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hase selection in MOF formation
observed in molecular Monte Carlo simulations†

Stephen A. Wells, *a Naomi F. Cessford,b Nigel A. Seatonc and Tina Düren *a

Metal–organic frameworks (MOF) comprising metal nodes bridged by organic linkers show great promise

because of their guest-specific gas sorption, separation, drug-delivery, and catalytic properties. The

selection of metal node, organic linker, and synthesis conditions in principle offers engineered control

over both structure and function. For MOFs to realise their potential and to become more than just

promising materials, a degree of predictability in the synthesis and a better understanding of the self-

assembly or initial growth processes is of paramount importance. Using cobalt succinate, a MOF that

exhibits a variety of phases depending on synthesis temperature and ligand to metal ratio, as proof of

concept, we present a molecular Monte Carlo approach that allows us to simulate the early stage of

MOF assembly. We introduce a new Contact Cluster Monte Carlo (CCMC) algorithm which uses

a system of overlapping “virtual sites” to represent the coordination environment of the cobalt and both

metal–metal and metal–ligand associations. Our simulations capture the experimentally observed

synthesis phase distinction in cobalt succinate at 348 K. To the best of our knowledge this is the first

case in which the formation of different MOF phases as a function of composition is captured by

unbiased molecular simulations. The CCMC algorithm is equally applicable to any system in which short-

range attractive interactions are a dominant feature, including hydrogen-bonding networks, metal–

ligand coordination networks, or the assembly of particles with “sticky” patches, such as colloidal

systems or the formation of protein complexes.
Introduction

Metal–organic frameworks (MOFs) are a class of porousmaterials
consisting of metal ions (nodes) complexed by organic ligands
(linkers) to form a continuous framework. Since the introduction
of the MOF designation1–3 by Yaghi et al., MOFs have attracted
considerable attention due to their crystal engineering potential.
The choice of node and linker offers, in principle, control over
both the pore geometry and the chemical properties of the
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framework, promising a new generation of functional porous
materials for sensing, catalysis, ltration and sorption applica-
tions.4,5 Molecular simulation methods, including molecular
dynamics (MD) and molecular or coarse-grained Monte Carlo
(MC) approaches, are now well established for MOF character-
isation and the prediction of their performance in e.g. adsorption
applications.6–8 Simulations of MOF nucleation, formation, and
the growth of crystals and thin lms, in contrast, are less well
developed. Promising results have been obtained using MD
simulations with both explicit solvent models,9 showing the
formation of a recognisable ZIF building unit; and implicit
solvent models,10–12 showing the formation of random or ordered
2D and 3D MOF-like networks with a specialised MD protocol.
The insight from such simulations will be invaluable in inter-
preting experimental data on MOF formation and growth
mechanisms,13 and in the development of targeted synthesis
approaches for MOFs for applications. Modelling the formation
of MOFs is particularly challenging, as we are dealing with highly
porous, directionally bonded frameworks, in which both solvent
and ligand molecules may play structural as well as templating
roles, and the formation process may involve chemical reaction
steps. Here, we use molecular simulations to explore the rst
stages of nucleation and growth of MOF structures under
synthesis conditions, in a polyphasic system where multiple
structural phases can be produced from the same building units.
This journal is © The Royal Society of Chemistry 2019
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We make use of cobalt succinate MOFs, formed by the
assembly of cobalt (Co2+) ions and succinate (COO–CH2–CH2–

COO–) anions, as our proof-of-concept system to understand
the inuence of synthesis conditions on the formation of
different frameworks. Multiple structural phases have been
identied in hydrothermal syntheses14–16 using aqueous
mixtures of cobalt hydroxide and succinic acid as ingredients,
comprising seven distinct frameworks with markedly different
topologies depending on the system temperature and the ratio
of metal to ligand. Capturing the formation of these topologi-
cally distinct structures from the same components under
different synthesis conditions provides an important challenge
for our simulations. The cobalt ions are, in all the crystal
structures, octahedrally coordinated by some combination of
succinate carboxylate oxygens, solvent water oxygens, or
framework oxygens or hydroxide groups. In general, phases
produced at higher temperatures or with a greater proportion of
cobalt are characterised by a greater degree of metal–metal
association, that is, adjacent cobalt coordination octahedra
with one, two or three oxygens in common.

The two phases that we investigate in this study are the low-
temperature phases A and F illustrated in Fig. 1. Both are syn-
thesised at 348 K. Phase A, produced at higher [succina-
te] : [cobalt] ratios, is characterised by linear chains of
alternating metal and ligand units. The connectivity of these
chains is one-dimensional and each cobalt ion is coordinated
by two ligands and four water molecules. Adjacent, parallel
chains are linked by hydrogen bonding between these water
molecules. Phase F, produced at lower [succinate] : [cobalt]
ratios (i.e.with a higher proportion of metal), is characterised by
linear chains of linked metal octahedra; these chains are linked
to one another by bridging succinate ligands.

The assembly of a MOF from its components involves the
reversible formation of associations between metal and ligand
units. In this paper, we develop a molecular Monte Carlo
simulation approach suited to describing the assembly process.
Our molecular modelling makes use of potentials of mean force
(PMFs) derived from fully atomistic explicit-solvent
Fig. 1 Structures of cobalt succinate: (a) phase A and (b) phase F.
Larger (blue) spheres represent cobalt ions; medium (green) spheres
represent carbon, smaller (red) spheres oxygen. Hydrogen atoms and
water molecules have been omitted for clarity.

This journal is © The Royal Society of Chemistry 2019
interactions, so that we can use implicit-solvent simulations
while retaining local solvent structuring effects. A system of
overlapping “virtual sites” represents the coordination envi-
ronment of the metal ions and allows both metal–metal and
metal–ligand associations to develop spontaneously. These site
overlaps also motivate a simple collective move algorithm,
allowing smaller clusters to aggregate once they have formed,
and are used to identify clusters with topologies appropriate to
particular structural phases. We apply this Contact Cluster
Monte Carlo (CCMC) approach to investigate the composition
dependence of the production of phases A and F in cobalt
succinates.
Simulation methods
Molecular models and potentials of mean force

In our MC simulations the succinate ligand is represented as
a rigid molecular object made up of three atom types: carbox-
ylate oxygen (O), carboxylate carbon (C) and aliphatic –CH2–

group carbon (CH) using a united-atom approach. The cobalt is
represented, not as an isolated spherical ion, but as a poly-
hedral object consisting of a central cobalt ion and
a surrounding octahedron of “virtual oxygen” (vO) sites repre-
senting its coordination. The physical interpretation of the vO
sites depends on the local molecular geometry. In an isolated
cobalt object, we assume that vO sites are occupied by implicit
solvent water molecules. When vO sites from different cobalt
objects overlap, we interpret this as the formation of a metal–
oxygen–metal bridge. Coordination of metal by ligand is rep-
resented by the overlap of a vO site by a ligand O atom. The
model is illustrated in Fig. 2.

The system of virtual sites is similar in principle to the
cationic dummy atom (CaDA) approach17–20 sometimes used in
molecular dynamics simulations, as for example in the work of
Yoneya et al.,10–12 to represent the coordination geometry
around a metal centre. However, our virtual sites are more
general, being interaction sites for PMFs rather than charge
sites for Coulomb interactions. In particular, our model permits
the overlap of virtual sites to represent the association of metal
centres through a bridging oxygen species, allowing both
metal–metal and metal–ligand interactions, whereas CaDA
represents only metal–ligand interactions.
Fig. 2 Virtual-site model of cobalt coordination.

RSC Adv., 2019, 9, 14382–14390 | 14383
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The effective energy of interaction between the various sites
in our implicit-solvent model is represented by a set of PMFs
derived from all-atom empirical-potential Monte Carlo simula-
tions.21 We emphasise that our potentials are derived system-
atically on physical grounds, without “tuning” to favour the
formation of any particular MOF structure. These simulations,
carried out using a modied version of the MUSIC code,22 made
use of the TIP3P water model23 and appropriate force eld
parameters for the divalent cobalt ion24 and for the succinate
ion, using the OPLS-UA forceeld25,26 supplemented by the
OPLS-AA force eld where necessary.27–29 The simulation
temperature was 348 K, corresponding to the experimental
synthesis of phases A and F. Electrostatic interactions were
handled in real space using the Wolf method.30,31 For every pair
of interacting atom types from the set (Co, C, CH, O) a PMF was
determined using umbrella sampling and the Weighted Histo-
gram Analysis Method (WHAM).32–34 Force eld parameters are
tabulated, and additional details of the MC simulations are
given in ESI S.2.†

All of the PMFs used in this study are provided as a text le
and are discussed in ESI S.3.† Most of the resulting PMFs are
relatively featureless, displaying strong repulsion at close
distances (steric interaction) and near-zero interaction at
greater distances once one or more water molecules are found
between the atoms. This is as expected in cases where one or
both of the atom types have small partial charges. The Co–O
interaction, by contrast, displays signicant structure, as shown
in Fig. 3, largely due to the strong electrostatic interaction
between the Co cation and the negatively charged carboxyl
oxygen. The most important features are a strongly attractive
well at a Co–O distance of about 1.9 Å, dening the coordination
of metal by ligand oxygen, and a second, shallower attractive
well at around 4 Å, corresponding to the solvent-mediated
situation Co–water–O. The two wells are separated by an
energy barrier at around 2.5 Å, corresponding to the unfav-
ourable geometry where the oxygen species is not close to the
metal but there is no room for a water molecule between them.
The existence of this second attractive well shows how the PMFs
capture solvent structuring and templating effects that can be
highly signicant in MOF formation. Such structuring is
frequently neglected in implicit-solvent MD simulations where
Fig. 3 PMF for the interaction of Co2+ ion and carboxylate O species (a)
equivalent interaction of vO andO (b), with a zero vO–Odistance in the attract

14384 | RSC Adv., 2019, 9, 14382–14390
the solvent is represented only with a range-dependent dielec-
tric constant.10 To make use of this potential in our virtual site
model, we redene the Co–O interaction as an interaction
between vO of the cluster and O of the linker. A succinate oxygen
interacts only with the closest vO site belonging to a given Co
ion and the local attractive well corresponds to a zero vO–O
separation. This potential therefore favours colocation of
succinate oxygen and vO sites, allowing the ligand to coordinate
the metal.

Our model also requires an attractive vO–vO interaction,
favouring a zero vO–vO distance, in order to generate metal–
metal associations as seen in the denser phases. In this case the
overlap of vO sites represents the presence of a bridging oxygen
species between the metal ions. This vO–vO interaction is
absent from the set of calculated PMFs and so we employ
a scaling of the vO–O interaction, as follows. A single vO–vO
interaction represents two interactions between Co2+ and the
bridging oxygen species, implying a factor of 2; and we assume
that the bridging species is a hydroxyl with charge qOH ¼ �1,
whereas the charge of a carboxylate oxygen in the MC simula-
tions is qO ¼ �0.8. Under the assumption that the Coulomb
energy is dominant in this interactions, this gives a scaling
factor of 2 � (1/0.8) ¼ 2.5. Preliminary testing (see ESI S.4†)
conrmed that this vO–vO potential allows metal–metal asso-
ciations to develop, whereas a smaller scaling factor does not
provide a sufficient attractive interaction.

Steric radii for clash exclusion are assigned to the atomic
types as specied in ESI S.5.† A vO site is, however, permitted to
overlap freely with other vO or with succinate O sites. In our
analysis of the results, two objects are considered to be clus-
tered together if a vO site in one object has a centre-to-centre
distance of less than 0.5 Å with a vO or O site in the other,
putting the two sites within the short-range attractive well of the
PMF. The resulting cluster geometries can then be assessed for
their similarity to phases A and F in terms of structural motifs.
Collective move scheme

In order for small clusters to join together during the aggrega-
tion process, the Monte Carlo move scheme must include
collective moves in which multiple objects move as a single
and its re-interpretation within our virtual-site coordination model as the
ivewell, andwith the long-distance average value of the PMF shifted to zero.

This journal is © The Royal Society of Chemistry 2019
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Fig. 4 Cluster formation. In an initial state i (left) an object is selected
(black arrow). Some of its overlapping contacts form links, creating
a larger cluster, terminated by breaks. The cluster moves, forming a trial
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unit. The construction of such collective moves requires some
care. The essential criterion for any valid Monte Carlo simula-
tion is that of balance;35 in equilibrium, the rate at which moves
occur into a state i, from all other states, must equal the rate at
which they occur from i, into all other states. In molecular
Monte Carlo simulations it is usual to impose the stricter
condition of detailed balance, which provides that in an equi-
librium microstate i, the number of moves accepted from i to
each other microstate j must equal the number accepted from j
to i. This can be achieved by any move scheme constructed as
follows. The probabilities of the system being in microstates i, j
are P(i) and P(j) respectively. There is a probability of a move
from i to j being proposed, PPROP(ij); and a probability of that
move being accepted, PACC(ij). The corresponding probabilities
for the move from j to i are PPROP(ji) and PACC(ji). Detailed
balance is obeyed provided that

P(i)PPROP(ij)PACC(ij) ¼ P(j)PPROP(ji)PACC(ji)

In the general case (see for example chapter 15 of Frenkel
and Smit36) the probabilities can also include a Jacobian factor
reecting non-uniform sampling of phase space. This can arise
from a change of variables and/or from the introduction of
holonomic constraints between interacting bodies. In the
present case, however, no holonomic constraints are intro-
duced between interacting bodies, and so no explicit Jacobian is
applied. We note that for single-object moves, PPROP is just
a constant representing the probability of choosing one object
from the complete list of objects in the system, and so

PACC(ij)/PACC(ji) ¼ P(j)/P(i)

In the standard Metropolis Monte Carlo scheme, the ratio of
the acceptance probabilities is set to the inverse of the Boltz-
mann energetic factor between j and i, that is exp(�DEij/kT), so
as to sample microstates in proportion to their thermodynamic
probability.

Many approaches to clustering and collective moves are
possible, as discussed by e.g. Frenkel and Smit,36 and multiple
clustering approaches for collective moves in MC have been re-
ported in the literature. The Virtual Move Monte Carlo (VMMC)
collective move approach of Whitelam and Geissler,37,38 its
convenient algorithmic presentation by Ruzicka and Allen,39 and
the very similar energetic clustering approach of Bhattacharyay
and Troisi,40 as well as the rejection-free cluster formation algo-
rithms of Luijten et al.,41–43 have been used to describe collective
moves in, for example, simulations of colloidal uids44 and the
self-assembly of patchy particles representing proteins.45

We adopt an approach such that PPROP(ij) will equal PPROP(ji)
by construction, retaining the Metropolis energetic criterion
unchanged. For clarity of discussion, we dene the following
terms. An “object” is a single molecular entity, made up of
multiple atomic sites. All Monte Carlo moves begin with the
selection of one object. A “cluster” is a group of objects moving
together as a single unit in a collective move. A “contact”
This journal is © The Royal Society of Chemistry 2019
between two different objects signies close proximity between
a site on one object and a site on the other, such that a favour-
able interaction would be expected. In our model, certain
objects include “virtual sites” and close contacts are repre-
sented by the overlap of two virtual sites, or of a virtual site with
an atomic site, as illustrated in Fig. 2 and 4. We therefore
describe our model as Contact Cluster Monte Carlo (CCMC).

An attempt at a collective move begins with the selection of
an individual object x in state i. All contacts between x and other
objects y can then be tested for cluster formation. A contact will
either form a link – so that y joins x in a moving cluster C – or
a break, so that y does not join the cluster. The probability that
a contact forms a link is a constant user-dened parameter
PLINK. When an object joins the cluster C, it is tested for contacts
with any objects that are not yet members of C until no new
contacts are proposed. The end result is a cluster C bounded, in
state i, by a set of breaks Bi. This set may of course be null. The
probability of such a cluster being formed in state i can be
notionally divided into the probability of forming links within
the cluster, P(C), and the probability of not forming links in the
breaks, P(Bi).

A collective move of the cluster (in general, a combination of
a displacement and a rotation) generates state j. The internal
geometry of the cluster is unchanged. However, its boundary is
now a different set of breaks Bj (whichmay of course be null, if C
forms no new contacts in j). We therefore penalise the proba-
bility of proposing this cluster move, using a factor P(Bj). If Bj

involves n contacts, this probability is given by

P(Bj) ¼ (1 � PLINK)
n.

The move is rejected if a random number selected uniformly
from the range 0 to 1 is greater than P(Bj). Clearly if n ¼ 0 then
P(Bj) ¼ 1 and the proposed move is not rejected. With this
factor, the probability of proposing a cluster move from i to j is
identical to that of the reverse move from j to i, being given by
P(Bi)P(C)P(Bj) in both cases, and detailed balance is maintained.
state j (right). Any new contacts formed in j are considered breaks.

RSC Adv., 2019, 9, 14382–14390 | 14385
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Fig. 5 Flow chart of Monte Carlo move sequence. The cluster
construction loop (boxed at top right) occurs if a collective move is
attempted.
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As a result of this penalty, the results of the simulation are
notably insensitive to the value of PLINK. Higher values favour
the formation of larger moving clusters, but make it less likely
that cluster moves will lead to new overlaps. A default of PLINK ¼
0.5 is effective (see ESI S.1†). We note that, in lattice Monte
Carlo simulations of surfactant assembly carried out by Wu
et al.,46 a similar cluster scheme with PLINK ¼ 1.0 was used in
order to forbid clusters from joining together, as an approxi-
mation of electrostatic repulsion between micelles.

Note that the energetic clustering methods37,40 allow parti-
cles to move along local potential energy gradients, and can
therefore be used to approximate the dynamical evolution of
a system.38 Since CCMC does not probe these local gradients it
does not have this quasi-dynamic behaviour. As such, our
simulations probe the energetic landscape of self-assembly
rather than approximating the molecular dynamics thereof.
The differences between CCMC and energetic clustering
methods are discussed in more detail in ESI S.7.† CCMC is
applicable to any system in which such short-range attractive
interactions are a dominant feature, including hydrogen-
bonding networks, metal–ligand coordination networks, or
the assembly of particles with “sticky” patches, such as colloidal
systems or the formation of protein complexes.

The representation of the cobalt coordination environment
by the octahedron of virtual oxygen sites, and the set of vO–vO
and vO–O interactions, are designed to represent the chemistry
of the cobalt succinate system. By construction the system
permits the formation of all the metal–metal and metal–ligand
associations found in cobalt succinate structures and shown in
Fig. 2, while not permitting inappropriate ligand–ligand direct
associations. Other MOF systems with different chemistries
would require adaptation of the scheme. For example, a repre-
sentation of a Zeolitic Imidazolate Framework47 (ZIF) would
involve a tetrahedral coordination of Zn ions by virtual nitro-
gens which can be overlapped by the real nitrogen atoms of the
ligand; and in this case no attractive interaction between two
virtual nitrogen sites would be required as this system does not
display metal–metal association. The clustering approach
shown in Fig. 4, meanwhile, is capable of moving clusters of
arbitrary size and shape and is agnostic about the chemical
identities of the clustered objects. It should therefore be very
generally applicable without modication.
Implementation of Monte Carlo simulations

The Monte Carlo move sequence, as implemented in our own
C++ code, is illustrated in Fig. 5. An initial moving object is
chosen at random with equal probability from the list of all
objects. If a collective move is attempted, the moving entity is
a linked cluster generated starting with the selected object. Note
that this entity may still be a single object, if no links are formed
in the cluster formation process. The probability of attempting
a collective move, PCOLLECT, and of forming links, PLINK, are both
user-dened parameters. In this study we set PLINK ¼ 0.5 as dis-
cussed previously, and considered values of PCOLLECT¼ 0; 0.5; 0.9.
A local or a global trial move is selected with 50% probability. In
a local move, the moving entity is displaced by up to 0.5 Å along
14386 | RSC Adv., 2019, 9, 14382–14390
a random vector, and rotated by up to 0.5 radians in a random
plane. In a global move, the moving entity is relocated to
a random position and orientation anywhere in the simulation
box. Random vectors for displacements, orientations and rota-
tions are selected uniformly from the unit sphere, whereas
random locations are selected uniformly as fractional coordi-
nates from the unit cube. Local rotations are implemented using
the rotor operator of Clifford algebra.48 The rotor makes use of
a bivector object, closely analogous to a quaternion and sharing
its advantages in the computational representation of rotations.49

Testing for acceptance occurs in three stages. An initial steric
clash test identies and rejects cases where the move leads to
a sterically forbidden overlap of non-bonded atoms. If a collec-
tive move generates new contacts, it also has a probability of
being rejected to maintain detailed balance as discussed
previously. The energy of the trial system is only calculated
(using the interatomic PMFs) if the rst two stages are passed.
The move is then accepted or rejected based on the usual
Metropolis energetic criterion. Each simulation run in this work
consists of 2 � 108 attempted moves.

The identication of A-like clusters is based on the recog-
nition of linear chains of alternating metal (M) and ligand (L)
objects, schematically –M–L–M–L–. The identication of F-like
clusters likewise proceeds by a labelling process which recog-
nises groups of multiple M objects bridged by L objects
(compare Fig. 1). In a ltering round, only those clusters which
contain at least one group of three connected M objects (–M–M–

M–) are counted; a strict criterion intended to avoid false-
positive identication of F-like clusters. A nal point to note
is that this identication system results in the clusters L–M–L
and M–L–M being identied as “A-like”. However, these three-
object clusters can also be identied in the structure of phase
F. To avoid false-positive identications we therefore do not
count such clusters of size three as truly A-like, and when
assessing how many objects are members of A-like clusters, we
consider only clusters of size 4 or more. The details of the phase
recognition method are given in ESI S.6.†
This journal is © The Royal Society of Chemistry 2019
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Results and discussion

We simulated systems with two compositions: a ligand-poor
composition C1, consisting of 400 cobalt units and 80 succi-
nate ligand units, and a ligand-rich composition C2, consisting
of 400 cobalt units and 480 ligand units. Compositions C1 and
C2 correspond to synthesis conditions for phases F and A,
respectively. The simulation box was, for both compositions,
a cube of side 113.4 Å, based on the calculated concentrations
for the experimental syntheses.21 The initial congurations for
the simulations were generated by inserting Co/vO6 octahedra
and succinate ligand objects with random locations and
orientations in the simulation cell, rejecting any placement
which would cause a steric clash with a previously placed object,
until the desired composition was achieved.

To illustrate the character of the results, we consider simu-
lation runs with PCOLLECT ¼ 0.9. Over the course of the simu-
lations, clusters of overlapping objects appear with gradually
increasing size. Fig. 6 shows a census of all overlapping clusters,
and of clusters identiable as A-like or F-like, for both compo-
sitions. Clusters occur in this case with sizes from 2 to 15
molecular objects, with smaller clusters being more common.
Fig. 6 Census of all clusters, and of identifiable A-like and F-like clusters, in s
F expected) and (b) C2 (ligand-rich, phase A expected). Census bar for A-like c

Fig. 7 Number of molecular objects in identifiably A-like and F-like cluste
(a) C1 (ligand-poor) and (b) C2 (ligand-rich).

This journal is © The Royal Society of Chemistry 2019
For the ligand-poor composition C1, for which experimen-
tally phase F is observed, there is no evidence of truly A-like
clusters (note that phase identication for A-like clusters of
size 3 is ambiguous and therefore only A-like clusters of size 4 or
above are counted as described above). F-like clusters occur
with sizes from 3 to 11; indeed the single largest cluster in the
system is identiably F-like. In contrast, for the ligand-rich
composition C2, for which phase A is observed experimen-
tally, A-like clusters are produced with sizes up to 11. Only
a single F-like cluster, of size 10, is observed in this simulation
run. Its appearance provides a useful conrmation that our
model is capable of producing either type of cluster at any
composition.

The different phase selection behaviours for the two
compositions is also clear if we count up the number of
molecular objects that are contained within identiably A-like
or F-like clusters, as shown in Fig. 7. This census also reveals
the brief appearance of some A-like clusters in the ligand-poor
composition C1, early on in the simulation, which are subse-
quently out-competed by F-like clusters.

Fig. 8 shows illustrative examples of an F-like cluster formed
at composition C1 (note the M–M–M structural motif required
imulations with PCOLLECT¼ 0.9, for composition (a) C1 (ligand-poor, phase
lusters of size 3 is chequered as the phase identification is here ambiguous.

rs over the course of a simulation with PCOLLECT ¼ 0.9 at compositions

RSC Adv., 2019, 9, 14382–14390 | 14387
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Fig. 8 Example of an F-like cluster (a) and a linear A-like cluster (b)
formed during simulations with collective moves. Large blue spheres
represent cobalt ions, medium green spheres CH2 groups and
carboxyl carbons, small red spheres oxygen (carboxyl, or metal-
coordinating virtual sites).
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for this phase) and of an A-like linear chain formed at compo-
sition C2.

The preceding analysis demonstrates that our modelling
approach is successful in capturing the character of syntheses
with ligand-rich and ligand-poor compositions. In order to
assess the effectiveness and utility of the collective move
system, we now compare the results of simulations carried out
at compositions C1 and C2 with and without collective moves,
for PCOLLECT ¼ 0 or 0.9. In each case we show the results of two
independent Monte Carlo runs with different random seeds.
Cluster census data in Fig. 9 shows that simulations without
collective moves (PCOLLECT ¼ 0; Fig. 9a and d) exhibit kinetic
trapping, producing mostly small clusters of sizes 2–5. With
collective moves, the simulations are able to produce larger
clusters. The contrast is particularly strong at the more densely
packed composition C2 (Fig. 9c and d), where the collective
move scheme is clearly necessary in order to produce clusters
with sizes greater than ve.
Fig. 9 Cluster census data from simulations at compositions C1 (left)
and C2 (right) using PCOLLECT values of 0.0 (a and c) and 0.9 (b and d).
Within each panel, data series -a and -b represent two independent
runs with different random seeds.

14388 | RSC Adv., 2019, 9, 14382–14390
Fig. 10 summarizes the sizes of the largest A-like and F-like
cluster produced in each simulation (Fig. 10a) and the total
number of objects contained in identiably A-like and F-like
clusters (Fig. 10b). The tendency towards F-like clusters in the
ligand-poor composition C1 and towards A-like clusters in the
ligand-rich composition C2 clearly exists with or without the use
of collective moves. This establishes that the phase selection
tendency results from the composition and the potential model,
and is not dependent on the collective move system. In
composition C1, the use of collective moves slightly favours the
formation of larger F-like clusters, and clearly favours the
inclusion of more objects into F-like clusters. In composition
C2, the effect of collective moves is much more dramatic,
doubling the size of the largest A-like clusters, and tripling the
number of objects included in clearly A-like clusters (simula-
tions using a PCOLLECT value of 0.5 rather than 0.9 give similar
results, shown in detail in ESI S.9†). This underscores the
importance of collective moves in Monte Carlo simulations of
denser systems to avoid kinetic trapping effects.

Our results provide proof of principle that the CCMC
approach is capable of identifying composition-dependent
differences in MOF growth topologies. In principle our
method can be extended to other MOF systems, although a new
set of PMFs are required for each new system. Different MOF
chemistries are of course a priority, as facile syntheses of stable
MOFs with appropriate pore geometries are a necessity if MOFs
are to full their promise as microporous materials in appli-
cations.4,5,50 Possible target systems include other MOFs in
which different phases can arise from the same building blocks
under different reaction conditions, e.g. the chromium tere-
phthalates MIL-101 (ref. 51) and MIL-53.52,53 The exible
chemistry of the Zr6 cluster found in structures such as UiO-66
(ref. 54) would also be of great interest; the coordination of each
zinc ion can involve framework oxygen, hydroxide groups, water
molecules and carboxylate oxygens, so that the adaptability of
the virtual site system should be highly applicable. ZIFs are
Fig. 10 (a) Size of largest A-like and F-like clusters, and (b) number of
objects in A-like and F-like clusters. Simulations are coded by
compositions (C1, ligand-poor, and C2, ligand-rich) and value of
PCOLLECT (0.0 or 0.9), with runs -a and -b using different random seeds.
Cases where the largest “A-like” cluster is of size 3 are hatched, as in
this case the phase identification is ambiguous.

This journal is © The Royal Society of Chemistry 2019
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another important MOF subclass, in which strikingly different
zeolite-like framework topologies arise through the use of
different imidazolate derivatives as ligands. The interest in this
case would be an investigation of the effect of ligand geometry
on the initial generation of small clusters and rings.

Furthermore, the CCMC approach is not limited to MOFs,
but could also be applied to other systems by taking a very broad
denition of what constitutes a ligand. For example, the crys-
tallisation of calcite (CaCo3) from solution is a widely studied
system55–57 which could be described in our model by consid-
ering the triangular carbonate anion as a ligand.

Conclusions

We have developed and applied methods for molecular Monte
Carlo simulations of the initial stages of MOF assembly under
synthesis conditions. To model the assembly of metal-
coordination polyhedra and ligand molecules, we employ
a system of “virtual sites”. This captures the coordination
geometry around metal ions and allows metal–solvent, metal–
metal and metal–ligand associations to be described with a set
of intersite interaction potentials of mean force which capture
the structuring effect of the solvent.

In simulations of molecular aggregation, collective (cluster)
moves are important to avoid severe computational slowdown
as small clusters form and grow. We developed a Contact
Cluster Monte Carlo (CCMC) algorithm which cleanly separates
the cluster formation probability, based on the geometry of
local attractive contacts, from the Metropolis energetic criterion
for move acceptance. CCMC thus avoids the computational cost
of evaluating multiple exponential terms during cluster
construction and makes it easy for favourable interactions both
to form and to break during cluster construction. The collective
move algorithm described here is equally applicable to any
model dominated by local attractive interactions, for example
hydrogen bonding networks, the assembly of positively and
negatively charged groups or the assembly of particles with
“sticky” patches, such as colloidal systems or the formation of
protein complexes. We therefore anticipate that the algorithm
will be of general use in modelling the assembly of framework
structures, including MOFs.

In molecular simulations of the cobalt succinate system,
a MOF that exhibits different phases depending on the
synthesis conditions, our methodology successfully models the
aggregation of MOF building units into clusters, producing
clusters with topologies characteristic of the experimentally
observed A and F phases. The geometric collective move system
introduced here is effective in assembling clusters with sizes
that are not reached by single-object moves due to kinetic
trapping. We observe different cluster topologies depending on
the ligand to metal ratio: at high ligand concentration, 1D
chains of alternating metal–ligand–metal form, whereas at low
ligand concentration metal–metal clusters and chains are
linked together by multiply coordinated ligands. This captures
the experimental observation of the growth of two distinct
phases (“A” and “F”) at moderate temperatures in ligand-rich
and ligand-poor batch compositions. We note in particular
This journal is © The Royal Society of Chemistry 2019
that our PMFs were obtained systematically and were not
“tuned” to produce A-like or F-like clusters. To the best of our
knowledge, this is the rst time that the spontaneous emer-
gence of two different, experimentally appropriate, topologies,
based only on the synthesis conditions has been predicted
using molecular simulation and represents an important step
forward in the simulation of MOF formation.
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