, in addition, scores a very large
p-value. Consequently, neither distribution provides a signifi-
cantly stronger fit for the data analysed. This means that the
observed data does indeed follow a power law for very large
parts, though the possibility of a truncated tail does exist,
which is a feature of many real networks exhibiting scale-free
behaviour.>**#3%:527%71 Thig would confirm the network be-
ing as a scale-free network.

In the case of the in-degree, k;,, the picture is more com-
plicated. Grzybowski et al. reported a y;, of 2.7, though as evi-
dence only show a degree histogram with a line following a
power law with a degree exponent of 2.7 drawn through it.°

106 = 1?6
6 4
10° - =
34
1041 S .
5 10° 2]
o .. — '
1024 5 10 15
- Out-degree, kout
1004 S r——— S
10

100 10! 102 10° 10 10°
Out-degree, kout

Fig. 3 A histogram plot for the out-degree of the limonene network.

The inset in the image is a subplot showing a magnification for the de-

gree range from k = 0 to k = 15.
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Fig. 4 A histogram plot for the in-degree of the limonene network.
The inset in the image is a subplot showing a magnification for the de-
gree range from k = 0 to k = 15.
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Fig. 5 Plkou) Vs. kout after estimation of yo, carried out with
“powerlaw” when excluding multi-step reactions and setting kmin = 1.
Curves labelled “pdf” are probability density functions giving the prob-
ability of observing a given value of k. “cdf” denotes the cumulative
distribution function, giving the probability that the in-degree will be
less than or equal to k. “ccdf” is the complementary cumulative distri-
bution function giving the probability of the out-degree being greater
than k. If a curve additionally carries the label “empirical”, this denotes
that this is the actual observed data while a curve not carrying this la-
bel shows the model's values.

Table 2 The log-likelihood ratio for a power law compared to a number
of other candidate distributions potentially describing the probability of
observing a given kot

Candidate distribution 1 Candidate distribution2 R p

Power law Lognormal 80 0.00
Power law Exponential 153 0.00
Power law Truncated power law 0 092
Power law Stretched exponential 19 4.18x107%
Power law Lognormal positive 287 0.00

The absence of a line of best fit to the actual probability dis-
tribution, contrary to what is claimed, and of a cdf compli-
cates verification of the claimed goodness of fit.

Running a parameter estimation using a power law
returns a value of k;, = 1.8 which, as can be seen in Fig. 6,
produces a very poor fit. Setting ki, at higher values pro-
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duces better fits as can be seen in Fig. 7 where ki, = 3 pro-
duces the best fit and yields y;, = 3.0 (the plots for k., values
of 2, 4, 5, and 6 can be found in the ESIf under Fig. S1
through S4). Closer observation of the raw data, particularly
the inset in Fig. 4, reveals that the data deviates significantly
from the trend expected in a power law in that an in-degree
of 2 is significantly more likely to occur than any other de-
gree. More precisely, there are 6866586 nodes with an in-
degree of 2 but only 1770420 with an in-degree of 1. This de-
viation from the straight line at k;, = 2 can also be observed
in the literature data.® This is caused by reactions being far
more likely to involve two reactants than to involve only one.
As a consequence, the points for ki, = 1 and k;, = 0 obscure
the power-law trend of the rest of the data.

Analysing the goodness of fit of the power law to the data
for kmin = 3 compared to that obtained using the same candi-
date distributions as those for k., previously, it becomes ap-
parent that P(k;,) similarly follows a power law, as can be
seen in Table 3, though the option of the truncated power
law, statistically speaking, remains here too.

Analysing the data on the degree distribution of the chem-
ical network, it is apparent that it does indeed follow a power
law and that the power-law exponents are y,, ~ 2.1 and y;, =
3. The data on the degree distribution does support the con-
clusion of the network being scale-free, presented in the liter-
ature, even though the in-degree exponent found here devi-
ates from the literature data. Scale-free networks evolve
according to a process called “preferential attachment” which
means that a node’'s likelihood to form a new link in the fu-
ture is directly proportional to its degree.>*” Therefore, if
the network is indeed scale-free, chemical species that par-
take in a large number of reactions are likely to continue
growing more quickly than other species causing the forma-
tion of hubs and the core-periphery structure observed for
scale-free networks. The significance of the fact that the
chemical reaction network conforms to the structure of a
general scale-free network is that it follows well-defined evo-
lutionary patterns allowing their use to make predictions
about its further, average growth.®>* It also means that due
to the existence of hubs, distances between two molecules in
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Fig. 6 Plot of P(ki,) for kmin = 1.0.
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Table 3 The log-likelihood ratio for a power law compared to a number
of other candidate distributions potentially describing the probability of
observing a given ki,

Candidate distribution 1 Candidate distribution2 R p

Power law Lognormal 104 0.00
Power law Exponential 78 0.00
Power law Truncated power law 0 095
Power law Stretched exponential 18  2.61 x 107
Power law Lognormal positive 95  0.00

the network are significantly reduced, a fact that is of crucial
importance in our use of synthetic chemistry.*® Scale-free net-
works also represent a very well-investigated class of net-
works, providing a wealth of possible comparisons to other
networks and a large corpus of methods and theories that
could be applied to and tested on this network.

4.2. Assortativity

Looking at the results in Tables 4 and 5, it can be observed
that the choice of whether or not to include parallel edges
turns the network from an assortative to a disassortative net-
work, respectively. In both cases, the absolute magnitude of r
is statistically significant but very small, tending towards
zero. This indicates that no very strong structure exists to the
mixing patterns.

The choice of whether to register multiple instances of the
same reaction separately thus clearly matters. Doing so essen-
tially records different ways of carrying out the same reaction.
This is very useful information. However, the entire chemical
space has not been explored, and even in cases where a reac-
tion has been explored exhaustively, the choice of which set

Table 4 The assortativity coefficient, r, and its standard deviation, o, for
the different degree types for the network permitting parallel edges

Degree type r o
Out 0.009008 0.000197
In 0.070432 0.000346

Undirected (in + out) 0.011679 0.000203
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Table 5 The assortativity coefficient, r, and its standard deviation, o, for

the different degree types for the network when not allowing any parallel
edges

Degree type r o
Out -0.0121 0.000082
In -0.00783 0.000115

Undirected (in + out) -0.01269 0.000081

of experiments to register separately is arbitrary. What is of
interest in this analysis is the overall connectivity between
molecules. Including multiple edges for some of the reac-
tions and not for others would skew this picture, as can be
seen in Tables 4 and 5, thus it was decided to register each
reaction only once for this part of the work.

Therefore, by examining the results in Table 5, it can be
concluded that the Network of Organic Chemistry, in this
wiring scheme, exhibits disassortative mixing and thus seems
to conform to the trends of biological and technological net-
works observed in the literature.”>*” Though it must be
borne in mind that this is heavily influenced by the wiring
scheme. Since the assortativity coefficient can vary from -1 to
1, with a value of 0 indicating no structure to the mixing pat-
tern, it is clear that a value of —-0.008 for the in-degree and
—0.012 for the out-degree only marginally deviates from zero,
leading to the conclusion that the mixing structure observed
is very weak and only marginally disassortative.

In terms of chemical interpretations, this implies that,
when considering only the connectivity, molecules seem to
exhibit little preference as to whether to connect to a hub or
a molecule in the periphery. In fact, when considering only
the degrees as a metric, there is little structure to the connec-
tivity apparent at all, meaning that a highly versatile platform
molecule, for example, is just as likely to react into a highly
specialised molecule as it is to yield another platform mole-
cule. This of course is an average metric and when using an
average across some 12 million species to try and condense
their reactivity trends into a single figure, one might be not
surprised to find that the results show very few trends. In-
deed, it is the case here that the average hides processes go-
ing on within subsections of the chemical space, as will be
shown in the following section. However, it was very useful in
determining a coherent approach to dealing with multiple in-
stances of the same reaction in the network.

4.3. Degree correlation

Examining Fig. 8 in detail, the observed trend for the correla-
tion between out-degrees seems to be separated into roughly
two regions. Firstly, there is a region relatively independent
of k, which roughly coincides with the area to the left and
above of the x-y diagonal in which low degree nodes connect
to higher degree nodes.

What is observed here most likely is the conversion of
feedstocks, which are more specialised and thus have a lower
connectivity, into highly connected platform molecules. This

This journal is © The Royal Society of Chemistry 2018


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c7re00129k

Open Access Article. Published on 19 January 2018. Downloaded on 7/13/2025 11:58:07 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Reaction Chemistry & Engineering

105

= =
o o
w >

=
o
~

Average target out-degree

101

-2
1010'1 10 10! 102 10® 104 105 10°¢

Source out-degree

Fig. 8 The average degree of the nearest neighbours for all nodes of
degree k across all values of k for the out-degrees. The straight line
shows the x-y diagonal.

would explain the connectivity of the less connected nodes to
the more connected ones.

To the right of the x—y diagonal, we observe a high degree
of scattering. The reason for this is two-fold. On the one
hand, this region lies in the tail of the degree distribution
and thus, due to the smaller number of nodes with high de-
gree counts, sees a higher degree of noise. On the other
hand, this region maps two processes taking place: (1) the
conversion of highly connected platform molecules to other,
also highly connected, platform molecules, i.e. the conversion
of intermediates into intermediates along a synthesis route,
and (2) the conversion of highly connected platform mole-
cules into specialised products with a resulting lower degree
count, which is a disassortative mixing process. Seeing as the
majority of nodes lie in the low degree region, where the cor-
relation is independent of k, this results in an assortativity
coefficient close to 0, while the region exhibiting the
disassortative scattering would result in a slightly negative
value. Thus, the plot matches the pattern expected from the-
ory. Furthermore, the existence of these separate regions and
the different functions fulfilled by different nodes also indi-
cates the likely existence of some degree of hierarchy
amongst the nodes.

The pattern in Fig. 9 shows very little correlation to k.
Given an in-degree assortativity coefficient value of -0.0078
found in the previous section, this matches the trend
expected, or rather the absence thereof, very well. The tail of
the distribution again exhibits some degree of scattering,
which would also be expected due to the signal-to-noise ratio
deteriorating as the number of nodes in that region de-
creases. This plot confirms the results obtained when calcu-
lating the assortativity coefficient, namely that no significant
degree correlation exists for the in-degree.

Taking the results of this section and the preceding section
on “Assortativity” together, the conclusion of a mildly
disassortative network with little mixing structure in large parts
is supported by investigating both the assortativity coefficient
and the degree correlation, while also providing some indication
of the existence of a hierarchical structure within the network.
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Fig. 9 The average degree of the nearest neighbours for all nodes of
degree k across all values of k for the in-degrees. The straight line
shows the x-y diagonal.

4.4. Average shortest path length

As can be seen from Fig. 10, the value of P(¢) peaks at a value
of 5, though due to the number of longer paths the average
is skewed to the right of this. The average shortest path
length of the network in the year 2016 is 6.02. On logarithmic
axes (Fig. 10), it becomes apparent that this shift is caused by
a small peak for a path length falling between ¢ = 50 and ¢ =
60, most likely caused by the existence of a poorly connected
set of molecules in an island in the network.

This value of / means that it is possible to synthesise any
species out of any other species, on average, within a maxi-
mum of six synthesis steps, which might be perceived as a
surprisingly small number though the parallel to the “six de-
grees of separation” observed by Milgram in social networks
is immediately apparent.®>”®

In order to investigate the existence of a small world effect
more closely, the results of the analysis of the variation of ¢
with the number of nodes in the network were plotted and
are shown in Fig. 11.

When replotting Fig. 11 using a logarithmic scale the aver-
age shortest path length does scale logarithmically with

10°

Probability, P(£)

10-104

10124

10-14 7 .
10° 10! 102

Shortest path length, £
Fig. 10 Probability distribution of the shortest path length, P(e),
plotted against the shortest path length, ¢, on logarithmic axes. The
data points have been marked by dark orange dots.
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respect to the number of nodes, while even obeying a propor-
tionality with loglog N, a supposed hallmark of scale-free net-
works with degree exponents 2 < y < 3,>*3° as can be seen in
Fig. S7 and S8 in the ESL;} respectively. However, there exists
ambiguity about the precise scaling relationship for networks
with power-law distributions."®

It can therefore be concluded that the Network of Organic
Chemistry, as investigated here, does indeed display a “small
world” effect. Though very interesting in giving information
about the topology of the network, the small world effect tells
us little about the organising principle of a given network as,
for example, random networks can display this property
too.>® The importance of this property, however, is illustrated
by the fact that if the Network of Organic Chemistry were, for
example, organised as a grid, the average shortest path
length would scale with the square root of the number of
chemical species registered, thus greatly increasing the num-
ber of reactions required to synthesise a species, on average.
Though as an average the path length of 5-6 steps does not
provide a hard-and-fast criterion for synthetic efficiency, it
might serve as a point of comparison when designing a new
synthesis route. A route significantly deviating from this fig-
ure significantly deviates from the average, meaning that, un-
less the synthesis is in a highly specialised niche, potential
for a shorter route might exist. The analysis of the degree cor-
relation above also suggested that synthetic routes quickly
move through a few well-connected ‘hub’ molecules towards
the more specialised end-molecules, which is what appears
to have been confirmed here, represented by the relatively
short lengths of most routes.

4.5. Clustering coefficient

In the case of the network under investigation, the global
clustering coefficient is 0.00058 with a standard deviation of
8.61 x 10 °. For many real-world networks, the value ranges
between 0.01 and 0.5,”””> making this a network showing a
very low degree of clustering.

For some scale-free networks, power-law behaviour is
evidenced for ¢(k) in that ¢(k) o«c k."®> In a number of publi-
cations by other authors, it is shown that this is a characteris-

< . »
5 6.0 e R
c 220"
o -z
-~
S 55 ¥
©
Qo
ey .
] H
8501 .
5]
£ -
v -
g 457
© z
[ z
> z
< 4.0 T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2

Number of vertices [x107]

Fig. 11 The average shortest path length for a given network size
against the number of nodes of that network size.
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tic of hierarchical networks,??>37:4042:4 which can be con-
sidered a sub-class of scale-free networks, though Soffer and
Vazquez presented some evidence that this trend could arise
out of the existence of degree correlations which shows up as
a consequence of how the clustering coefficient is defined.**
Following the initial argument, however, this scaling relation-
ship provides a quantitative indicator of the existence of a hi-
erarchy of nodes with different degrees of modularity.” Spe-
cifically, this behaviour is caused by low-degree vertices
forming small, internally well-connected sub-communities
(which gives rise to a high clustering coefficient), linking out
to high-degree hubs which only have few edges connecting
them to the many sub-graphs that they link to and thus have
a low clustering coefficient.>**>**

The results of calculating the degree-dependent average
clustering coefficient have been plotted in Fig. 12. It is easily
apparent that ¢(k) approximately follows a proportionality to
k™" too, which would be evidence of a hierarchical network.??
The clustering coefficient for k = 2 and k = 3 exhibits a visible
deviation from the rest of the trend. The reason for this is
that these nodes in most cases will represent highly
specialised substances participating in very few reactions and
thus residing in the periphery of the core-periphery structure
of a scale-free network, which leads to a lower clustering coef-
ficient and, consequently, a decrease of the average clustering
coefficient for the concerned degree classes.

As given in Fig. 12, it can be concluded that the network
does follow the trend expected of a hierarchical network
reinforcing the conclusions about a hierarchical network
architecture.

4.6. Betweenness centrality

The central point dominance of the network was found to be
0.003719. This would indicate that despite the existence of
hub molecules, the wiring of the network is very
decentralised, not necessarily relying on central hubs in or-
der to navigate the network. As seen from the definition in
eqn (14), this is an average property and, given the size of the
network, may hide significant deviations. In the following, re-
sults of the betweenness centrality analysis are given. Unlike

=
o
©

1072

1074

10-6

1078

clustering coefficient, ¢(keotar)

Degree-dependent average

10-10 4 ; - T T i

10° 10! 10? 103 104 10°
Total-degree, Ktotal

Fig. 12 The degree-dependent average clustering coefficient against

the total degree, k. The solid line shows a plot of k™ for comparison.
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the values used to calculate the central point dominance, the
values given subsequently have not been normalised.

Goh et al. observed that though the degree distribution of
a scale-free network does follow a power law, with an expo-
nent in most cases of 2 < y < 3, the exact value varies with-
out being able to precisely classify why. Goh et al., however,
observed that in scale-free networks, the betweenness distri-
bution follows a power law too. The exponent of this power
law took one of two values, either # = 2.2 or = 2.0. With
this, Goh et al. had a more precise metric for characterising a
given scale-free network which led to their characterisation of
class I or class II scale-free networks based on the value of
the power-law exponent of the betweenness distribution.”
These findings are similarly supported in ref. 52 where
Pastor-Satorras and Vespignani reported that certain layers of
the internet exhibit a power-law distribution in the between-
ness centrality. This distribution, however, truncates for high
betweenness values.

As is clearly visible when plotting the vertex betweenness
centrality for the network under investigation, this is not
straightforwardly the case here. Examining Fig. 13, it be-
comes apparent that at least three regions are present.
Firstly, below a betweenness value of 1, the probability of ob-
serving a given betweenness is constant. The plot then enters
a second regime, visually obeying a power-law trend. Between
5 x 10° and roughly 5 x 107, the curve enters what might be
considered a transition region marked by large fluctuations in
the probability values, before finally settling back into what
resembles a power law by visual inspection before finally
exhibiting further fluctuations due to the heavy tail. The ob-
servations of discrete regions might be caused by the already
observed difference in degree distributions for the in- and
out-degrees combined with the fact that the out-degrees ob-
served exhibit a greater range of values while the in-degrees,
generally, have a smaller magnitude as can be seen in Fig. 3
and 4. Thus, as high degree nodes become more important
in the observed phenomena, a different distribution would
be expected to start dominating, leading to a different
regime.

100
1072
10—4 4
10—6 4
10-8
10—10 4

P(b)

10-12 4

1034

_16 ccdf_empirical

10 pdf_empirical

1018 T T T T T

1072 10° 102 10* 10° 108
by

1610 1012

Fig. 13 The probability density function and the complementary
cumulative distribution function of the betweenness centrality plotted
against the betweenness centrality.
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Examining the regions more closely, it becomes apparent
that there are indeed two separate phenomena at play, which
was also observed for some layers of the internet.”> The first
regime, when analysing 1.0 < b; < 5 x 10°, has a reasonable
fit for a power law with y = 1.14 as seen in Fig. S5 in the
ESL} Analysing the results of the statistical evaluation of the
goodness of fit compared to other candidate distributions
(following the same procedure as outlined in the Methodol-
ogy section for “Degree Distribution™), which can be found in
Table 6, it becomes apparent that the fit is very poor, provid-
ing only a better description than the exponential distribu-
tion of all the distributions tested. This means that it is im-
possible to conclude that the data observed follows a power
law in this region.

The predicted value for y appears much better, and in line
with literature expectations, at y = 1.97, when considering
the other regime with 5 x 107 < b, as is seen in Fig. S6 in the
ESL} This would agree well with the findings quoted in ref.
73. If the ability of a power law to describe the trend is com-
pared to that of other possible distributions, the picture is
much less clear, however. Considering the results of this
analysis, shown in Table 7, it can be noted that the power
law provides an ability to describe the data better than the ex-
ponential distribution can, which is statistically significant.
Though the R-value of the comparison to the stretched expo-
nential distribution favours the latter, the p-value of 0.07 ren-
ders the comparison potentially inconclusive. The truncated
power law provides a seemingly better description than the
power-law distribution. This result, however, does not neces-
sarily conflict with the claim of the distribution exhibiting a
power-law behaviour, as the distribution is truncated. The
fact that the lognormal distribution, as well as the positive
lognormal distribution, describes the data better would cast
doubt on the existence of a heavy tail. This could, however,
be a consequence of the distribution being fitted to the tail
end of the overall distribution.

As a consequence of these data, it is concluded that the
investigated network's vertex betweenness centrality probabil-
ity distribution does not obey a straightforward power law. It
seems as if different regimes can be observed. Analysing
these regimes in turn leads to partially inconclusive results
unable to verify the hypothesis that the network's scale-free
behaviour manifests itself in the betweenness centrality dis-
tribution as well as in the degree distribution. A potential
cause for this could lie in the different behaviour of the in-
coming edges compared to the outgoing edges already

Table 6 The log-likelihood ratio for a power law compared to a number
of other candidate distributions potentially describing the probability of
observing a given by when fitting for 1.0 < b, < 5 x 10°

Candidate distribution 1~ Candidate distribution 2 R P

Power law Lognormal -892  0.00
Power law Exponential 595  0.00
Power law Truncated power law -1523  0.00
Power law Stretched exponential -950  0.00
Power law Lognormal positive -892  0.00
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Fig. 14 The average degree-dependent betweenness calculated for
the in-degree against the in-degree. The error bars show the standard
deviation of the data associated with each average.
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Fig. 15 The average degree-dependent betweenness calculated for
the out-degree against the out-degree. The error bars show the stan-
dard deviation of the data associated with each average. To summarise
this section, a brief overview of the results of each of the metrics is
given in Table 8.

observed during the analysis of the degree distribution and
in their mixing behaviour.

Examining Fig. 14, as well as Fig. 15, it can be seen that
there is a very clear, positive correlation between the degree
and the average betweenness centrality of those nodes, for
both the in- and the out-degree. In chemistry terms, this
would support the hypothesis that not only do the central,
highly connected hub molecules combine a large number of
connections upon themselves but also a large share of the
geodesics in the network. Thus the load appears to run via
them and a vast majority of synthesis routes would go
through a small number of very important hub molecules.
Given this, a very clear hierarchy can be observed in the
nodes of the network. Though there is no indication for the
existence of distinct hierarchies, there clearly is a fluid hierar-
chy of nodes. Very interestingly, this matches precisely the

Table 7 The log-likelihood ratio for a power law compared to a number
of other candidate distributions potentially describing the probability of
observing a given by when fitting for 5 x 107 < b,

Candidate distribution 1 Candidate distribution2 R p

Power law Lognormal -8 5.59x107'°
Power law Exponential 16 9.73 x107>°
Power law Truncated power law -2 1.55x107%
Power law Stretched exponential -2 0.07

Power law Lognormal positive -8 5.59x107'°
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Table 8 An overview of results of the network analysis using different
graph theory metrics

Metric Finding

Degree distribution
Assortativity

Degree correlation

Average shortest path length
Clustering

Betweenness centrality

Largely scale-free behaviour

Very mild disassortativity

Very mild disassortativity
Small-world, on average six steps
Power-law dependence on degree
Apparent hierarchy of nodes

findings of Pastor-Satorras and Vespignani for the internet.”
As the current network evolved largely from petrochemical
syntheses, it may be an interesting research question if the
increased use of bio-feedstocks and rapid development of
novel transformations of bio-feedstocks would lead to a sig-
nificantly different structure of the network with new hub
molecules.

Conclusions

A number of key graph theoretical properties of this network
were analysed. The Introduction has presented an overview
of some of the types of networks studied in the literature. In
Results and discussion under “Degree distribution”, the anal-
ysis of the degree distribution is given along with the degree
histogram for the nodes of the network and the sections on
“Assortativity” and “Degree correlation” show results on the
assortativity of the network and the degree correlation be-
tween nodes. The results section on “Average shortest path
length” has looked at the change in average shortest path
lengths as the network grows as well as the probability distri-
bution of observing a given path length. Also in Results and
discussion, the section on the “Clustering coefficient” looked
at the degree-dependent clustering coefficient before con-
cluding the results with the degree-dependent betweenness
centrality in “Betweenness centrality”.

An important conclusion from the results section on “De-
gree distribution” is that the in-degree distribution is offset
and deviates from a power law for degrees less than two
which can also be observed in the literature on the topic.*®
Regardless, a statistically validated trend fitting a power law
could be ascertained for both distributions with y;, = 3 and
Yout =~ 2.1. Though the value for y;, deviates from that
reported in the literature, it is possible to conclude that the
network is indeed scale-free in nature confirming what has
been reported previously.*®

The results section on “Assortativity” was able to provide
important evidence for the effect that parallel edges have on
some of the network dynamics involved. This revolves around
the question whether to register the same reaction reported
separately under different conditions as one reaction or as
separate instances. Not permitting parallel edges, and thus
registering each reaction only once regardless of conditions,
was seen as the most consistent approach which thus meant
that the network was very slightly disassortative. This finding
was supported by the results section on “Degree correlation”
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which also provided evidence for a hierarchical network ar-
chitecture. Neither property has been investigated for the
NOC in the literature previously.

Analysis of the network's average shortest path length's
dependence on the number of nodes in this network was able
to show that the NOC exhibited a “small world effect” which,
through its short path lengths, provides further indications
of a possible hierarchical architecture. In addition, the analy-
sis of the average shortest path length showed that the net-
work of organic chemistry resembled the six degrees of sepa-
ration observed in Milgram's seminal paper on social
networks. The clear power-law proportionality between the
degree-dependent average clustering coefficient, ¢, and the
degree also showed that the nodes of the network exhibit a
very fluid hierarchical structure. Both of these represent
interesting new findings.

This evidence for a hierarchy of nodes was finally most
clearly confirmed in Fig. 14 and 15 in the results section for
“Betweenness centrality” analysing the betweenness values
observed in the network, which had not been done on the
NOC prior to this. This data showed very clearly that the hub
molecules do not only combine a large share of connections
upon themselves, as identified as part of the scale-free model
already, but seemingly also carry a large share of the “load”
of the network, clearly indicating that a hierarchy of nodes
exists and manifests itself in a number of ways.

It can be observed that several key network metrics seem
to indicate a hierarchy, even if fluid, of nodes across the
range of their parameter space while showing some of the
hallmark characteristics set out in the literature for hierarchi-
cal networks. Therefore there is evidence supporting the con-
clusion that the Network of Organic Chemistry, as observed
here, not only is scale-free but also displays a hierarchical ar-
chitecture which represents a novel finding about the archi-
tecture of chemistry.

In answer to the question at the outset of this paper, it
can thus be noted that the network not only is indeed scale-
free, but also exhibits small world behaviour while further-
more providing evidence of a hierarchy of nodes in its
topology.

Studying the statistical properties of the network has
yielded a number of insights into the statistical behaviour of
the network of organic reactions. The finding that the known
chemical space organises into a scale-free network means
that it is possible to, on average, predict how the number of
reactions that a given chemical species participates in will
evolve as new reactions are discovered in the future. At the
same time, it has been found that the existence of hub mole-
cules caused by this evolutionary behaviour positively im-
pacts many properties of the network, for example, by
allowing to find shorter pathways and reducing the minimum
number of steps required to carry out a synthesis. Thus, it was
shown that most syntheses can, on average, be performed in 6
steps. It was also possible to identify the differing behaviour of
platform molecules and feedstocks as well as specialised prod-
ucts in the mixing structure of the network. Finally, the
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suspected hierarchical structure leads to the fact that the hub
molecules not only combine a large number of reactions onto
them but also are crucial in being involved in a large number
of synthesis routes.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

P.-M. Jacob would like to thank Peterhouse and the University
of Cambridge for funding in the form of a PhD studentship.
We gratefully acknowledge collaboration with RELX Intellec-
tual Properties SA and their technical support, which enabled
us to mine Reaxys. This work was funded, in part, by the
EPSRC project “Terpene-based manufacturing for sustainable
chemical feedstocks” EP/K014889.

References

1 Elsevier R&D Solutions, Reaxys Fact Sheet, https://www.
elsevier.com/__data/assets/pdf_file/0005/91616/RDS_
FactSheet_Reaxys_Oct_2016-WEB.pdf, (accessed 27 February
2017).

2 RELX Intellectual Properties SA, Reaxys - Reaxys is a trade-
mark, copyright owned by RELX Intellectual Properties SA
and used under licence., https://www.reaxys.com/, (accessed
8 February 2017).

3 O. Ravitz, Wiley ChemPlanner - Technical Notes, http://
images.news.wiley.com/Web/WileyEnterprise/%7B84e34101-
2105-40fd-8d3a-df6120ebf89e%7D_Info-RC-CHE-W2627_
ChemPlanner_Technical_Notes.pdf, (accessed 20 May 2016).

4 M. Fialkowski, K. J. M. Bishop, V. A. Chubukov, C. J.
Campbell and B. A. Grzybowski, Angew. Chem., Int. Ed.,
2005, 44, 7263-7269.

5 K. J. M. Bishop, R. Klajn and B. A. Grzybowski, Angew.
Chem., Int. Ed., 2006, 45, 5348-5354.

6 B. A. Grzybowski, K. J. M. Bishop, B. Kowalczyk and C. E.
Wilmer, Nat. Chem., 2009, 1, 31-36.

7 P. E. Fuller, C. M. Gothard, N. A. Gothard, A. Weckiewicz
and B. A. Grzybowski, Angew. Chem., 2012, 124, 8057-8061.

8 C. M. Gothard, S. Soh, N. A. Gothard, B. Kowalczyk, Y. Wei,
B. Baytekin and B. A. Grzybowski, Angew. Chem., 2012, 124,
8046-8051.

9 S. Soh, Y. Wei, B. Kowalczyk, C. M. Gothard, B. Baytekin,
N. A. Gothard and B. A. Grzybowski, Chem. Sci., 2012, 3,
1497.

10 M. Kowalik, C. M. Gothard, A. M. Drews, N. A. Gothard, A.
Weckiewicz, P. E. Fuller, B. A. Grzybowski and K. J. M.
Bishop, Angew. Chem., Int. Ed., 2012, 51, 7928-7932.

11 S. Szymkuc, E. P. Gajewska, T. Klucznik, K. Molga, P.
Dittwald, M. Startek, M. Bajczyk and B. A. Grzybowski,
Angew. Chem., Int. Ed., 2016, 55, 5904-5937.

12 A. A. Lapkin, P. K. Heer, P-M. Jacob, M. Hutchby, W.
Cunningham, S. D. Bull and M. G. Davidson, Faraday
Discuss., 2017, 202, 483-496.

React. Chem. Eng., 2018, 3, 102-118 | 117


https://www.elsevier.com/__data/assets/pdf_file/0005/91616/RDS_FactSheet_Reaxys_Oct_2016-WEB.pdf
https://www.elsevier.com/__data/assets/pdf_file/0005/91616/RDS_FactSheet_Reaxys_Oct_2016-WEB.pdf
https://www.elsevier.com/__data/assets/pdf_file/0005/91616/RDS_FactSheet_Reaxys_Oct_2016-WEB.pdf
https://www.reaxys.com/
http://images.news.wiley.com/Web/WileyEnterprise/%7B84e34101-2105-40fd-8d3a-df6120ebf89e%7D_Info-RC-CHE-W2627_ChemPlanner_Technical_Notes.pdf
http://images.news.wiley.com/Web/WileyEnterprise/%7B84e34101-2105-40fd-8d3a-df6120ebf89e%7D_Info-RC-CHE-W2627_ChemPlanner_Technical_Notes.pdf
http://images.news.wiley.com/Web/WileyEnterprise/%7B84e34101-2105-40fd-8d3a-df6120ebf89e%7D_Info-RC-CHE-W2627_ChemPlanner_Technical_Notes.pdf
http://images.news.wiley.com/Web/WileyEnterprise/%7B84e34101-2105-40fd-8d3a-df6120ebf89e%7D_Info-RC-CHE-W2627_ChemPlanner_Technical_Notes.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c7re00129k

Open Access Article. Published on 19 January 2018. Downloaded on 7/13/2025 11:58:07 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

13 P.-M. Jacob, P. Yamin, C. Perez-Storey, M. Hopgood and
A. A. Lapkin, Green Chem., 2017, 19, 140-152.

14 E.]. Corey and W. T. Wipke, Science, 1969, 166, 178-192.

15 E. Bullmore and O. Sporns, Nat. Rev. Neurosci., 2009, 10,
186-198.

16 G. Caldarelli, Scale-Free Networks - Complex Webs in Nature
and Technology, Oxford University Press, Oxford, 2007.

17 L. D. F. Costa, F. A. Rodrigues, G. Travieso and P. R. Villas
Boas, Adv. Phys., 2007, 56, 167-242.

18 M. E. J. Newman, SIAM Rev., 2003, 45, 167-256.

19 R. Ahnert and S. E. Ahnert, Leonardo, 2014, 47, 275.

20 R. Ahnert and S. E. Ahnert, ELH, 2015, 82, 1.

21 M. Dehmer and F. Emmert-Streib, IEE Proc.: Syst. Biol.,
2011, 5, 185-207.

22 P. Erdos and A. Rényi, Publ. Math. Inst. Hungarian Acad. Sci.,
1960, vol. 5, pp. 17-61.

23 A.-L. Barabasi and Z. N. Oltvai, Nat. Rev. Genet., 2004, 5,
101-113.

24 S. N. Soffer and A. Vazquez, Phys. Rev. E: Stat., Nonlinear,
Soft Matter Phys., 2005, 71, 57101.

25 R. Albert and A.-L. Barabasi, Rev. Mod. Phys., 2002, 74,
47-97.

26 D.]. de Solla Price, Science, 1965, 149, 510-515.

27 A.-L. Barabasi and R. Albert, Science, 1999, 286, 509-512.

28 S. H. Strogatz, Nature, 2001, 410, 268-276.

29 T. Zhou, G. Yan and B.-H. Wang, Phys. Rev. E: Stat.,
Nonlinear, Soft Matter Phys., 2005, 71, 46141.

30 S. Boccalletti, V. Latora, Y. Moreno, M. Chavez and D.
Hwang, Phys. Rep., 2006, 424, 175-308.

31 X. F. Wang and G. Chen, IEEE Circuits Syst. Mag., 2003, vol.
3, pp. 6-20.

32 E. Ravasz and A.-L. Barabasi, Phys. Rev. E: Stat., Nonlinear,
Soft Matter Phys., 2003, 67, 26112.

33 G. Bardella, A. Bifone, A. Gabrielli, A. Gozzi and T. Squartini,
Sci. Rep., 2016, 6, 32060.

34 D. Meunier, R. Lambiotte and E. T. Bullmore, Front.

35

36

37

38

39

40

41

42

43

44

45

Neurosci., 2010, 4, 1-11.

A. Clauset, C. Moore and M. E. ]J. Newman, Nature,
2008, 453, 98-101.

M. Sales-Pardo, R. Guimera, A. A. Moreira and L. A. N.
Amaral, Proc. Natl Acad. Sci. U S. A, 2007, 104,
15224-15229.

E. Ravasz, Science, 2002, 297, 1551-1555.

A. Clauset, C. Moore and M. E. ]J. Newman, Nature,
2008, 453, 98-101.

J. Noh, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.,
2003, 67, 45103.

S. Fortunato, Phys. Rep., 2010, 486, 75-174.

0. Mason and M. Verwoerd, IET Syst. Biol., 2007, 1, 89-119.
A. Barrat, M. Barthelemy, R. Pastor-Satorras and A. Vespignani,
Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 3747-3752.
M. Rubinov and O. Sporns, Neuroimage,
1059-1069.

A. Vazquez, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.,
2003, 67, 56104.

B. Barzel and A.-L. Barabasi, Nat. Phys., 2013, 9, 673-681.

2010, 52,

118 | React. Chem. Eng., 2018, 3, 102-118

46

47

48

49

50

51

52

53

54

55
56
57
58
59
60
61
62

63
64

65

66

67

68

69

70

71

72

73

View Article Online

Reaction Chemistry & Engineering

A. Arcagni, R. Grassi, S. Stefani and A. Torriero, arXiv Prepr.
arXiv1602.03650, 2016, p. 24.

M. E. J. Newman, Phys. Rev. E: Stat., Nonlinear, Soft Matter
Phys., 2003, 67, 26126.

M. Piraveenan, M. Prokopenko and A. Zomaya, [EEE/ACM
Trans. Comput. Biol. Bioinf., 2012, 9, 66-78.

D. B. Larremore, A. Clauset and A. Z. Jacobs, Phys. Rev. E:
Stat., Nonlinear, Soft Matter Phys., 2014, 90, 12805.

M. E. J. Newman and J. Park, Phys. Rev. E: Stat., Nonlinear,
Soft Matter Phys., 2003, 68, 36122.

R. Pastor-Satorras, A. Vazquez and A. Vespignani, Phys. Rev.
Lett., 2001, 87, 258701.

R. Pastor-Satorras and A. Vespignani, in Evolution and
Structure of the Internet, ed. W. N. Adger and A. Jordan,
Cambridge University Press, Cambridge, 2004, pp. 36-68.

A. Bonato and F. Chung, in Handbook of Graph Theory, ed. J.
L. Gross, ]J. Yellen and P. Zhang, CRC Press/Taylor and
Francis, Boca Raton, FL, 2nd edn., 2014, pp. 1456-1476.

E. Estrada, in The Structure of Complex Networks - Theory
and Application, Oxford University Press, Oxford, 1st edn.,
2012, pp. 47-72.

S. Milgram, Psychol. Today, 1967, 60-67.

J. Travers and S. Milgram, Sociometry, 1969, 32, 425.

M. Girvan and M. E. J. Newman, Proc. Natl. Acad. Sci. U. S.
A., 2002, 99, 7821-7826.

M. Angeles Serrano and M. Boguiia, Phys. Rev. E: Stat.,
Nonlinear, Soft Matter Phys., 2005, 72, 36133.

D. J. Watts and S. H. Strogatz, Nature, 1998, 393, 440-442.

T. P. Peixoto, figshare, DOI: 10.6084/m9.figshare.1164194.

M. Gjoka, M. Kurant and A. Markopoulou, in 2013
Proceedings IEEE INFOCOM, IEEE, 2013, pp. 1968-1976.

M. Catanzaro, M. Boguia and R. Pastor-Satorras, Phys. Rev.
E: Stat., Nonlinear, Soft Matter Phys., 2005, 71, 27103.

L. C. Freeman, Sociometry, 1977, 40, 35.
G. Zamora-Lépez, C. Zhou and ]J.
Neuroinform., 2010, 4, 1-13.

Elsevier R&D Solutions, Reaxys Fact sheet, http://www.elsevier.
com/__data/assets/pdf_file/0005/91616/R_D-Solutions_RX_
Fact-Sheet_DIGITAL1.pdf, (accessed 20 August 2015).

M. Fialkowski, K. J. M. Bishop, V. A. Chubukov, C. ].
Campbell and B. A. Grzybowski, Angew. Chem., Int. Ed.,
2005, 44, 7263-7269.

J. Alstott, E. Bullmore and D. Plenz, PLoS One, 2014, 9, e85777.
A. Clauset, C. R. Shalizi and M. E. J. Newman, SIAM Rev.,
2009, 51, 661-703.

R. Pastor-Satorras and A. Vespignani, in Evolution and
Structure of the Internet, Cambridge University Press,
Cambridge, 2004, pp. 240-242.

L. A. N. Amaral, A. Scala, M. Barthelemy and H. E. Stanley,
Proc. Natl. Acad. Sci. U. S. A., 2000, 97, 11149-11152.

S. Mossa, M. Barthélémy, H. Eugene Stanley and L. A. Nunes
Amaral, Phys. Rev. Lett., 2002, 88, 138701.

M. E. J. Newman, D. J. Watts and S. H. Strogatz, Proc. Natl.
Acad. Sci. U. S. A., 2002, 99, 2566-2572.

K.-I. Goh, E. Oh, H. Jeong, B. Kahng and D. Kim, Proc. Natl.
Acad. Sci. U. S. A., 2002, 99, 12583-12588.

Kurths, Front.

This journal is © The Royal Society of Chemistry 2018


http://www.elsevier.com/__data/assets/pdf_file/0005/91616/R_D-Solutions_RX_Fact-Sheet_DIGITAL1.pdf
http://www.elsevier.com/__data/assets/pdf_file/0005/91616/R_D-Solutions_RX_Fact-Sheet_DIGITAL1.pdf
http://www.elsevier.com/__data/assets/pdf_file/0005/91616/R_D-Solutions_RX_Fact-Sheet_DIGITAL1.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c7re00129k

	crossmark: 


