Nanoscale

View Article Online

CORRECTION

Check for updates

Cite this: Nanoscale, 2019, 11, 23504

Correction: Dopamine-melanin nanoparticles scavenge reactive oxygen and nitrogen species and activate autophagy for osteoarthritis therapy

Gang Zhong, 🝺 ^a Xueyuan Yang, ^b Xianfang Jiang, 🝺 ^c Anil Kumar, ^b Huiping Long, ^d Jin Xie, 🝺 *^b Li Zheng 🕩 *^a and Jinmin Zhao 🝺 ^a

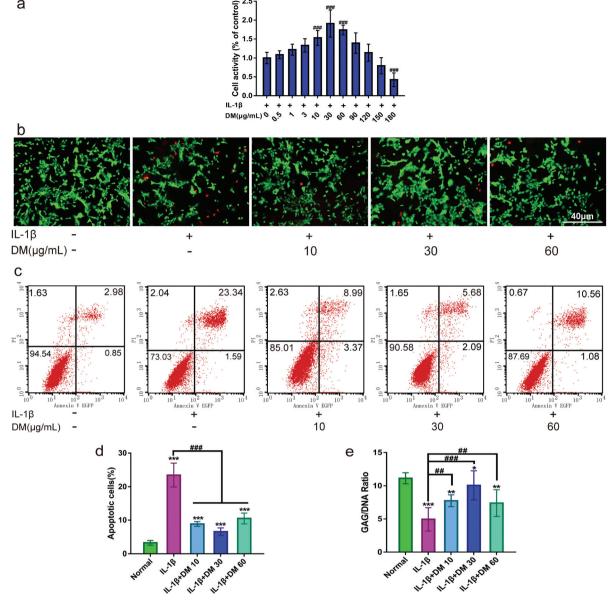
DOI: 10.1039/c9nr90272d

rsc.li/nanoscale

Correction for 'Dopamine-melanin nanoparticles scavenge reactive oxygen and nitrogen species and activate autophagy for osteoarthritis therapy' by Gang Zhong *et al.*, *Nanoscale*, 2019, **11**, 11605–11616.

The authors have noticed that there were a number of errors in Fig. 3c in the original article. These errors were associated with data normalization. A corrected version of Fig. 3 is provided below.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.


^aGuangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Department of Orthopaedics Trauma and Hand Surgery, Guangxi Medical University, Nanning, 530021, China. E-mail: zhengli224@163.com

^bDepartment of Chemistry, University of Georgia, Athens, Georgia 30602, USA. E-mail: jinxie@uga.edu

^cThe College of Stomatology, Guangxi Medical University, Nanning, 530021, China

^dDepartment of Neurology, Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China

а

2.5

2.0

Fig. 3 Chondro-protective effects of DM nanoparticles on IL-1β-induced chondrocytes. (a) MTT assay was to detect the cytotoxicity of DM nanoparticles (control: only with 10 ng mL⁻¹ IL-1β). (b-e) Chondrocytes were treated with IL-1β (10 ng mL⁻¹) and/or various concentrations of DM nanoparticles (10, 30, 60 µg mL⁻¹) for 24 hours. (b) FDA//PI stained for cell viability. (c) Flow cytometry for cell apoptosis. (d) Quantitative flow cytometry for apoptosis. (e) Quantification of matrix production of GAG (n = 6) for cell proliferation. Normal (without IL-1 β); IL-1 β (with 10 ng mL⁻¹ IL-1 β); IL-1 β); IL-1 β + DM 10 (with 10 ng mL⁻¹ IL-1 β and 10 μ g ml⁻¹ DM nanoparticles); IL-1 β + DM 30 (with 10 ng mL⁻¹ IL-1 β and 30 μ g ml⁻¹ DM nanoparticles); IL-1 β + DM 60 (with 10 ng mL⁻¹ IL-1 β and 60 μ g ml⁻¹ DM nanoparticles). Values are presented as means \pm SD, n = 6.*, P < 0.05; **, P < 0.01; ***, P < 0.01, relative to the normal group; #, P < 0.05; ##, P < 0.01; ###, P < 0.001, relative to the IL-1 β group. Scale bar, 40 μ m.