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tion in atomically thin transition
metal dichalcogenides†

Ivan D. Avdeev and Dmitry S. Smirnov *

The spin dynamics of localized charge carriers is mainly driven by hyperfine interaction with nuclear spins.

Here we develop a theory of hyperfine interaction in transition metal dichalcogenide monolayers. Using

group representation theory and the tight binding model we derive effective Hamiltonians of the

intervalley hyperfine interaction in the conduction and valence bands. The spin–valley locking and

pronounced spin–orbit splitting lead to a specific form of hyperfine interaction, which we call “helical”.

We also demonstrate that the hyperfine interaction is noncollinear for chalcogen atoms in the general

case. At the same time in the upper valence band the hyperfine interaction is purely of the Ising type,

which suggests that the spin–valley polarization of localized holes in transition metal dichalcogenide

monolayers can be conserved for a particularly long time.
1. Introduction

Atomically thin transition metal dichalcogenides (TMDs), MX2

with M being a transition metal (Mo and W) and X being
a chalcogen (S, Se, and T), represent a new generation of truly
two-dimensional structures.1 TMD monolayers (MLs) have
a direct band gap at the two inequivalent K+ and K� points of
the Brillouin zone.2,3 The conduction and the valence bands at
these points are split by the pronounced spin–orbit interaction,
which leads to the so-called spin–valley locking and valley
dependent optical selection rules.4,5 The large exciton binding
energy of about 0.5 eV (ref. 1) in TMD MLs makes it possible to
manipulate spin–valley polarization up to room temperature.6–8

These unique properties can be useful for a broad range of
applications.1,9,10

Particularly promising for optoelectronic devices are zero-
dimensional systems, like quantum dots based on TMD
MLs.11,12 In principle any disorder in 2D structures leads to the
localization of charge carriers.13 In practice TMD ML quantum
dots can be made by chemical exfoliation14–16 and lithographic
nanopatterning17 or charge carriers can be trapped by wrin-
kles,18 homojunctions,19 or defects.20–22

The spin–valley polarization lifetime for excitons is
unavoidably limited by the exciton lifetime being in a few
picosecond range.23 But this limitation is released for resident
charge carriers. Their polarization can be preserved for a few
nanoseconds in MoS2,24–26 and even longer in WSe2.27–29 For free
charge carriers the polarization relaxation is related to the spin–
orbit interaction, which can be suppressed by localization. In
. E-mail: smirnov@mail.ioffe.ru

tion (ESI) available. See DOI:

632
this case the dominant role in the spin and valley dynamics is
played by the hyperne interaction with the host lattice nuclear
spins.30

In TMD MLs, in contrast to many other materials, the elec-
tron nuclear spin ips within a valley are suppressed by spin–
orbit splitting, which is about 104 times larger than the hyper-
ne interaction. At the same time the intervalley spin ips
should be accompanied by the transfer of the large momentum,
equal toK+�K�. This is, however, easily possible because of the
very short range nature of the hyperne interaction. For this
reason in our work we will focus only on the intervalley hyper-
ne interaction and neglect spin ips in one valley.

Remarkably, the hyperne interaction has the same relativ-
istic origin as the spin–orbit interaction, so one can expect that
it is also strong in TMD MLs. At the same time, the related
effects in TMD MLs stay essentially unexplored.31,32 In this work
we derive the Hamiltonian of the hyperne interaction from
a rigorous symmetry analysis and corroborate our results using
the tight binding model.

We show that the low symmetry of TMD MLs allows for the
noncollinear hyperne interaction,33,34 so the nuclear spins can
be ipped without the need to ip the valley pseudospin. This
effect was previously observed in GaAs based quantum dots,
where it manifested itself as a dragging of the quantum dot
resonance frequency.35 Our calculations show that this effect is
about two orders of magnitude stronger in TMD ML quantum
dots.

The locking of spin and valley degrees of freedom also brings
specics to the hyperne interaction. In this work we demon-
strate that it leads to a “helical” structure of the interaction of
the valley pseudospin with nuclei, which means that the
components of the hyperne interaction Hamiltonian are
periodically modulated in space. This effect manifests itself in
This journal is © The Royal Society of Chemistry 2019
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the dynamic nuclear spin polarization and formation of the
nuclear spin polaron, which also have a helical structure.

Previous studies of spin relaxation in TMDML quantum dots
predicted the divergence of the polarization relaxation time in
zero magnetic eld.36 Physically the lifetime of spin–valley
polarization in zero magnetic eld is limited by the hyperne
interaction. We show that for electrons the interaction with
nuclei leads to spin dephasing on the timescale of tens of
nanoseconds. For holes, in contrast to previous misleading
studies,31 we show that the hyperne interaction in the upper
subband is of the Ising type. So the polarization relaxation of
holes is parametrically longer than that of electrons.

The paper is organized as follows. In Sec. 2 we perform the
symmetry analysis of the hyperne interaction. Then, in Sec. 3,
using the tight binding model we calculate the components of
the hyperne interaction tensors. The main physical results are
derived and discussed in Sec. 4. Finally, the conclusions are
given in Sec. 5.
2. Symmetry analysis

A single TMD ML has a honeycomb lattice with one transition
metal atom and two chalcogen atoms in the unit cell; see the
ESI† for more details. A few unit cells of TMD MLs are shown in
Fig. 1, where the metal and chalcogen atoms are represented by
blue and yellow balls, respectively. The metal atoms lie within
the ML plane, (xy), while the chalcogens are shied along the z
axis in the opposite directions from the ML plane.

We chose the origin of the coordinate frame at the center of
the hexagon, formed by the metal and chalcogen atoms,1,2 as
shown in Fig. 1. We also choose the y axis to be oriented towards
the nearest pair of chalcogen atoms. We note that caution
should be taken regarding the choice of the coordinate frame
origin and orientation of the axes, when comparing with the
results of some other authors.3,37
Fig. 1 A part of TMD ML and the coordinate frame. The blue and
yellow balls show the metal and chalcogen atoms, respectively, with
arrows corresponding to the nuclear spins. The orientation of nuclear
spins corresponds to the dynamic nuclear polarization induced by the
valley pseudospin polarized along the x axis.

This journal is © The Royal Society of Chemistry 2019
The point symmetry of the TMD ML is D3h. This group
consists of a horizontal (lateral) reection plane shk(xy), three
fold rotation axis C3kz, three vertical reection planes 3sv, three
in-plane two fold rotation axes 3C0

2 (including the y axis), and
the combinations S3 ¼ shC3. In total, there are 12 symmetry
operations including identity.

The valence and conduction band extrema are located at the
two inequivalent K� points of the Brillouin zone, as described in
the Introduction; also see the ESI† for more details. The wave
vector point symmetry in these valleys is C3h, which is
a subgroup of D3h lacking all the elements interchanging the K+

and K� valleys.
All the irreducible representations of the C3h group are one

dimensional, so all electronic states in K� valleys are nonde-
generate, as shown in the band diagram in Fig. 2. However, the
two valleys are related by the time reversal symmetry and their
energies coincide, in agreement with the Kramers theorem.

We focus our attention on the four (sub)bands in the vicinity of
the band gap, which we label by the indexm¼ cb + 1,cb,vb,vb� 1,
as shown in Fig. 2. The electron wave function in the K� valley in
the mth band has the general form

J(m)
� (r) ¼ eiK�ru(m)

� (r), (1)

where u(m)
� (r) is the Bloch amplitude (a spinor). Note that the

functions J(m)
+ (r) and J(m)

� (r) are related by the time reversal
symmetry and sv reections.

The nuclear spins weakly break the translation symmetry of
the structure and lead to the splitting andmixing of the states in
K+ and K� valleys. The strength of the hyperne interaction with
the nuclear spins is usually of the order of 1 meV (ref. 30 and 31).
This is much smaller than the spin–orbit splittings of the
conduction and valence bands in TMD MLs, which are of the
order of a few tens of meV and a few hundreds of meV,
Fig. 2 Schematics of the band structure. The red wavy arrows show
the intervalley hyperfine interaction. Representations of the electronic
states in the C3h group are shown for each valley and each band. On
the right the representations of pairs of energy degenerate states in the
D3h group are given.

Nanoscale Adv., 2019, 1, 2624–2632 | 2625
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Table 1 Spinor irreducible representations of the electronic states in
the C3h group for the K� valleys for different choices of the coordinate
frame origin: in the center of the hexagon (O), at the metal atom (M),
and between neighboring chalcogen atoms (X)a

Band

O M X

K� K� K+ K� K+ K�

cb + 1 G9 G10 G8 G7 G12 G11

cb G11 G12 G7 G8 G10 G9

vb G7 G8 G10 G9 G11 G12

vb � 1 G8 G7 G12 G11 G9 G10

a
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respectively.2,38 Therefore, the hyperne interaction can mix
only the states with the same energy, i.e. in the same band, but
in different valleys, as shown by the wavy arrows in Fig. 2.

The two states in K+ and K� valleys can be interpreted as
a valley qubit.39–41 We introduce the valley pseudospin matrices
t̂ ¼ (t̂x,t̂y,t̂z), see the ESI†, so that K� states correspond to sz ¼
�1/2, respectively. We note that due to the difference of the
Bloch wave vectors K+ and K�, spin is not a good quantum
number, so the hyperne interaction Hamiltonian should be
written in terms of the valley pseudospin s. Taking into account
the form of the electron wave functions, eqn (1), the hyperne
interaction Hamiltonian in the mth band is

Ĥ
ðmÞ
hf ¼

X
n

e�iK̂Rn ŝÂ
ðmÞ
n Ine

iK̂Rn ; (2)

where n is the number of the nuclei with the spins In and the two
dimensional coordinates Rn ¼ (Rn,x, Rn,y), K̂ ¼ 2K+t̂z is the
momentum operator and Â(m)

n is the tensor of the hyperne
interaction. Here we explicitly wrote the two operators (or
matrix exponents) e�iK̂Rn, which account for the relative spatial
phase shi between J(m)

+ (r) and J(m)
� (r). As a result, the tensors

Â(m)
n are independent of the position of the elementary cell in the

TMD ML. Moreover, the hyperne interaction tensors for each
pair of chalcogen atoms in the same unit cell are related by sh
reection, i.e. they are linearly dependent. As a result there are
only two independent hyperne interaction tensors in each
band: one with the metal and one with the chalcogen atoms.

Further symmetry analysis allows us to nd the restrictions
on the form of the hyperne interaction tensors. It is most
convenient to start the analysis from the C3h group of the wave
vector, and then consider the raise of the symmetry up to D3h,
the point symmetry of the structure.

The representations corresponding to the standard choice of
the origin of the coordinate frame at the center of the hexagon
are well established.1,42 But to analyze the hyperne interaction
tensor with the nth nucleus, it is convenient to move the origin
of the coordinate frame towards the corresponding nucleus by
the two-dimensional vector Rn. Upon this nontrivial translation,
the irreducible representations of the wavefunctions
J(m)

� change. In the ESI† we show that for each symmetry
operation g of the wave vector group C3h the matrix of the
representation should be multiplied by

e�iK�(Rn�gRn). (3)

The sets of these factors form a representation, corresponding
to the function

f�ðrÞ ¼ e�iK�r
X
a

dðRn þ a� rÞ: (4)

Here the sum runs over all translation vectors a and d(r) is the
Dirac d-function. The functions f� transform according to G2,3

(G3,2) representations of the C3h point symmetry group for the
nth atom being a metal (chalcogen), respectively. Therefore, the
representations of the wavefunctions for the two different
origins of the coordinate frame are related simply by multipli-
cation with the representation G2 or G3.
2626 | Nanoscale Adv., 2019, 1, 2624–2632
In Table 1 we present the irreducible representations of the
electronic states in the C3h group in the bands under study. The
representations corresponding to the shied origin of the
coordinate frame can be calculated using the multiplication
rules for the C3h group.43 The two representations, corre-
sponding to the two valleys in the same band, are always
conjugate, in agreement with the time reversal symmetry.

Now we consider the point symmetry group D3h of the TMD
ML. The conjugate representations of the C3h group join in the
D3h group in pairs as follows (see the ESI†):

{G8(C3h), G7(C3h)} / G7(D3h), (5a)

{G10(C3h), G9(C3h)} / G8(D3h), (5b)

{G11(C3h), G12(C3h)} / G9(D3h). (5c)

The order of the representations in the curly brackets corre-
sponds to the standard basis of the representation of the D3h

group.43 This rule, together with Table 1, allows one to nd the
irreducible representations of the pairs of the wavefunctions
J(m)

� in the D3h group with the coordinate frame origin located
at Rn. The results are listed in the second columns of Tables 2
and 3. One can see that it can be either G7, or G8, or G9. For the
rest of the paper all irreducible representations are given for the
D3h group.

The irreducible representations corresponding to the
components of the valley pseudospin t̂ can be found from the
decomposition of the squares of the self-conjugate representa-
tions found above. The multiplication rules are43

G7 5 G7 ¼ G8 5 G8 ¼ G1 4 G2 4 G5, (6a)

G9 5 G9 ¼ G1 4 G2 4 G3 4 G4. (6b)

Specically, in the ESI† we show that for the representations G7

and G8 the valley pseudospin component t̂z transforms
according to G2, while t̂x and t̂y form the basis of the repre-
sentation G5. For the representation G9 we nd that t̂z again
transforms according to G2, while t̂x and t̂y form the bases of
the representations G4 and G3, respectively.

Now let us turn to the classication of the nuclear spin
components. We recall that we perform the symmetry analysis
The order of bands corresponds to the molybdenum based structures.

This journal is © The Royal Society of Chemistry 2019
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Table 3 Relationships between the components of the tensors of the
hyperfine interaction with the chalcogen atomsa

Band irrep (X) AXxx/A
X AXyy/A

X AXzz/A
X

cb + 1 G9 0 0 �8/5
cb G8 �6/5 6/5 �12/5
vb G9 0 0 8/5
vb � 1 G8 �6/5 �6/5 12/5

a Notations are the same as in Table 2.

Table 2 Relationships between the components of the tensors of the
hyperfine interaction with the metal atomsa

Band irrep (M) AMxx/A
M AMyy/A

M AMzz/A
M

cb + 1 G7 2/7 �2/7 �4/7
cb G7 2/7 2/7 4/7
vb G8 0 0 24/7
Vb � 1 G9 0 0 32/7

a Additionally the second column shows the irreducible representations
in the D3h group with the center of transformations at a metal atom.
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in the point symmetry group D3h with the center of trans-
formations at Rn. The nuclear spin of a metal atom, IM, is
a pseudovector, and its components transform according to G2

(IM,z) and G5 (HIM,x � iIM,y) representations. The two chalcogen
atoms at the two-dimensional coordinate Rn (in the same unit
cell) exchange their places under the reection in the horizontal
plane sh. So we introduce the linear combinations of their spins
IX ¼ (Iup + Idown)/2 and DI ¼ Iup � Idown, where the superscripts
“up” and “down” refer to the spins of the atoms above and
below the (xy) plane. Under the reection sh the components of
IX transform in the same way as those of IM, while the compo-
nents of DI additionally change the sign. Under the reection in
the vertical plane sv the components of both IX and DI trans-
form in the same way as those of IM. As a result the components
IX,z and HIX,x � iIX,y belong to G2 and G5 representations,
respectively; the component DIz belongs to G3, while DIx and
DIy, form the basis of the representation G6.

Now the symmetry analysis of the hyperne interaction
becomes straightforward. According to the method of invari-
ants the coupling is allowed only between the components of t̂
and I, which transform according to the same irreducible
representation. For the representations G7 and G8 correspond-
ing to the coordinate Rn the hyperne interaction Hamiltonian
has the form:

HG7 ;G8
n ¼ An;xx

�
ŝx cos fn þ ŝy sin fn

�
In;x

þAn;yy

�
ŝy cos fn � ŝx sin fn

�
In;y þ An;zzŝzIn;z; (7)

where we took into account the phase factors in eqn (2) fn ¼
2KRn,x with K ¼ |K�|. The absolute values of the in-plane
hyperne coupling constants are equal: |An,xx| ¼ |An,yy|, while
their signs can be opposite or the same depending on the
representations of the electronic states in K+ and K� valleys in
This journal is © The Royal Society of Chemistry 2019
the C3h group. Below we focus on the molybdenum based
structures, as for the tungsten based ones the results are the same,
except for the inversion of the bands cb and cb + 1. Thus, Axx ¼ Ayy
for Mo atoms in the band cb and for chalcogen atoms in the band
vb � 1. By contrast, for Mo atoms in the bands cb + 1 and vb and
for chalcogen atoms in the band cb one has Ayy ¼ � Axx. These
results are summarized in Tables 2 and 3.

In the case of the representation G9 the Hamiltonian has the
form

HG9
n ¼ An;zzŝzIn;z þ An;yz

�
ŝy cos fn � ŝx sin fn

��
Iupn;z � Idownn;z

�
: (8)

Here in the second line Iup,downn are the spins of chalcogen
atoms above and below the (xy) plane and this term is absent for
Mo atoms. The Hamiltonian of this type is relevant for Mo
atoms in the band vb � 1 and for the chalcogen atoms in the
bands vb and cb + 1.

One can see that the component Azz is symmetry allowed for
all atoms in all bands. This means that the nuclear spin
polarization along z creates a longitudinal Overhauser eld and
lis the Kramers degeneracy of the bands, similarly to an
external longitudinal magnetic eld. Similarly the valley polar-
ization along the z direction creates a Knight eld perpendic-
ular to the monolayer plane, which acts on the nuclei. The
difference between Azz in the pairs of bands cb and cb + 1, and vb
and vb + 1 is analogous to the longitudinal spin g factor of the
charge carriers.44,45

The in-plane hyperne coupling is allowed only for certain
bands and it depends on the coordinates of the nuclei. The
phase fn in eqn (7) and (8) effectively describes the rotations of
nuclear spins, so we call this hyperne interaction helical. We
stress that the helical hyperne interaction is a direct conse-
quence of the spin–valley locking inherent to TMD MLs. Note
also that the second term in eqn (8) describes the noncollinear
hyperne interaction. We discuss the corresponding physical
effects in Sec. 4.
3. Tight binding model

The hyperne interaction of the charge carriers with the host
lattice nuclei is a short range interaction,31,46 so it can be studied
quantitatively using the tight binding approximation. This is
done in this section.

The microscopic Hamiltonian of the hyperne interaction
with the nuclei has the form

Ĥhf ¼
X
n

2mBm
ðnÞ
I In

�
8p

3
ŝdðrnÞ þ l̂n

rn3
� ŝ

rn3
þ 3

rnðŝrnÞ
rn5

�
: (9)

Here mB is the Bohr magneton, m(n)I , rn is the electron distance to
the nth nucleus (being a three dimensional vector), l̂n¼�i[rn�V]
is the electron angular momentum, and s is the electron spin
operator. The rst term in square brackets in eqn (9) describes the
Fermi contact interaction, which vanishes for all atomic orbitals
except for the s ones. The other terms describe the magnetic
dipole–dipole interaction.

For the sake of simplicity, we limit ourselves to d orbitals at
the metal atoms (thus neglecting s orbitals47) and p orbitals at
Nanoscale Adv., 2019, 1, 2624–2632 | 2627
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the chalcogen atoms.2,37 Bearing in mind the irreducible
representations summarized in Table 1, one nds the form of
the Bloch amplitudes in the tight-binding model.2,37 We neglect
the mixing between spin-up and spin-down states and obtain

ucbþ1
� ðrÞ ¼ ½ � iD0ðrÞ � PH1ðrÞ�jY=[i; (10a)

ucb� ðrÞ ¼ ½ �D0ðrÞHiPH1ðrÞ�j[=Yi; (10b)

uvb� ðrÞ ¼ ½iD�2ðrÞ þ P�1ðrÞ�j[=Yi; (10c)

uvb�1
� ðrÞ ¼ ½D�2ðrÞ � iP�1ðrÞ�jY=[i; (10d)

Here the functions DmzðrÞ and PmzðrÞ (mz ¼ 0, �1, �2) denote
the Bloch amplitudes formed by d and p atomic orbitals at
metal and chalcogen atoms respectively. This form of wave-
functions assumes that the orbital part is even along the z axis,
so P�1 orbitals have the same phase at the two chalcogen atoms
in the same unit cell. The phases of the functions are chosen to
form the standard basis of the corresponding representation of
the D3h group and to match the time reversal symmetry. In the
ESI† we consider a more sophisticated tight binding model,
which accounts for the mixing between spin-up and spin-down
states.

Each pair of functions (10a)–(10d) forms the basis of an
irreducible representation of the group D3h, and the two cor-
responding functions belong to the conjugated irreducible
representations of the group C3h, in agreement with eqn (5).
Note that in ref. 31, where the hyperne interaction was studied
using rst principles, the expression for uvb� was different, which
led to some wrong results.

In the vicinity of the nth nucleus the orbital wavefunction
has the form

RðrnÞ ¼ RnðrnÞYlmz
ðq;fÞ; (11)

where the spherical harmonics Ylmz
(q,f) with l¼ 1, 2 correspond

to the functions Pmz and Dmz, respectively. The radial parts of
the wavefunctions in eqn (11) are normalized asðN

0

Rn
2ðrÞr2dr ¼ Cn; (12)

where Cn is the probability to nd an electron at the corre-
sponding atom.

Taking into account the explicit form of the wave functions,
eqn (10), additional restrictions can be obtained for the
hyperne interaction tensors. Indeed, the Hamiltonian (9)
cannot change the total electron angular momentum fz ¼ mz +
sz by more than 1.‡ The representation G9 corresponds to fz ¼
�3/2, so these states cannot be mixed by the hyperne inter-
action. In this case the components Axx and Ayy vanish, in
agreement with the general symmetry arguments. Additionally,
the wavefunctions at the metal atoms in the upper valence
band, vb, have the total angular momenta fz ¼ �5/2 and hence
‡ The last term in eqn (9) being a part of the dipole–dipole interaction can change
the electron orbital momentum mz by �2, but simultaneously the electron spin sz
changes by H1, so the total angular momentum fz cannot be changed by more
than 1, in agreement with the spherical symmetry of the Hamiltonian (9).

2628 | Nanoscale Adv., 2019, 1, 2624–2632
Axx ¼ Ayy ¼ 0 in this case (see Table 2). As a result the hyperne
interaction in the upper valence band is purely of the Ising
type.

The calculation of thematrix elements of the Hamiltonian (9)
with the wavefunctions described by eqn (10) and (11) yields the
relationship between the in-plane and out-of-plane components
of the hyperne interaction tensors. These results are summa-
rized in the last three columns in Tables 2 and 3. One can see
that |Azz| ¼ 2|Axx|, whenever Axx is nonzero. The absolute values
of the hyperne interaction constants in Tables 2 and 3 are
determined by

AM;X ¼ 2mBm
M;X
I

CM;X

ðN
0

RM;X
2ðrÞ
r

dr; (13)

where M and X stand for the metal and chalcogen atoms,
respectively. Importantly, the sign of AM,X coincides with the
sign of mM,X

I . From Tables 2 and 3, one can see that the sign of
Azz can be both positive and negative in different bands.

The noncollinear term fsyDIz in eqn (8) vanishes in the
model described above. In the ESI† we consider the 22 band
tight binding model,37 which takes into account all p states at
both chalcogen atoms and all d states at metal atoms in the unit
cell. This model describes weak mixing between spin-up and
spin-down states, so the two Bloch wavefunctions in K� valleys
in the bands cb + 1 and vb at the chalcogen atoms above/below
the (xy) plane have the form:

Pþ1ðrÞj[i � iaP�1ðrÞjYi; (14a)

P�1ðrÞjYi � iaPþ1ðrÞj[i; (14b)

where � sign corresponds to the two chalcogen atoms. These
functions belong to the G9 representation, and it follows
from the time reversal symmetry that the parameter a is real.
A similar calculation of the matrix elements of the Hamilto-
nian (9) in the rst order in a small parameter a shows that
the off diagonal component of the hyperne interaction
tensor is

Ayz ¼ �16

5
AXa: (15)

The tight binding model yields the result a ¼ �0.08 in the band
cb + 1, so the noncollinear term in the hyperne interaction
tensor is approximately 6 times smaller than the collinear one.
In the band vb the calculation yields a ¼ 0, so the hyperne
interaction in this band is purely of the Ising type.

Interestingly the optical activity of the “dark” excitons in
tungsten based TMDs in z polarization42 is also related to the
mixing of spin-up and spin-down states. Therefore the dipole
moment in z polarization is proportional to the parameter a,
but it also requires the overlap between P�1ðrÞ orbitals at the
two chalcogen atoms.
4. Discussion of the physical effects

In this section we provide the estimates for the hyperne
interaction constants, and describe and discuss the following
physical effects: spin–valley polarization relaxation, dynamic
This journal is © The Royal Society of Chemistry 2019
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nuclear spin polarization, dragging of the quantum dot reso-
nance frequency and formation of the nuclear spin polaron.

First of all we note that the relationships obtained in Sec. 2
are strict and follow only from the symmetry analysis. Therefore
the same results can also be applied to any substitutional
impurity in TMD MLs.

In TMDs not all the metal and chalcogen isotopes have
nonzero nuclear spins. The ones with nonzero nuclear spins are
listed in Table 4 together with their abundances (n) and spins
(I). One can see that less than a half of atoms of each type have
nonzero spins.

The values of the hyperne interaction constants (A) can be
calculated using atomistic approaches, for example DFT.31,48,49

The orbitals Dmz at molybdenum and tungsten are related
mainly to 4d and 5d atomic orbitals, respectively, while the
orbitals Pmz are related to 3p, 4p and 5p atomic orbitals at
sulfur, selenium and tellurium, respectively. The estimations
for the hyperne coupling constants can be obtained from the
corresponding values known for the free atoms.50 They are given
in the last column in Table 4. We note that the straightforward
calculation of the integrals in eqn (13) for the Slater orbitals51

with the effective screening constants52 yields the values an
order of magnitude smaller.

From Table 4 one can see that the hyperne interaction is
stronger for chalcogen atoms than for the metal atoms. It is
related to the fact that p orbitals correspond to the smaller
angular momentum and are more localized at the nuclei than
d orbitals. Moreover, as one could expect, separately for metal
and chalcogen atoms, the heavier is the atom the stronger is the
hyperne interaction. We note that the spin–orbit splitting of
the conduction and valence bands in TMD MLs qualitatively
obeys the same rules, which is related to the common relativ-
istic origin of the two effects.

It is instructive to compare the hyperne interaction
parameters with those in the well studied semiconductor GaAs.
In GaAs the spin–orbit splitting of the valence band is about 330
meV,53 which approximately equals to the splitting of the two
uppermost valence bands in TMD MLs. The hyperne interac-
tion constants in the valence band of GaAs are of the order of 10
meV,54,55 which is comparable to those in TMDs. By contrast, the
hyperne interaction in the conduction band of GaAs is an
order of magnitude stronger due to the s type of the Bloch
amplitudes.56,57 Hence the hyperne interaction of electrons in
TMD MLs is much weaker than in GaAs.
Table 4 Properties of the isotopes of metal and chalcogen free atoms
with nonzero spin: mass number (M), abundance (n), spin (I) and
hyperfine interaction constant (A)

M n (%) I A (meV)

Mo 95 15.92 5/2 �0.57
97 9.55 5/2

W 183 14.31 1/2 0.64
S 33 0.76 3/2 0.75
Se 77 7.63 1/2 3.9
Te 123 0.89 1/2 �8.3

125 7.07 1/2

This journal is © The Royal Society of Chemistry 2019
The most important effect related to the hyperne interac-
tion is the valley polarization relaxation. In large magnetic elds
the loss of the polarization is dominated by the electron phonon
interaction, but this mechanism predicts innite spin relaxa-
tion time in zero magnetic eld.36 In fact the polarization
relaxation in small magnetic elds is related to the hyperne
interaction. The timescale related to the hyperne interaction
can be estimated as58

ss � ħ
A

ffiffiffiffiffi
N

n

r
; (16)

where N is the number of nuclei in the charge carrier localiza-
tion volume. For the localization radius about 5 nm we nd that
N � 103 and ss � 10–100 ns.

In order to describe the valley pseudospin dynamics quan-
titatively we use the model of Merkulov, Efros and Rosen.58 The
polarization relaxation in zero magnetic eld consists of two
stages. In the rst stage, the charge carrier spin precesses in the
static uctuation of the Overhauser eld with the frequency U,
while the nuclear spin dynamics can be neglected. The distri-
bution function of the Larmor precession frequency has the
form

FðUÞ ¼ l2

ð ffiffiffiffi
p

p
dÞ3

exp

 
� Uz

2

d2
� l2

Ux
2 þ Uy

2

d2

!
; (17)

where the parameter d � Azz
ffiffiffiffiffiffiffiffiffi
n=N

p
=ħ describes the dispersion

and

l2 ¼
	
Uz

2



	
Ux

2

 ¼

	
Uz

2



	
Uy

2

; (18)

describes the anisotropy of the hyperne interaction. Here the
angular brackets denote the time or ensemble averaging.
During the rst stage the initial spin polarization along the z
axis decreases on average by a factor f. In the second stage, the
nuclear spin dynamics comes into play, and the rest of the
polarization decays to zero on a parametrically longer
timescale.

Let us consider the rst stage in more detail. Provided that
the valley pseudospin is initially oriented along the z direction,
the dynamics of this component is described by

sz(t) ¼ sz(0)[cos
2 (q) + sin2 (q) cos (Ut)], (19)

where q is an angle between U and z directions. The second
term of this expression describes the pseudospin precession,
while the rst term corresponds to the component of s parallel
to U, which is a constant. The average of this equation over the
distribution function (17) gives the observable average time
dynamics of the valley polarization.

Fig. 3 shows this dynamics. The black curve corresponds to
the spin relaxation of localized electrons in TMD MLs, where l

¼ 2 (see Tables 2 and 3). The spin polarization decreases due to
the spin precession in the random nuclear eld. However, the
component of the spin parallel to the nuclear eld does not
precess, so the fraction f of the initial spin polarization is
conserved. For comparison the blue curve corresponds to the
Nanoscale Adv., 2019, 1, 2624–2632 | 2629
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Fig. 3 Polarization relaxation due to the hyperfine interaction. The
spin relaxation of electrons in TMD MLs (black solid curve), holes in
TMD MLs (red dashed curve) and electrons in typical GaAs quantum
dots is described by the anisotropy parameter l ¼ 2, N and 1 (see
eqn (17) and (19)), respectively.
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electrons in typical GaAs quantum dots, where the hyperne
interaction is isotropic (l ¼ 1). Compared to this case the spin
polarization of electrons in TMD ML quantum dots decays
slower, and the larger part of spin polarization is preserved
during the rst stage. Finally, the red curve corresponds to the
localized holes in TMD MLs. It follows from Tables 2 and 3 that
in this case Ux ¼ Uy ¼ 0, so the spin polarization is constant,
and it does not decay due to the hyperne interaction on the
time scale under study.

The fraction of the initial spin polarization conserved during
the rst stage can be calculated analytically:30

f ðlÞ ¼
D
BN;z

2
.
BN

2
E

¼

8>>>>>>>>>>>><
>>>>>>>>>>>>:

l2
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 � 1
p

� arctan
ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � 1

p �
�
l2 � 1

�3=2 ; l. 1

1=3; l ¼ 1

l2
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p
þ arctanh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p �
�
1� l2

�3=2 ; l\1

(20)

One can see that in the case of the isotropic hyperne interac-
tion f(1) ¼ 1/3. In the lower conduction band l ¼ 2, and

f ð2Þ ¼ 4

27

�
9�

ffiffiffi
3

p
p
�
z

1

2
: (21)

Therefore, the valley polarization of localized charge carriers in
this band decreases approximately two times in a few tens of
nanoseconds (see Fig. 3), before decaying to zero on a longer
time scale. A small admixture of s-type orbitals at metal atoms3

can slightly change this ratio.
The most interesting situation in TMD MLs takes place in

the upper valence band. Here, as follows from Tables 2 and 3,
l ¼ N and f ¼ 1. This describes the situation, when the relax-
ation of the spin z component is absent because of the Ising
type of the hyperne interaction. For chalcogen atoms this is
the symmetry requirement, while for metal atoms this results
from D�2 atomic orbitals, which cannot be mixed by the
2630 | Nanoscale Adv., 2019, 1, 2624–2632
hyperne interaction Hamiltonian (9). Therefore, one should
expect longest valley coherence times for localized holes in TMD
MLs.

On long timescales the valley relaxation of localized holes can
be related to (i) two phonon processes,59–61 (ii) single phonon
processes in combination with the hyperne interaction,62 or
(iii) mixing of the energy degenerate states by the localization
potential.36,63,64 In the latter case, the localization potential
should be atomically sharp, e.g. an impurity. Otherwise, the
degree of mixing of the two valleys is proportional to the ratio k

of the lattice constant and the localization length. This situation
is similar to the one described above with an effective degree of
the hyperne interaction anisotropy leff � 1/k.

Apart from the spin relaxation the hyperne interaction gives
rise also to the effect of dynamic nuclear spin polarization.65

This effect consists in the transfer of spin polarization from the
charge carriers to nuclei. The dynamic nuclear spin polarization
is inefficient in the upper valence band of TMD MLs, but in all
the other bands it can be signicant.

Dynamic nuclear spin polarization is most pronounced
under excitation by circularly polarized light. It orients valley
pseudospin along the z axis, and this polarization is transferred
to nuclear spins. Uniform nuclear spin polarization creates an
Overhauser eld, which splits the optical resonance in TMDML
quantum dots, and this slitting can be observed experimentally.

The observation of the helical nuclear spin polarization
requires in-plane valley pseudospin polarization. We note that
the transverse magnetic eld does not mix the free states in the
different valleys because of the translational invariance. For
charge carriers and charged complexes, however, this restric-
tion is removed. For example, in symmetric quantum dots with
the symmetry D3h and with the center at the metal atom the two
ground electron states belong to the G7 representation, see
Table 2. The direct product G75 G7 contains the representation
G5, which corresponds to the in-plane magnetic eld. As a result
the magnetic eld can lead either to thermal in-plane pseudo-
spin polarization or to the rotation of out-of-plane polarization
to the (xy) plane. The in-plane valley pseudospin leads to
electron-nuclear spin ip ops and to chiral dynamic nuclear
spin polarization. The chiral nuclear spin polarization mani-
fests itself, for example, similar to the transverse nuclear spin
polarization in the Hanle effect.65

An example of nuclear spin polarization distribution for skx in
the lowest conduction band of molybdenum based TMD MLs is
shown in Fig. 1. Notably, the distribution of nuclear spin polar-
ization is nonuniform. It is described by the phases fn in eqn (7)
and looks like rotating nuclear spins. So we call it the “helical”
structure of nuclear spin polarization. Despite the nuclear spin
ordering a macroscopic nuclear spin polarization is absent,
which is analogous to an antiferromagnetic spin state.

The helical hyperne interaction is essentially based on
valley degeneracy in contrast to many other effects. In fact, it
requires two ingredients: (i) valley degeneracy and (ii) strong
spin–orbit interaction, which lis the spin degeneracy in each
valley. For example, this effect cannot take place in usual GaAs-
based structures, where the valley degeneracy is absent. In SiGe
quantum wells the spin–orbit interaction also does not lead to
This journal is © The Royal Society of Chemistry 2019
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the spin slitting of the valleys,66 and in this case the intervalley
hyperne interaction is hidden by the intravalley interaction.
Thus TMD MLs are the most suitable structures for the obser-
vation of the helical hyperne interaction. This observation is
also facilitated by the direct band gap of these materials.

Interestingly the D3h symmetry of TMD MLs allows for the
noncollinear hyperne interaction in the bands vb and cb + 1
with chalcogen atoms. Estimations made in the previous
section show that Ayz in the band cb + 1 is only 6 times smaller
than Azz. For comparison in GaAs quantum dots, the noncol-
linear term is two orders of magnitude smaller.35 The
pronounced noncollinear hyperne interaction in TMD MLs
can lead to effective nuclear spin relaxation in a strong external
perpendicular magnetic eld (see the discussion above).
Indeed, it allows ipping nuclear spins without changing the
electron energy by the Zeeman energy. The same processes are
also responsible for the “dragging” of the quantum dot reso-
nance frequency by laser light.67 Based on Tables 2 and 3 we
predict that this effect is particularly strong for quantum dots
based on tungsten dichalcogenides, where the lowest conduc-
tion band corresponds to cb + 1 in our notations.

Finally, we note that in the case of charge carrier localization
in a two dimensional structure, the many-body nuclear spin
effects such as nuclear spin self-polarization68,69 and formation
of nuclear spin polaron70,71 can be pronounced. The nuclear spin
polaron can also reveal the helical structure of the hyperne
interaction. These effects can be used to additionally increase
the valley pseudospin relaxation time and to realize robust
control of its orientation, similarly to magnetic skyrmions.72,73
5. Conclusions

Using a symmetry andmicroscopic analysis we obtained explicit
expressions for hyperne interaction tensors in TMD MLs
(Tables 2 and 3). Based on the form of the effective hyperne
interaction Hamiltonian we predict the following effects: (i) The
valley polarization of localized electrons decays approximately
two times in a few tens of nanoseconds. (ii) The polarization of
localized holes decays parametrically slower than that of elec-
trons. (iii) The hyperne interaction between electron spins in
tungsten dichalcogenide MLs is strongly noncollinear. (iv) The
in-plane dynamic nuclear spin polarization is helical, i.e.
nonuniform in space, which is a direct manifestation of spin–
valley locking.
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