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The earlier any catastrophic disease (e.g., cancer) is diagnosed, the

more likely it can be treated, providing improved patient prognosis,

extended survival and better quality of life. In early 2014, we revealed

that various types of disease can substantially affect the composition/

profile of protein corona (i.e., a layer of biomolecules that forms at the

surface of nanoparticles upon their interactions with biological fluids).

Here, by combining the concepts of disease-specific protein corona

and sensor array technology we developed a platform with disease

detection capacity using blood plasma. Our sensor array consists of

three cross-reactive liposomes, with distinct lipid composition and

surface charge. Rather than detecting a specific biomarker, the sensor

array provides pattern recognition of the corona protein composition

adsorbed on the liposomes. As a feasibility study, sensor array validation

was performed using plasma samples obtained from patients diagnosed

with five different cancer types (i.e. lung cancer, glioblastoma, menin-

gioma, myeloma, and pancreatic cancer) and a control group of healthy

donors. Although no single corona composition is specific for any one

cancer type, overlapping but distinct patterns of the corona composi-

tion constitutes a unique ‘‘fingerprint’’ for each type of cancer (with a

high classification accuracy, i.e. 99.4%). To finally probe the capacity of

this sensor array for early detection of cancers, we used cohort plasma

obtained from healthy people who were subsequently diagnosed

several years after plasma collection with lung, brain, and pancreatic

cancers. Our results suggest that the disease-specific protein corona

sensor array will not only be instrumental in the screening, detection,

and identification of diseases, but may also help identify novel protein

pattern markers whose role in disease development and/or disease

biology has not been appreciated so far.

New concepts
In 2014, our group introduced the concept of ‘‘personalized’’/‘‘disease-
specific’’ protein corona. Here, by combining the concepts of ‘‘disease-
specific’’ protein corona and sensor array technology, we have created a
platform for the detection and identification of diseases (five distinct
human cancers were used as a model disease) ex vivo. The protein corona
sensor array platform provides a library of corona compositions contain-
ing disease signatures. By analyzing the corona compositions of different
nanoparticles, using supervised classifiers, we created a unique protein
corona pattern which was the ‘‘fingerprint’’ of each type of cancer. Our
results revealed that although no single protein corona composition from
a single nanoparticle provides this ‘‘fingerprint’’ feature, we found that
the pattern of corona composition derived from the nanoparticle sensor
array provides a unique ‘‘fingerprint’’ for each type of cancer. To probe the
capacity of this platform for very early detection of cancers, we used cohort
plasma obtained from healthy people who were later diagnosed with lung,
pancreas, and brain cancers several years after plasma collection and the
outcomes revealed that the approach could identify and discriminate the
cancers. We expect that the protein corona sensor array may also prove useful
for the diagnosis of other devastating diseases.
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It is now well accepted that nanoparticles in contact with
biological fluids are quickly surrounded by a selected group
of adsorbed proteins that form a corona1,2 whose composition
is strongly dependent on the physicochemical properties of the
nanoparticles themselves. The majority of these protein corona
studies were carried out using commercially available pooled
plasma (i.e. combined from multiple sources) derived from
donors with a wide range of health conditions and diseases.
Concurrently, the focus of these studies was to delineate the
adverse effect of the protein corona on nanoparticle function
which included implications in immunogenicity, mistargeting,
and unpredictable pharmacokinetics and biodistribution.3,4

Taking an orthogonal view while building on these studies we have
introduced the concept of ‘‘personalized’’ and ‘‘disease-specific’’
protein corona,5–7 i.e. we demonstrated that exposing nanoparticles
to human plasma, obtained from healthy subjects and patients
with various diseases, caused considerable differences in the
protein corona profile of nanoparticles and their corresponding
biological fates.8,9 The effect of the disease on the variation of
protein corona has been further validated by various groups.10–15

The possibility to measure panels of specific and selective
biomarker proteins has the potential to revolutionize cancer
screening, detection and monitoring.16 Among emerging tools,
transition metal complexes have recently found use as lumi-
nescent probes for the detection of protein biomarkers.17–19

With respect to organic dyes, their long-standing phosphores-
cence allows them to be distinguished from an auto-fluorescent
background that is common in biological milieu. Moreover,
as phosphorescence of metal complexes changes with local
environment, they can act as chemosensors for a variety of
analytes. Other promising approaches for cancer detection and
staging are photoacoustic imaging20 and plasmonic biosensing.21

The use of sensor arrays has proven very sensitive, specific,
robust, and versatile for the detection of a wide range of
chemical and biological compounds, where specificity is derived
from the pattern of response among an array of cross-reactive
sensors rather than from individual sensors for specific
(bio)molecules.22 The sensor array strategy has been used to
successfully detect and differentiate among diverse families of
analytes,23 various foods and beverages,24 pathogenic bacteria
and fungi,25,26 biomolecules,27 and even nanoparticles.28

Here, we combined nanoparticle sensor-array technology, which
offers the advantage of improved accuracy while not being limited
to known disease biomarkers with protein corona and developed a
label-free protein corona sensor array for early detection of diseases
(here five different types of cancers were selected as a disease
model). The sensor array is composed of three different cross-
reactive liposomes with various lipid compositions: (i) anionic
liposomes made of DOPG (1,2-dioleoyl-sn-glycero-3-phospho-
(10-rac-glycerol)); (ii) cationic liposomes made of a binary mix-
ture of DOTAP (1,2-dioleoyl-3-trimethylammonium-propane)
and DOPE (dioleoylphosphatidylethanolamine); (iii) zwitterionic
liposomes made of DOPC (dioleoylphosphatidylcholine) and
cholesterol. Protein corona profiles were characterized by nano
liquid chromatography tandem mass spectrometry (nano-LC
MS/MS) after exposure to the plasma of patients diagnosed with

five cancers: lung cancer, glioblastoma, meningioma, myeloma
and pancreatic cancer. Although no single protein corona
composition is specific for any one cancer type, we demonstrate
that changes in the corona composition pattern could provide a
unique ‘‘fingerprint’’ for each type of cancer. Finally, the nano-
particle sensor-array technology was validated using cohort
plasma obtained from healthy people who were subsequently
diagnosed with cancer several years after plasma collection.

Results and discussion
Hard corona profiles of the sensor array elements using plasma
derived from patients with cancers at early, intermediate, and
advanced stages

The composition of the protein corona that is observed on the
surface of sensor array elements (nanoparticles) is strongly
dependent on the physicochemical properties of those nano-
particles29 and, at the same time, the protein coronas can
strongly be affected by the unique type, concentration and
conformation of proteins and other biomolecules present in a
given patient plasma.5,6 As an initial proof-of-concept, the size
and charge of the corona-coated nanoparticles were probed via
dynamic light scattering (DLS/nanosight) and transmission
electron microscopy (TEM), after incubation with plasma derived
from patients with five different types of cancers (i.e., glioblastoma
multiforme, lung cancer, meningioma, multiple myeloma, and
pancreatic cancer); (see Tables S1, ESI†) and healthy individuals,
and the results demonstrated that the physicochemical properties
of the corona-coated nanoparticles varied across different types of
cancer (Fig. 1A and B).

Quantitative evaluation of the total protein adsorbed onto
the nanoparticles was performed via the BCA (bicinchoninic
acid) or NanoOrange assays, and the results confirmed signifi-
cant differences in the amounts of adsorbed proteins after
incubation in plasma derived from patients with various types
of cancers (Fig. 1B). The quantitative evaluation of the total
protein adsorbed on the surface of liposomes showed depen-
dency of the protein amount on the cancer type (Fig. 1B). The
protein corona composition at the surface of three liposomes
was evaluated via liquid chromatography-tandem mass spectro-
metry (LC-MS/MS) in which the abundance of B1800 known
proteins was defined (the full raw and analyzed data are
provided in Excel files (1–3) in the ESI†). The contribution of
individual proteins and their categories (i.e., complement,
coagulation, tissue leakage, lipoproteins, acute phase, immuno-
globulins, and other plasma proteins) to the corona composition
was defined (Fig. 1C and ESI,† Fig. S1A–G). This result demon-
strated significant associations between the protein composition
and not only the cancer type but also the type of sensor elements
(i.e., type of liposome nanoparticles).

According to an extensive body of literature, there are strong
relationships between cancer development and variations in pro-
tein classes: complement,30–33 coagulation,34–37 tissue leakage,38,39

lipoproteins,40–44 acute phase,45,46 and immunoglobulins.47–50

Therefore, the cross-reactive interactions of these protein categories
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with nanoparticles may provide unique ‘‘fingerprints’’ for each type
of cancer, which would facilitate cancer identification and discri-
mination. Consequently, one would expect the protein corona
sensor array to cross-reactively adsorb a wide range of proteins
involved in cancer induction and development that could be used
for cancer identification and discrimination. Aside from disease
specific proteins, we have recently revealed that the variation of
disease related metabolomes in protein solution (e.g., plasma) can
substantially change the interaction site of proteins with nano-
particles and can therefore affect protein corona composition.51,52

As cancer development has a capacity to substantially alter the
metabolomic composition of plasma,53–58 the cancer extracted
plasma can substantially change the protein–nanoparticle inter-
action sites and therefore alter the protein corona composition.

Development of supervised classification analysis to identify
and discriminate among cancers using the protein corona
sensor array outcomes

To investigate whether protein corona fingerprints of various
sensor elements could be utilized as biosensors and form

Fig. 1 Protein corona sensor array profiles. (A) TEM images of liposomes with size distribution profiles. (B) Physicochemical properties of different
liposomes before and after interactions with human plasma from patients with different diseases. DLS and zeta-potential data on various liposomes
before interactions with human plasma and corona complexes (free from excess plasma) obtained following incubation with plasma from healthy
subjects and cancer patients (Pdi: polydispersity index from cumulative fitting). (C) Classification of the identified corona proteins from sensor array
elements according to their physiological functions in human plasma of healthy individuals and of patients having different types of cancers.
(Complement proteins on the surface of cationic liposomes are shown here as an example; other protein categories, including coagulation, tissue
leakage, lipoproteins, acute phase, immunoglobulins, and other plasma proteins, are shown in the ESI† Fig. S1A–G).
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unique patterns for different diseases, we applied focused
classification approaches to proteomic data on three lipo-
somes’ protein corona composition (cationic, anionic, and
neutral). Details of the methods are described in the Methods
section. A weighted-variable importance in the projection (VIP)
score is introduced and applied for ranking of variables based
on partial least squares discriminant analysis (PLS-DA) as a
linear projection method. Selection of the most relevant vari-
ables (protein concentrations) in building the classification
model can be guided by a set of obtained ranked variables.
In this regard, top ranked variables were added to the model
one by one, and the classification error and root mean square
error of cross-validation (RMSECV) of the PLS-DA model were
monitored. We observed that the classification model has
the minimum cross-validation error by using only the top 69
variables (Fig. 2A). The new 69-dimensional variable space
was successfully used to discriminate 30 samples (with three
replicates) belonging to six classes using PLS-DA with a high
classification accuracy (499%) using 10-fold cross-validation
(Fig. 2A). The classification parameters are given in the ESI,†
Table S2. The contribution of each single selected protein to the
separation of each cancer group (VIP) is plotted on the y-axis
(i.e., the VIP value of each variable corresponding to each class) and
the x-axis (i.e., the selected variable’s number) to provide a visual
representation of the relative specificity of the findings (Fig. 2B–F).
The proteins with higher VIP scores could be considered the most
informative or diagnostic set to discriminate each disease from
controls and from among all cancer categories.

PLS-DA and the counter-propagation artificial neural network
(CPANN) were then applied to the whole samples and selected
variables as linear and nonlinear supervised classification
approaches, respectively. In agreement with the linear PLS-DA
results, the CPANN was also successful in precisely discriminating
the six cancers using the selected 69 variables (Fig. 3C and D).

Next, to further verify and analyze the data, we decided to
take advantage of a nonlinear classification and mapping
method. Visualizing the feature space can help us understand
the hidden structures and topological relationships among the
patterns. To reduce the dimensionality of the feature space
while preserving the topological relations of the data structure,
the CPANN (a supervised a variant of self-organizing maps,
SOMs) was used to learn and predict the class membership
of the patterns, simultaneously producing a two-dimensional
map of ‘‘neurons’’ (the processing units which compete and
cooperate to learn the pattern information) and provide
valuable information (using a nonlinear approach) about the
data structure. Details of the CPANN are provided in the
Methods section. Different sizes for the CPANN map were
compared using 10-fold cross-validation; a map including 64
(8 � 8) neurons was chosen due to the minimum classification
error (ESI,† Fig. S2C). Moreover, the topological structure of
data in the high-dimensional space is reflected in the assigna-
tion map produced by the CPANN (Fig. 3C). Considering the
similarity of the neurons to the input vectors, the map can be
partitioned into six distinct zones related to different type of
cancers and control samples. Samples with the same class label

Fig. 2 Predictor discovery and contribution from each individual predictor to separation of each class by PLS discrimination analysis. (A) Predictor
exploration by weighted VIP scores was performed by adding the ranked variables to the PLS-DA model one by one and calculating the classification
error for internal cross-validation (10-fold). Inset: RMSECV was performed by adding the ranked variables to the PLS-DA model one by one and plotted
against a number of variables. Decreasing the classification error and RMSECV led to the discovery of a minimal set of 69 predictors with the highest
possible importance for separating each class from the others. (B–F) The contribution of each individual marker to separation of each class based on the
PLS discrimination analysis. VIP plot ranking markers of 69 selected variables for their contribution to separation of each class based on the proposed
PLS-DA model. VIP score 41 indicates important protein leading to good prediction of class membership, whereas variables with VIP scores o1 indicate
unimportant proteins for each class.
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Fig. 3 Identification and discrimination of cancers using protein corona sensor arrays. (A and B) PLS-DA plots showing the separation of different cancerous
samples from each other and from controls (n = 30 samples). (A) PLS score-plot obtained using the PLS-toolbox, projecting the objects into the subspace
created by the 1st, 2nd, and 3rd latent variables of the model. (B) Objects displayed where the 4th and 5th latent variables of the model are shown. As can be
seen, meningioma and glioblastoma cases were not separated in three dimensions appropriately, but they can be separated in the fourth and fifth dimensions of
the PLS model. (C and D) Assignation map obtained by using the CPANN with all variables and selected variables. (C) Assignation map obtained by the training of
a CPANN network (8� 8 neurons) using the whole data set (1823 variables). The mapping quality is not good and there are conflicts of different types of cancer
in terms of mapping. (D) Assignation map attained by the training of a CPANN network (8 � 8 neurons) using 69 variables. High-dimensional input vectors
(samples) are mapped on a two-dimensional network of neurons, preserving similarity and topology. Colors indicate the similarity of a neuron to a specific type
of input vector (class type). This map also demonstrates the importance of the predictor selection step and the effect of deletion of non-informative and
irrelevant predictors on the model quality. (E and F) 51 proteins identified as capable of distinguishing among the six groups are presented in a ‘Heat Map’
generated using an unsupervised cluster algorithm (agglomerative HCA with furthest neighbor linkage). Visual inspection of both the dendrogram (E) and the
heat map (F), based on the raw data of 69 important markers, demonstrates cancer-specific protein corona signature and clear clustering of six groups of
samples (five groups of cancerous samples plus normal samples) and also expected similarities among five patients from each group. The heat map also indicates
substantial differences in the patterns of variables (markers) of different cancers (each column represents a patient, and each row represents a protein). Higher
and lower protein levels are indicated in red and green, respectively; the ID of 69 proteins in the heat map (right y-axis) variables, from top to bottom, are: 7, 1, 68,
8, 47, 36, 55, 37, 60, 48, 43, 50, 28, 51, 38, 3, 42, 58, 63, 46, 53, 31, 54, 17, 14, 44, 24, 21, 39, 40, 52, 5, 27, 11, 69, 65, 56, 57, 32, 16, 15, 13, 10, 26, 22, 62, 49, 6, 2, 41,
12, 45, 67, 59, 29, 4, 19, 64, 20, 33, 66, 61, 30, 23, 18, 35, 34, 25, and 9 (the protein names are provided in Table 1).

Nanoscale Horizons Communication

Pu
bl

is
he

d 
on

 1
7 

Ju
ne

 2
01

9.
 D

ow
nl

oa
de

d 
on

 5
/9

/2
02

5 
4:

07
:0

1 
A

M
. 

View Article Online

https://doi.org/10.1039/c9nh00097f


1068 | Nanoscale Horiz., 2019, 4, 1063--1076 This journal is©The Royal Society of Chemistry 2019

are mapped onto nearby or the same neurons, which means
that the selected variables provide valuable information for
discriminating the samples in the feature space. The relative
position and orientation of six zones on the map contribute
qualitative information on the similarities between types of
cancers. To represent the effect of variable selection on
the quality of mapping, another CPANN was trained using
all 1823 variables, and the resulting map shows that the
selected biomarkers (variables) play an important role in
discriminating among cancer types and classifying them properly
(Fig. 3C and D).

On the basis of the obtained results, both linear and nonlinear
models showed high accuracy, deduced from their acceptable
specificity, sensitivity, and classification error values. Consistent
with these findings, unsupervised clustering (HCA) based on the
raw data of 69 markers was able to strongly distinguish various
types of cancerous and control samples (Fig. 3E and F). As can be
seen in Fig. 3, there is close similarity between the glioblastoma
and meningioma groups of samples, implying difficulty in dis-
crimination, most probably related to similar plasma proteomics
patterns in these two brain cancers. These results reflect the fact
that the plasma concentrations of many proteins in the corona
differ considerably, not only among subjects with different types
of cancers, but also among healthy individuals.

To illustrate the sensor array’s capability for pattern recog-
nition, a set of analyses was performed on the data matrix
(all variables) obtained from individual nanoparticles. Impor-
tantly, the pattern of cancer-specific fingerprints could not be
extracted solely from each class of liposome nanoparticle’s
PCF (ESI,† Fig. S4). As shown in ESI,† Fig. S4 (ESI†), no one
class of liposomes could discriminate all 6 groups of samples
as well as the composite response of the full array. The
classification error using data obtained individually from
anionic, cationic and neutral liposomes is 54%, 24% and
10%, respectively, whereas the combined pattern gave a classi-
fication error of only 3%. This substantial reduction in the
classification error of the combined pattern is due to the
power of the sensory part of the protein corona which provides
more proteomics data (even for one specific proteins) for the
classifier. Using the nano-sensor array with liposomes that
have different chemistries (cationic, anionic, and neutral)
combined with pattern-recognition techniques correctly dis-
criminates not only cancerous from control samples, but also
each type of cancer under consideration from the others.
Notably, 62 proteins out of 69 important variables are unique,
because some of the selected proteins are presented in the
protein corona profiles of more than one liposome, confirm-
ing the key role of those same protein variations [e.g., FCN3
(Ficolin 3)] in different sensor elements. Another specific
feature that is presented by using sensor array technology
can substantially increase the data dimension of the proteo-
mics outcomes compared to the human plasma proteins. In
other words, each protein provides one concentration in
human plasma while that specific protein may provide several
different concentrations for protein corona profiles of various
nanoparticles.

Identification of proteins with crucial roles in cancer detection
and discrimination as promising biomarkers for specific types
of cancers

The use of biomarkers both before cancer diagnosis (in risk
assessment and screening/early detection) and after diagnosis
(in monitoring therapy, selecting additional therapy, and
detecting recurrence) would yield substantial therapeutic and
health-economic benefits.59 To understand the potential biolo-
gical relevance of the 69 selected proteins that discriminate
cancerous samples, we manually searched through previously
published reports in PubMed on protein biomarkers of specific
types of cancers that are upregulated or downregulated according
to different disease stages. The resulting data were compared with
the selected proteins in the model to identify matched markers
and determine the biological relevance of the proposed model.
Interestingly, we noted significant numbers of biomarkers specific
to five investigated groups of cancers among the selected
predictors that had been reported as specific cancer biomarkers
(Table 1).

After the training of the CPANN, the importance and rele-
vancy of the variables with the produced map can be investi-
gated. A correlation analysis was also performed between the
assignation map of the CPANN and 69 weight layers (weight
maps) (Fig. 4). Therefore, six correlation coefficients (CCs) can
be obtained for each biomarker and these values can show the
relevance of that biomarker with the control and cancer classes.
The value of a correlation coefficient ranges between �1 and
1 for negative and positive linear correlations respectively. The
CC values near to 1 or �1 represent strong correlation and
relevancy and a CC value near zero means that there is a weak
or non significant correlation between the marker and cancer
type. Considering the CC values (ESI,† Table S3), several
biomarkers, such as FCN3, CO4A, CO4B, CO7, and C4BPA,
can easily be distinguished according to the strong correlation
between pancreatic cancer zones on the assignation map and also
reported as pancreatic cancer biomarkers in the literature.60–62

Moreover, for lung cancer APOH, CO6, CO8A, CO8G, KNG1, and
VTNC have significant correlation with the CPANN assignation
map as specific biomarkers.63

The high specificity of the selected markers for discriminating
among the five groups of cancers, which derives from our protein
corona sensor array approach, demonstrates an acceptable level of
correlation with the work now under way in the complex cancer
proteomics space; therefore, this strategy not only provides a basis
for cancer prediction but also translates that promise into reality.
It is noteworthy that the discrimination between different cancer
groups occurs as a result of the pattern of response of several
predictors (and not individual biomarkers) that change simulta-
neously in a systematic manner, forming patterns unique to each
specific type of cancer. On the basis of this evidence, the most
informative predictors selected by the proposed model that have
not already been reported as cancer-specific biomarkers may have
great potential as new diagnosis biomarker candidates. It is note-
worthy that the protein corona layer provides different protein
concentration compared to the plasma proteins. This means that
increasing concentration of cancer specific biomarkers in plasma
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may not lead to higher participation of that specific protein in the
corona composition. However, variation of these cancer specific
proteins together with other metabolomic variations may sub-
stantially change the interactions of other proteins with the
surface of nanoparticles which results in the formation of dis-
ease-specific protein corona. To define the role of corona specific
proteins in cancer development, the variation and functionality
of these promising candidates together with their associated
metabolomic pathways in cancer patients should be carefully
monitored. By focusing on the unique patterns derived from huge

numbers of subjects via a set of informative predictors, researchers
should be able to predict cancers at different stages more accurately
which is not possible using current methods.

Cohort data analysis

To probe the capacity of this protein corona sensor array tech-
nology for early detection of cancers, we used cohort plasma
from healthy people who were subsequently diagnosed several
years after plasma collection with one of the five types of
cancers. Using the cohort samples, we evaluated whether our
proposed models, both linear and nonlinear, with 69 selected
predictors could be utilized for cancer prediction. The protein
corona profiles of the cohort samples are presented in the ESI†
(the full raw and analyzed data are provided in four Excel files
(4–6) in the ESI†). There were statistically significant differ-
ences between protein corona profiles of the cohort samples
and previous fresh samples in terms of protein abundance
levels and protein types when the proteomics profiles of these
two groups of samples were compared. Since sample collection
of the cohort samples was at the time of screening of healthy
individuals, they were stored frozen for at least ten years. The
long-term storage time affects the abundance levels of several
proteins, causing decreases or increases in protein concentrations
such as coagulation factors, as reported by several groups.64,65

Therefore, we attribute the lack of significant correlation of the
cohort results with previous fresh samples that have not been
stored for a long time to alteration in protein abundance due to
the aging of the samples.

To allow for unbiased classification and prediction of cohort
samples, we used two approaches: first, the discriminatory
power of the 69 important variables was checked for the cohort
samples. Because 15 variables (proteins) out of the 69 markers
were absent from the proteomics profile of our protein corona
sensor array of cohort samples, classification was performed
based on the 54 existing markers and the amount of 15 absent
variables in the cohort data matrix was considered zero. Despite
such defects and missing markers in the cohort data matrix,
both linear and nonlinear models provided proper separation
for three groups of cohort samples with reasonable statistics
(38% classification error in 10-fold cross validation) (Fig. 5A
and C). Second, the cohort samples were classified separately,
i.e., not compared with the library of the protein corona sensor
array for previous fresh samples. In this regard, the informative
markers were selected based on the cohort protein corona
profiles in a similar manner as mentioned earlier, and then
linear and nonlinear classification approaches were evaluated.
Interestingly, the cohort samples could be discriminated by
employing both linear and nonlinear classification models
using only 8 markers with excellent statistics (the classification
error minimized to zero using 8 variables). All detailed results
are provided in the ESI,† Table S2, and Fig. 5B and D. As shown
in Fig. 5, the cohort samples were significantly discriminated in
the score plot of both PLS-DA and the CPANN map.

In summary, we have developed a disease-specific protein
corona sensor array platform for disease detection using plasma
samples. Our sensor array differs from other known sensor arrays

Table 1 Protein names and biomarkers used for analysis. (A) Protein name
and ID of 69 selected variables are listed. Some of the proteins were
present in the protein corona of more than one liposome (DOPG, DOTAP
and CHOL are denoted by color: green, red, and blue, respectively).
(B) Disease-specific biomarkers covered as significant variables by using
the proposed models. (C) 8 important markers for cohort samples (the two
common variables are colored by red)
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that involve individual sensors that detect specific biomolecules.
In the present sensor array, the biomolecules do not have to be
known, as the system does not rely on the presence or absence of
specific biomolecules or amounts of specific disease (here, cancer)
markers. This new sensor array detects changes in the composi-
tion of the biomolecule coronas associated with different lipo-
some nanoparticle sensor elements. This ability to detect changes
in the patterns of the biomolecule corona composition associated
with each sensor element allows one to determine a unique
biomolecule fingerprint that can differentiate the health or
disease states of subjects with high accuracy. As we demonstrated
very recently,51,66 variation of other plasma biomolecules (e.g.,
metabolomes) can substantially change the protein corona com-
position. This shows that the patterns presented by disease-
specific protein coronas should not solely be composed of disease
biomarkers, as other disease-specific features (e.g., metabolome
variations) can substantially affect the composition of corona
around nanoparticles. Using partial least squares discriminant
analysis, we were able to discriminate among five cancers and

healthy patients with 499% accuracy (n = 90). Results of the
cohort samples revealed that the biomolecular fingerprint can
even determine a pre-disease state in a subject who will develop
one of three cancers at a later time, with an accuracy of 499%
(n = 45). This is a significantly different approach to diagnosis
compared to systems that detect specific biomarkers associated
with a disease or disorder. The present sensor is able to detect
a disease early in its development; in other words, it can pre-
diagnose the disease before any specific symptoms appear. It is
likely that the sensitivity of the protein corona sensor array can
further be increased by the addition of more sensor elements
(more nanoparticles). It is also obvious that the number and score
of the introduced protein patterns for cancer detection in this
feasibility study will be changed (and would be more robust) by
increasing the numbers/types of patients and/or sensor array
elements. It is also noteworthy that this system needs a huge
number of patient plasmas in order to end up with B0% false
negative results as any false disease prediction may cause huge
anxiety and unnecessary medical procedures for patients.

Fig. 4 Data analysis using the CPANN (counter propagation artificial neural network). (A) Schematic representation of unfolding a three-way data matrix
into a two-way matrix. (B) Assignation map obtained by the CPANN (14 � 14) trained using 30 samples (three replicates for each samples) with all
1823 variables. Sample numbers are indicated on each neuron. The neuron color (assigned label) is decided based on the similarity between the class
label (a 6 � 1 binary vector) and the weight vector in the output layer of the corresponding neuron. Despite using all biomarkers, there are some distinct
similarities between samples of the same cancer class. Replicated samples are also mapped on adjacent or the same neurons. (C) Classification error of
the CPANN map was calculated at different map size by 10-fold cross validation. (D) The CPANN network has 69 weight layers, which is equal to the
number of variables used to train the model. The ith weight layer reflects the effect of the ith variable (biomarker) on the pattern of the assignation map.
(E and F) Correlation of the assignation map and 69 weight layers (weight maps) can be calculated which could help identify the biomarkers related to
each cancer class. Similarity can be monitored by absolute values of correlation coefficients of two maps. For example, the weight map of biomarker
1282 is highly correlated with the pattern of cancer class 4 on the assignation map, and it could possibly be an important biomarker for the samples
obtained from patients with myeloma. Similar inference can be made for the importance of other cancer biomarkers.
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Beside cancers, the protein corona sensor array may also prove
useful for the diagnosis of a wide range of other devastating
diseases, where very early detection can significantly improve
patients’ survival and quality of life.

Methods
Liposomes

Cholesterol (Chol) was purchased from Sigma Aldrich
(St. Louis, MO, USA). DOPC (dioleoylphosphatidylcholine),
DOPE (dioleoylphosphatidylethanolamine), DOPG (1,2-dioleoyl-
sn-glycero-3-phospho-(10-rac-glycerol)), and DOTAP (1,2-dioleoyl-
3-trimethylammonium-propane) were purchased from Avanti
Polar Lipids (Alabaster, AL, USA). Three types of liposomes,
labelled DOPG, DOTAP, and CHOL (cationic, anionic, and
neutral, respectively), were prepared from DOPG, DOTAP–DOPE
(1 : 1 molar ratio), and DOPC–Chol (1 : 1 molar ratio) by dis-
solving appropriate amounts of the lipids 9 : 1 (v/v) in chloroform:
methanol. The chloroform:methanol mixture was evaporated
via rotary-evaporation. Lipid films were kept under vacuum
overnight and hydrated with 10 mmol l�1 phosphate saline

buffer (PBS) (pH 7.4) to a final lipid concentration of 1 mg ml�1.
The liposome suspensions obtained were sized by extrusion
using a 50 nm polycarbonate carbonate filter by employing an
Avanti Mini-Extruder (Avanti Polar Lipids, Alabaster, AL).

Human plasma collection, preparation, and storage

Human plasma (HP) was collected from healthy subjects and
cancer patients diagnosed with glioblastoma multiforme, lung
cancer, meningioma, myeloma, or pancreatic cancer. Blood
sample collection was performed according to the European
Directive 2001/20/EC concerning the implementation of good
clinical practice in the conduct of clinical trials that is operative
in Italy (Decreto legislativo 24 giugno 2003, n. 211). Blood
collection from cancer patients was authorized by: the Ethical
Committee of Sapienza University of Rome (myeloma), the
Ethical Committee of the University of Napoli Federico II
(lung cancer), the Azienda Ospedaliera Universitaria Federico II
U.O.C. di Neurochirurgia (meningioma and glioblastoma
multiforme) and the Ethical Committee of University Campus
Bio-Medico di Roma (pancreatic cancer and healthy volunteers).
Informed consent was obtained from each participant. In brief,

Fig. 5 Classification of cohort samples based on 69 and 8 markers using the linear and nonlinear classification models. (A and B) Discrimination of
cohort samples using PLS-DA plots. (A) PLS score-plot obtained by considering 69 important markers, projecting the cohort objects into the subspace
created by the 1st and 2nd latent variables of the model. (B) The PLS-DA model is generated using 8 variables projecting the cohort objects into the
subspace created by the 1st and 2nd latent variables of the model, using excellent statistics. (C and D) Assignation map obtained by the CPANN with
69 and 8 selected variables. (C) Assignation map obtained by training a CPANN network (8 � 8 neurons) using 69 important markers. (D) Assignation map
obtained by training a CPANN network (8 � 8 neurons) using only 8 markers without any misclassifications. Sample numbers are indicated on each
neuron.
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blood was collected by venipuncture of healthy subjects and
cancer patients by means of a BD P100 Blood Collection System
(Franklin Lakes, NJ, USA) with push-button technology that
reduces blood waste while minimizing the risk of contamination.
Samples were centrifuged at 1000� g for 5 min to pellet the blood
cells, and the plasma was collected. After confirming the absence
of hemolysis, plasma collected from each donor (1 ml) was split
into 200 ml aliquots and stored at �80 1C in labeled Protein
LoBind tubes until use. Plasma samples collected from cancer
patients were stored at �80 1C for no longer than two months
before use; these plasmas are called ‘‘fresh plasma’’ in the text.
For analysis, the aliquots were thawed at 4 1C and then allowed to
warm at room temperature (RT).

Cohort plasma samples

We used human plasma from initially healthy individuals who
were subsequently diagnosed with brain, lung, or pancreatic
cancers within eight years after plasma collection. The plasma
samples were collected through the NIH-funded Golestan
Cohort Study, performed by the National Cancer Institute
(NCI) in the USA, the International Agency for Research on
Cancer (IARC) in France, and the Tehran University of Medical
Sciences (TUMS) in Iran. This study involved the collection and
storage of plasma from 50 000 healthy subjects, over 1000 of
whom went on to develop various types of cancers in subse-
quent years. Samples from five individuals per cancer were
used in this study.67 These important plasma samples provide
us the unique opportunity to probe the capacity of our innova-
tive protein corona sensor array for early detection of cancers.

Transmission electron microscopy (TEM)

Liposome formulations have been characterized by TEM as
reported previously.68 Briefly, 10 ml of each sample has been
deposited onto Formvar-coated grids, negatively stained using
1% uranyl acetate, washed with ultrapure water and air-dried.
Measurements have been performed with a Zeiss Libra 120
instrument, and image analysis was performed using ImageJ
software.69

Size and zeta-potential

Bare liposomes were incubated with HP (1 : 1 v/v) for 1 hour
at 37 1C. Subsequently samples were centrifuged at 14 000 rpm
for 15 minutes at 4 1C to pellet liposome–HP complexes.
The resulting pellet was washed three times with phosphate-
buffered saline (PBS) and resuspended in ultrapure water. For
size and zeta-potential measurements, 10 ml of each sample was
diluted with 990 ml of distilled water. All size and zeta-potential
measurements were performed at RT using a Zetasizer Nano
ZS90 system (Malvern, UK) equipped with a 5 mW HeNe laser
(wavelength l = 632.8 nm) and a digital logarithmic correlator.
The particle diffusion coefficient D distribution is derived from
a deconvolution of the measured intensity autocorrelation
function of the sample. D is converted into an effective hydro-
dynamic radius RH by using the Stokes–Einstein equation
(RH = kBT/6pZD), where kBT is the thermal energy and Z is the
solvent viscosity. Electrophoretic mobility of the samples, u, was

measured via laser Doppler electrophoresis. Zeta-potential was
calculated by using the Smoluchowski relation (zeta potential =
uZ/e) where Z and e are the viscosity and the permittivity of
the solvent phase, respectively. Size and zeta-potential of
liposome–HP complexes are given as mean � standard deviation
(S.D.) of five independent measurements.

Protein assay

Liposome formulations were incubated with HP (1 : 1 v/v) for
1 hour at 37 1C. Afterwards, liposome–HP complexes were
pelleted at 15 000 � g for 15 minutes at 4 1C and washed three
times with PBS. The washed pellet was resuspended in urea
8 mol l�1, NH4CO3 50 mmol l�1. 10 microliters of each sample
were added to five wells of a 96-well plate. Protein quantifica-
tion was performed by adding 150 microliters per well of
protein assay reagents (Pierce, Thermo Scientific, Waltham,
MA, USA). The multiwell was shaken and incubated at room
temperature for 5 minutes. Absorbance was measured using
the GloMax Discover System (Promega, Madison, WI, USA) at
660 nm. Background effects were properly corrected, and the
protein concentration was calculated using the standard curve.
Results are given as mean � S.D. of five independent replicates.

Protein identification and quantification

The incubation procedure was performed as described elsewhere.70

250 ml of liposome formulations (1 mg ml�1) were incubated
with HP (1 : 1 v/v) for 1 hour at 37 1C. Samples were centrifuged
at 14 000 � g for 15 min to pellet liposome–HP complexes.
It is noteworthy that while bare liposomes cannot be collected
via centrifugation at 14 000� g, the formation of protein corona
at the surface of liposomes changes their physicochemical
properties which can be collected at this centrifugation rate.8,71–83

The pellet was washed three times with 10 mmol l�1 Tris HCl
(pH 7.4), 150 mmol l�1 NaCl, and 1 mmol l�1 EDTA. After washing,
the pellet was air dried and resuspended in the digestion buffer.
Digestion and peptide desalting were carried out as previously
described.84 In brief, the pellet was resuspended in 40 ml
of 8 mol L�1 urea, and 50 mmol l�1 NH4HCO3 (pH = 7.8).
Afterwards, the protein solution was reduced with 2 ml of
200 mmol l�1 DTT, alkylated with 8 ml of 200 mmol l�1 IAA
and newly added with 8 ml of 200 mmol l�1 DTT. Finally, the
sample solution was diluted with 50 mmol l�1 NH4HCO3 to
obtain a final urea concentration of 1 mol L�1 and digested
overnight with 2 mg of trypsin at 37 1C. The enzymatic reaction
was stopped by adding TFA. The digested peptides were desalted
using the SPE C18 column, reconstituted with a suitable volume
of a 0.1% formic acid solution, and stored at �80 1C until
analysis. Digested peptides were stored at �80 1C in labeled
Protein LoBind tubes for no more than one week. Digested
peptides were analyzed by nano-high-performance liquid
chromatography (HPLC) coupled to tandem mass spectrometry
(MS/MS). NanoHPLC MS/MS analysis was carried out using a
Dionex Ultimate 3000 system (Dionex Corporation Sunnyvale,
CA, USA) directly connected to a hybrid linear ion trap-Orbitrap
mass spectrometer (Orbitrap LTQ-XL, Thermo Scientific, Bremen,
Germany) using a nanoelectrospray ion source. Peptide mixtures
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were enriched on a 300 mm ID � 5 mm Acclaim PepMap 100 C18
precolumn (Dionex Corporation Sunnyvale, CA, USA), employing
a premixed mobile phase made up of ddH2O/ACN, 98/2 (v/v)
containing 0.1% (v/v) HCOOH, at a flow-rate of 10 ml min�1.
Peptide mixtures were then separated via reversed-phase (RP)
chromatography. The largest set of peptides was detected using
a 3 hour optimized LC gradient composed of mobile phase A of
ddH2O/HCOOH (99.9/0.1, v/v) and mobile phase B of ACN/HCOOH
(99.9/0.1, v/v). MS spectra of eluting peptides were collected over
an m/z range of 350–1700 using a resolution setting of 60 000
(full width at half-maximum at m/z 400), operating in the data-
dependent mode. MS/MS spectra were collected for the five most
abundant ions in each MS scan. Further details can be found
elsewhere.84 For each experimental condition, three independent
samples (biological replicates) were prepared, each of which was
measured in triplicate (technical replicates), yielding nine mea-
surements for each experimental condition. RAW data files were
submitted to Mascot (v1.3, Matrix Science, London, UK) using
the Thermo-Finnigan LCQ/DECA RAW file data import filter to
perform database searches against the non-redundant Swiss-Prot
database (09-2014, 546 000 sequences, Homo Sapiens taxonomy
restriction). For the database search, trypsin was specified as the
proteolytic enzyme with a maximum of two missed cleavages.
Carbamidomethylation was set as the fixed modification of
cysteine, whereas oxidation of methionine was chosen as the
variable modification. The monoisotopic mass tolerance for pre-
cursor ions and fragmentation ions was set to 10 ppm and 0.8 Da,
respectively. Charge state of 2+ or 3+ was selected as precursor
ions. Proteome output files were submitted to the commercial
software Scaffold (v3.6, Proteome Software, Portland, Oregon,
USA). Peptide identifications were validated if they surpassed a
95% probability threshold set by the PeptideproPhet algorithm.
Protein identifications were accepted if they could be established
at 499.0% probability and contained at least two unique peptides.
Proteins that contained shared peptides and could not be differ-
entiated on the basis of MS/MS analysis alone were grouped to
satisfy the principles of parsimony. Unweighted spectrum counts
(USCs) were used to assess the consistency of biological replicates
in quantitative analysis, and normalized spectrum counts (NSCs)
were used to retrieve protein abundance.

Statistical analysis

All statistical analyses were performed using PLS, Kohonen,
and CPANN toolboxes, and graphs were created using Microsoft
Excel, XLSTAT, and MATLAB.

Data matrix

Data matrix X (30 � 1823) was generated such that each row of the
predictor matrix relating to each individual is derived from all
proteins’ abundance obtained from the three-protein corona sensor
array (ESI,† Fig. S2A). In the preprocessing step, the normalized data
in matrix X, relative protein abundance (RPA), were auto-scaled.

Classification and clustering

Partial least squares discriminant analysis (PLS-DA). Partial
least squares discriminant analysis is a well-known multivariate

approach regarded as a linear classification and dimension
reduction method consisting of two main parts: a structural
part, which searches for latent variables as linear combinations
of original independent variables (i.e., data matrix X), which
have the maximum covariance with the corresponding depen-
dent-variables (i.e., class membership, Y);85,86 the second part
is composed of measured components including the latent
variables as scores and loadings, which show how the latent
variables and the original variables are related. Based on the
ability of PLS-DA to reduce the dimensionality of the data, it
allows a linear mapping and graphical visualization of the
different data patterns. PLS-DA is particularly well suited to
deal with highly collinear and noisy patterns. The main problems
associated with the large dataset in proteomics are the large
number of monitored variables (i.e., proteins) and a relatively
small number of samples. Hence, there may be a high redun-
dancy among variables, which renders many of them uninforma-
tive and irrelevant to the classification. In this way, eliminating
uninformative variables or finding new uncorrelated ones may
improve the predictive performance of classification. Since in
biomedical applications, such as in the present work, we must
not only make decisions about whether a sample belongs to one
of a number of known groups, but also determine which variables
are most relevant for the best discrimination between classes, a
method like PLS-DA is a good approach for finding uncorrelated
new latent variables while preserving the variation of the data.87

The importance of the original variables to define latent projec-
tions can also be evaluated by the variable importance in the
projection (VIP) analysis, in which PLS methods can play a
significant role in the selection of a subset of discriminative
features.88,89 Moreover, the optimal number of latent variables
(LV) was obtained using 10-fold cross validation outcomes.

Identifying the most relevant variables based on weighted
VIP. The partial least squares discriminant analysis (PLS-DA)
was used to explore the VIP values associated with variables.
VIP is a combined measure of how much a variable contributes
to a description of the two sets of data: the dependent (Y) and
the independent variables (X). The weights in a PLS model
reflect the covariance between the independent and dependent
variables, and the inclusion of the weights allows VIP to reflect
not only how well the dependent variable is described but
also how important that information is for the model of the
independent variables.90

An approach based on the VIP score was developed to
identify the best subset of variables. VIP scores can be calcu-
lated by performing PLS-DA on the dataset. In that approach,
VIP scores of variables are calculated 50 times, each time using
a random permutation of training and validation sets (random
training sets were selected iteratively by considering 80-percent
coverage of each class of objects). Considering the most impor-
tant variables, the large VIP-score values (42), the top 200
variables can be selected at each repetition and added to
the top-variables pool. Afterward, a frequency of occurrence

(Freqi) and an average VIP-score VIPi

� �
for each variable can be

obtained according to the top-variable pool. Thus, the selection

of variable i (the high VIPi value and the low Freqi value) is less
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recommended than variable j (high values for both VIPj and

Freqj) because the selection of variable i is more dependent on

the training and validation sets than variable j. Therefore, the

VIPi value of each variable can be weighted by Freqi, and the

most relevant variables can be ranked using weighted VIPi.
Fig. 4A is a schematic diagram of the proposed approach.
Selection of the most relevant variables to build the classifica-
tion model can be guided by the obtained ranking as follows:
the highly ranked variables were added one by one to the
dataset, and the classification error of PLS-DA was calculated
to find the minimum number of relevant predictors (Fig. 1A).

Counter-propagation artificial neural network (CPANN)

The counter-propagation artificial neural network (CPANN) is a
supervised variant of the self-organizing map that consists of
two layers of neurons arranged on a predefined N � N grid. The
CPANN can be used to map data from a high-dimensional
feature space to a low-dimensional (typically 2) discrete space of
neurons as well as to predict the class membership of the
unknown samples. The input vectors (sample feature vectors)
and corresponding class membership vectors (a binary vector)
are presented to the input and output layer of the CPANN,
respectively. The weight correction of the neurons in both
layers is performed based on competitive learning and coopera-
tion of the neurons.91,92 Hence, similar input vectors can be
mapped on the same or adjacent neurons and vice versa. The
final assignation map properly reveals the structure of the data
in the feature space and preserves the distance of patterns in
the low-dimensional grid of neurons. ESI,† Fig. S3C shows a
high-quality assignation map of the CPANN using top-ranked
biomarkers. According to the distinct regions for each class, the
risk of classification errors is minimized. The proper size of the
map can be decided by performing 10-fold cross-validation at
different map sizes. The trained CPANN can be used to assign a
class membership to an unlabeled sample.85 The presence of
redundant and uninformative variables in training data will
affect the quality of the map and increase the risk of an error of
classification (Fig. 3C). The process is a nonlinear mapping,
which helps visualize a high-dimensional input object on a two-
dimensional neuron grid. It is a self-organized procedure which
solves the issue of classification in a transparent way. More
details about the CPANN method can be found in the following
references.85,93

Hierarchical clustering analysis (HCA). Hierarchical cluster-
ing analysis is an unsupervised method widely used to explore
and visualize whole heterogeneous large data sets (like those
often used in proteomics) into distinct and homogeneous
clusters. In cluster analysis, to identify homogeneous sub-
groups, the two important concepts of similarity (determining
a numerical value for the similarity between objects and
constructing a similarity matrix) and linkages (connection of
an object to a group or not) should be defined.94,95 Herein, we
applied agglomerative hierarchical clustering using the furthest-
neighbor linkage algorithm based on the Euclidean distance
similarity for unsupervised analysis using the selected variables.

The agglomerative procedure first separates each object into its
own individual cluster and then combines the clusters sequen-
tially; similar objects or clusters are merged until every object
belongs to only one cluster.

Cohort sample prediction. The discriminative ability of 69
selected predictors with both linear and nonlinear classification
approaches was assessed by cohort sample analysis. To this end,
the values related to 69 variables were selected and discrimination
of cohort samples was checked by both PLS-DA and the CPANN.
Notably, 15 variables (proteins), out of the 69 variables, were
absent from the proteomics profile of protein corona sensor
arrays of cohort samples; therefore, their amount in the cohort
data matrix was zero. Next, the cohort samples were classified
separately without involving the library of the protein corona
sensor arrays of previous fresh samples. In this regard, the
informative markers were selected based on the cohort protein
corona profiles in a similar manner as mentioned earlier, and
then linear and nonlinear classification approaches were evalu-
ated. Interestingly, the cohort samples could be discriminated by
using both linear and nonlinear classification models using only
8 markers with excellent statistics (zero classification errors).

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

The research leading to these results has received funding from
AIRC under IG 2017 – ID. 20327 project – P. I. Caracciolo Giulio
and the Tehran University of Medical Sciences (TUMS), grant:
Internal Grant (2014-2015).

References

1 C. Salvador-Morales, L. Zhang, R. Langer and O. C.
Farokhzad, Biomaterials, 2009, 30, 2231–2240.

2 M. P. Monopoli, C. Åberg, A. Salvati and K. A. Dawson, Nat.
Nanotechnol., 2012, 7, 779.

3 M. Mahmoudi, Trends Biotechnol., 2018, 36, 755–769.
4 M. Mahmoudi, Nat. Nanotechnol., 2018, 13, 775.
5 M. J. Hajipour, S. Laurent, A. Aghaie, F. Rezaee and

M. Mahmoudi, Biomater. Sci., 2014, 2, 1210–1221.
6 M. J. Hajipour, J. Raheb, O. Akhavan, S. Arjmand,

O. Mashinchian, M. Rahman, M. Abdolahad, V. Serpooshan,
S. Laurent and M. Mahmoudi, Nanoscale, 2015, 7, 8978–8994.

7 M. Rahman and M. Mahmoudi, Proc. SPIE, 2015, 9338,
93380V.

8 D. Caputo, M. Papi, R. Coppola, S. Palchetti, L. Digiacomo,
G. Caracciolo and D. Pozzi, Nanoscale, 2017, 9, 349–354.

9 D. Caputo, M. Cartillone, C. Cascone, D. Pozzi, L. Digiacomo,
S. Palchetti, G. Caracciolo and R. Coppola, Pancreatology, 2018,
18, 661–665.

10 M. Hadjidemetriou, Z. Al-Ahmady, M. Buggio, J. Swift and
K. Kostarelos, Biomaterials, 2019, 188, 118–129.

Communication Nanoscale Horizons

Pu
bl

is
he

d 
on

 1
7 

Ju
ne

 2
01

9.
 D

ow
nl

oa
de

d 
on

 5
/9

/2
02

5 
4:

07
:0

1 
A

M
. 

View Article Online

https://doi.org/10.1039/c9nh00097f


This journal is©The Royal Society of Chemistry 2019 Nanoscale Horiz., 2019, 4, 1063--1076 | 1075

11 M. Hadjidemetriou, S. McAdam, G. Garner, C. Thackeray,
D. Knight, D. Smith, Z. Al-Ahmady, M. Mazza, J. Rogan and
A. Clamp, Adv. Mater., 2018, 1803335.

12 B. A. Aguado, J. C. Grim, A. M. Rosales, J. J. Watson-Capps
and K. S. Anseth, Sci. Transl. Med., 2018, 10, eaam8645.

13 J. Lazarovits, Y. Y. Chen, F. Song, W. Ngo, A. J. Tavares, Y.-N.
Zhang, J. Audet, B. Tang, Q. Lin and M. C. Tleugabulova, Nano
Lett., 2018, 19, 116–123.

14 M. Papi and G. Caracciolo, Nano Today, 2018, 21, 14–17.
15 G. Caracciolo, D. Caputo, D. Pozzi, V. Colapicchioni and

R. Coppola, Colloids Surf., B, 2014, 123, 673–678.
16 R. M. Sallam, Dis. Markers, 2015, 2015, 321370.
17 D.-L. Ma, S. Lin, W. Wang, C. Yang and C.-H. Leung, Chem.

Sci., 2017, 8, 878–889.
18 K. Vellaisamy, G. Li, C.-N. Ko, H.-J. Zhong, S. Fatima, H.-Y.

Kwan, C.-Y. Wong, W.-J. Kwong, W. Tan and C.-H. Leung,
Chem. Sci., 2018, 9, 1119–1125.

19 D.-L. Ma, M. Wang, C. Liu, X. Miao, T.-S. Kang and C.-H.
Leung, Coord. Chem. Rev., 2016, 324, 90–105.

20 H. J. Knox and J. Chan, Acc. Chem. Res., 2018, 51,
2897–2905.

21 A. Belushkin, F. Yesilkoy and H. Altug, ACS Nano, 2018, 12,
4453–4461.

22 J. R. Askim, M. Mahmoudi and K. S. Suslick, Chem. Soc. Rev.,
2013, 42, 8649–8682.

23 S. H. Lim, L. Feng, J. W. Kemling, C. J. Musto and K. S.
Suslick, Nat. Chem., 2009, 1, 562–567.

24 B. A. Suslick, L. Feng and K. S. Suslick, Anal. Chem., 2010,
82, 2067–2073.

25 J. R. Carey, K. S. Suslick, K. I. Hulkower, J. A. Imlay, K. R.
Imlay, C. K. Ingison, J. B. Ponder, A. Sen and A. E. Wittrig,
J. Am. Chem. Soc., 2011, 133, 7571–7576.

26 Y. Zhang, J. R. Askim, W. Zhong, P. Orlean and K. S. Suslick,
Analyst, 2014, 139, 1922–1928.

27 F. Ghasemi, M. R. Hormozi-Nezhad and M. Mahmoudi,
Anal. Chim. Acta, 2016, 917, 85–92.

28 M. Mahmoudi, S. Lohse, C. J. Murphy and K. S. Suslick, ACS
Sens., 2016, 1, 17–21.

29 G. Caracciolo, O. C. Farokhzad and M. Mahmoudi, Trends
Biotechnol., 2017, 35(5), 257–264.

30 R. Pio, D. Ajona and J. D. Lambris, Semin. Immunol., 2013,
25, 54–64.

31 R. Pio, L. Corrales and J. D. Lambris, Tumor microenvironment
and cellular stress, Springer, 2014, pp. 229–262.

32 S. Ostrand-Rosenberg, Nat. Biotechnol., 2008, 26, 1348.
33 M. Korbelik and P. Cooper, Br. J. Cancer, 2007, 96, 67–72.
34 M. Shoji, W. W. Hancock, K. Abe, C. Micko, K. A. Casper,

R. M. Baine, J. N. Wilcox, I. Danave, D. L. Dillehay and
E. Matthews, Am. J. Pathol., 1998, 152, 399.

35 C. Huggins, G. M. Miller and E. V. Jensen, Cancer Res., 1949,
9, 177–182.

36 O. Bodansky and G. F. McInnes, Cancer, 1950, 3, 1–14.
37 J. I. Zwicker, B. C. Furie and B. Furie, Crit. Rev. Oncol.

Hematol., 2007, 62, 126–136.
38 S. Pan, T. A. Brentnall and R. Chen, Proteomics, 2015, 15,

2705–2715.

39 K. A. Semb, S. Aamdal and P. Oian, J. Clin. Oncol., 1998, 16,
3426–3432.

40 C. Alexopoulos, S. Pournaras, M. Vaslamatzis, A. Avgerinos and
S. Raptis, Cancer Chemother. Pharmacol., 1992, 30, 412–416.

41 S. Muntoni, L. Atzori, R. Mereu, G. Satta, M. D. Macis,
M. Congia, A. Tedde and A. Desogus, Nutr., Metab. Cardio-
vasc. Dis., 2009, 19, 218–225.

42 C. Alexopoulos, B. Blatsios and A. Avgerinos, Cancer, 1987,
60, 3065–3070.

43 K. Hasija and H. K. Bagga, Indian J. Clin. Biochem., 2005, 20,
61–66.

44 E. B. Feldman and A. C. Carter, J. Clin. Endocrinol. Metab.,
1971, 33, 8–13.

45 W. S. Orr, J. A. Sandoval, L. H. Malkas and R. J. Hickey, Acute
Phase Proteins as Cancer Biomarkers, INTECH Open Access
Publisher, 2011.

46 W. W. Pang, P. S. Abdul-Rahman, W. Izlina Wan-Ibrahim
and O. Haji Hashim, Int. J. Biol. Markers, 2010, 25, 1.

47 S. E. Senyo, M. L. Steinhauser, C. L. Pizzimenti, V. K. Yang,
L. Cai, M. Wang, T.-D. Wu, J.-L. Guerquin-Kern, C. P.
Lechene and R. T. Lee, Nature, 2013, 493, 433–436.

48 J. Wang, D. Lin, H. Peng, Y. Huang, J. Huang and J. Gu, Cell
Death Dis., 2013, 4, e945.
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