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ethylene blue with magnetic Co-
doped Fe3O4@FeOOH nanocomposites as
heterogeneous catalysts of peroxymonosulfate

Kai Wang, a Yi Yang,b Tian C. Zhang,c Ying Liang*a and Qingguo Wang*a

Magnetic Co-doped Fe3O4@FeOOH nanocomposites were prepared in one step using the hydrothermal

synthesis process for catalyzing peroxymonosulfate (PMS) to degrade refractory methylene blue (MB) at

a wide pH range (3.0–10.0). The catalysts' physiochemical properties were characterized by different

equipment; Fe3+/Fe2+ and Co3+/Co2+ were confirmed to coexist in the nanocomposite by X-ray

photoelectron spectroscopy. The nanocomposite effectively catalyzed PMS's decoloration (99.2%) and

mineralization (64.7%) of MB. The formation of Co/Fe–OH complexes at the surface of nanoparticles

was proposed to facilitate heterogeneous PMS activation. Compared with the observation for

Fe3O4@FeOOH, the pseudo-first-order reaction constant was enhanced by 36 times due to Co

substitution (0.1620 min�1 vs. 0.0045 min�1), which was assigned to the redox recycle of Fe3+/Fe2+ and

Co3+/Co2+ in Co-doped Fe3O4@FeOOH. Besides, the catalyst could be easily reused by magnetic

separation and exhibited relatively long-term stability.
1. Introduction

As one of the common dyes, methylene blue (MB) is used
worldwide as a colorant and sterilant.1–3 MB, once released into
the environment as a pollutant, can lead to breathing difficul-
ties, burning eyes, nausea, vomiting, profuse sweating, mental
confusion, increased heart rate, quadriplegia, etc.1,2 Currently, it
is still a big challenge for the traditional wastewater treatment
process to eliminate such organic contaminants due to their
poor biodegradability.3 Hence, the activation of perox-
ymonosulfate (PMS) as one of the advanced oxidation technol-
ogies (AOTs) has attracted much attention for the degradation
of refractory organic compounds, which is mainly attributed to
the PMS's formation of unselective sulfate radicals.3

Compared to homogeneous transition metals for PMS acti-
vation, the heterogeneous systems have several advantages with
respect to the recovery of catalysts,4 decrease in the secondary
pollution5 and lower need for catalysts' amount.3 In heteroge-
neous systems, prior studies show that both Co(II) and Ru(III) are
the best metal catalysts for the activation of PMS6 and Co(II) is
the best metal catalyst among Fe, Co, and Ni.7 Nevertheless, Co
leaching is still hazardous to the safety of water quality and
thus, the application of Co to activate PMS is limited. In addi-
tion, supported and unsupported iron-based materials have
ngineering, Sichuan University, Chengdu,

.edu.cn; wateredu@163.com

ted, Wuhan, 430223, P. R. China

f Nebraska-Lincoln, Omaha, NE 68182-

3

been synthesized with remarkable performances including
Fe3O4,8 Fe2O3,9 DPA-Fe2O3,10 Fe3O4@Co/C,11 CoFe2O4,12 and
FeOOH.10,13 For instance, due to the characteristics of Fe3O4

(e.g., easy preparation, high stability and convenient separa-
tion), it is an excellent material to catalyze PMS.14 Moreover,
iron oxide magnetic nanoparticles can effectively activate
persulfate/PMS anions to produce sulfate-free radicals.8

Besides, Fe3O4@C/Co nanocomposites exhibit high activity in
PMS activation for the decoloration of AO II;11 the Fe–Co cata-
lysts have controlled cobalt leaching because of strong metal–
metal interactions.15 Some reactions of the activation of HSO5

�

are listed as follows:11,15,16

Fe3O4@Co0 / Fe3O4@C/Co2+ + 2e� (1)

Fe3O4@Co0 + 0.5O2 + H2O / Fe3O4@C/Co2+ + 2OH� (2)

Fe3O4@Co2+ + HSO5
� / Fe3O4@C/Co3+ + SO4

�c + OH� (3)

Fe3O4@Co0 + 2HSO5
� / Fe3O4@C/Co3+ + 2SO4

�c + 2OH�(4)

Me+ + HSO5
� / Me3+ + SO4

�c + OH� (5)

Me3+ + HSO5
� / Me2+ + SO5

�c + H+ (6)

SO5
�c + e� / SO4

�c + OH� (7)

SO4
�c + pollutants / intermediates / CO2 + H2O (SO4

2�) (8)

Here, Me represents Fe or Co. Considering its abundance,
availability, relative stability and cost-effectiveness, goethite (a-
This journal is © The Royal Society of Chemistry 2019
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FeOOH) has been widely used as a heterogeneous catalyst.17,18

However, its catalytic activity decreases rapidly under neutral or
even alkaline conditions.19,20 a-FeOOH is mostly applied in the
form of ne powders, which leads to difficult solid/liquid
separation and recycling.21,22 However, easy separation and
excellent reusability are the key parameters that determine the
practical applications of a heterogeneous catalyst.23 Thus, it is
important to synthesize a heterogeneous catalyst that can be
used in a wide pH range and can be easily separated without
extra energy input.

It was reported that the Cu-doped Fe3O4@FeOOH magnetic
nanocomposite exhibited unprecedented Fenton activity for
OFX degradation in a broad working pH range (3.2–9.0).21

Hence, in light of the aforementioned analysis, we hypothesized
that goethite (a-FeOOH) can also be incorporated into Co-doped
Fe3O4 to activate PMS and have an excellent performance. The
objectives of this study were to (1) synthesize a magnetic Co-
doped Fe3O4@FeOOH nanocomposite by a hydrothermal
synthesis process; (2) evaluate the characteristics of the
synthesized nanocomposite; (3) determine its catalytic effects
on heterogeneous PMS for the decoloration and mineralization
of MB at a wider pH range; and (4) evaluate the feasibility of
using magnetic separation to recycle the catalyst aer reaction.
The results of this study demonstrated that the as-prepared
catalyst provides a promising alternative for the application of
heterogeneous PMS in wastewater treatment because of the
relatively long-term stability, high reactivity and easy
separation.
2. Materials and methods
2.1 Chemicals

All the chemicals were of analytical grade and used directly as
received. Iron(II) sulfate heptahydrate (FeSO4$7H2O), iron(III)
sulfate (Fe2(SO4)3), sodium thiosulfate (Na2S2O3$5H2O), cobal-
t(III) nitrate hexahydrate (Co(NO3)2$6H2O), sodium hydroxide
(NaOH), isopropyl alcohol (C3H8O), methanol (CH3OH),
ethylene glycol (C2H6O2), and sulfuric acid (H2SO4) were
purchased from Chengdu Kelong Chemical Reagent Company
(Chengdu, China). MB and ethyl alcohol (C2H6O) were
purchased from Shanghai Aladdin Bio-Chem Technology
(Shanghai, China). All the experiments were conducted using
deionized (DI) water (18.25 MU cm) made by an ultra-pure water
purier (UPT-II-10T, Youpu).
2.2 Synthesis of Co-doped Fe3O4@FeOOH catalyst

Magnetic Co-doped Fe3O4@FeOOH was synthesized by
a hydrothermal synthesis process. First, 2.2244 g FeSO4$7H2O,
3.1989 g Fe2(SO4)3 and 2.3577 g Na2S2O3$5H2O together with
a dened amount of Co(NO3)2$6H2O ([Fe]/[Co] ¼ 1.0%, 5.0%
and 10.0% in molar ratio) were added to a glass beaker with
30 mL DI water. The mixture was stirred for 15 min with
a magnetic stirrer (DF-101S, Greatwall Scientic Industrial).
Once a clear solution was obtained, 5.6 g ethylene glycol was
added into the mixture; then, it was continuously stirred for
further 15 min to ensure complete dissolution to form a viscous
This journal is © The Royal Society of Chemistry 2019
solution. Following this, 30 mL sodium hydroxide solution
(5.83 mol L�1) was dripped into the viscous solution while the
stirring velocity was adjusted to 900 rpm (21, scale range: 0–60,
speed range: 0–2600 rpm). Constant stirring (25 min) was
carried out to ensure complete reaction at the molecular level.
Finally, the solution was transferred into a 100 mL Teon-lined
stainless steel container for autoclaving at 200 �C for 6 h. Aer
cooling, the product was washed with DI water and anhydrous
ethanol and then dried at 80 �C in a vacuum-drying oven
(DZF6020, Shanghai Boxun Medical Biological Instrument
Corp) overnight. The nal product was the synthesized Co-
doped Fe3O4@FeOOH nanocomposite catalyst. For compar-
ison, FeOOH and Fe3O4@FeOOH were also prepared under the
same conditions.

2.3 Degradation of MB over Co-doped Fe3O4@FeOOH

All the degradation experiments were carried out in a 500 mL
beaker placed in a 30 �C thermostatic water bath (DF-101S,
Greatwall Scientic Industrial) with simultaneous appropriate
continuous stirring. In a typical experiment, a desired amount
of catalyst was dispersed into 500 mL MB solution (15 mg L�1),
which was mechanically stirred for 20 min to achieve
adsorption/desorption equilibrium. Second, the pH of the ob-
tained solution was adjusted to a pre-established value by
adding a nite volume of H2SO4 (0.5 M) or NaOH (1 M). Then,
a dened amount of PMS solution was added into the suspen-
sions. Aer a designated time interval, the MB concentration
was analyzed by a UV spectrophotometer (UV1100, Mapada,
Shanghai, China) immediately at a wavelength of 664 nm aer
the mixture was ltered through a 0.22 mm membrane (PES,
Tianjin, Jinteng).24

In each of the tests for evaluating the effects of different
operating parameters, only one factor was changed, while
others remained the same. For recycling experiments, the used
catalysts were collected by magnetic separation (with a magnet
close to the glass beaker) aer the degradation experiment;
then, the catalysts were washed with DI water and anhydrous
ethanol three times before the next reusability test. In
quenching experiments, radical scavengers (e.g., isopropyl
alcohol (IPA) and methanol (MeOH)) were added to the solution
together with PMS. All the samples were measured three times
parallelly, and the data represented the average of the duplicate
with a standard deviation less than 5%.

2.4 Catalyst characterization and analytical methods

The synthesized catalysts and other iron oxides were charac-
terized by N2 adsorption/desorption isotherms (BET, ASAP
2460, Micromeritics Instrument Corp, US),25 X-ray diffraction
(XRD, D2 PHASER, Bruker, DE), transmission electron micros-
copy (TEM), inductively coupled plasma optical emission
spectroscopy (ICP-OES, 725ES, Agilent Technologies Inc., US),
X-ray photoelectron spectroscopy (XPS, Escalab 250Xi, Thermo
Fisher Scientic, US),26 and vibrating sample magnetometry
(VSM)27 to better comprehend their structures and functions.

The pH of the solution was determined using a Sev-
enExcellence™ pH meter (S975-uMix, Mettler Toledo, CH). In
RSC Adv., 2019, 9, 17664–17673 | 17665
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addition, the mineralization rate of MB was calculated by the
decrease in the total organic carbon (TOC), which wasmeasured
by a TOC analyzer (Multin/c 3100, Analytik Jena AG, DE) based
on the TC-IC method.28 The decolorization and mineralization
efficiency of MB were calculated with eqn (9) and (10),
respectively.29,30

DE ð%Þ ¼ C0 � C

C0

� 100% (9)

ME ð%Þ ¼ TOC0 � TOC

TOC0

� 100% (10)

Here, C0 is the initial MB concentration (mg L�1); C is the nal
MB concentration (mg L�1); TOC0 is the initial TOC of MB; and
TOC is the nal TOC of MB. IPA and MeOH were selected as the
spin-trapping reagents for SO4

�c and $OH. The leaching of iron
and cobalt ions was directly detected by atomic absorption
spectroscopy (AAS, PinAAcle 900T, PerkinElmer, US).

3. Results and discussion
3.1 Characterization of Co-doped Fe3O4@FeOOH

As shown in Fig. 1A and B, the crystal structures of various iron
oxides are analyzed by XRD, which can be assigned to a mixture
Fig. 1 (A) XRD patterns: (a) only FeOOH, (b) 10% Co-doped Fe3O4@FeOO
(d) Fe3O4@FeOOH, and (e) Fe3O4@FeOOH. (B) XRD pattern of 10% Co
Fe3O4@FeOOH.

17666 | RSC Adv., 2019, 9, 17664–17673
of a-FeOOH (JCPDS no. 29-0731) and Fe3O4 (JCPDS no. 11-0614)
without the representative signals of Co oxide (CoO, JCPDS 65-
5474; Co3O4, JCPDS 41-1467, etc.7). There were two assumptions
to explain this result: (a) the cobalt ion substituted in the place
of iron; and (b) the lower proportion of doped cobalt. According
to a previous research,21 we preferred the assumption that
cobalt ions were highly dispersed in the lattice due to the
adjacent periodic positions of cobalt and iron. The content of
cobalt (detected by ICP-OES) was 55.53mg g�1 and the gradually
sharpening diffraction peak (with the increase in cobalt's
content) further conrmed our hypothesis. Moreover, cobalt
can be observed in the XPS pattern of the catalyst. The TEM
images further exhibit an obvious rod-like structure of
typical goethite (Fig. 1C). Small cubic or globose Fe3O4 was
decorated around a-FeOOH. The length and width of a-FeOOH
were 80–120 nm and 20 nm, respectively, which agreed well
with the results of the as-prepared sample obtained by XRD
analysis. Meanwhile, a rough surface, usually symbolizing the
large specic surface area of Co-doped Fe3O4@FeOOH, was
observed (Fig. 1D), which ensured sufficient active sites for
peroxymonosulfuric acid.

Fig. 2A and B show that cobalt is doped successfully in Fe3-
O4@FeOOH; as shown in Fig. 2C, Fe3+ and Fe2+ can be identied
H, (c) 5% Co-doped Fe3O4@FeOOH, (d) 1% Co-doped Fe3O4@FeOOH,
-doped Fe3O4@FeOOH. (C) and (D) TEM images of 10% Co-doped

This journal is © The Royal Society of Chemistry 2019
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Fig. 2 (A) A typical XPS spectrum of Co-doped Fe3O4@FeOOH. High-resolution XPS of (B) Co 2p and (C) Fe 2p. (D) Magnetization curve. (E)
Nitrogen adsorption–desorption isotherm plot of Co-doped Fe3O4@FeOOH.
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by the peaks at 712.76 eV and 726.26 eV for Fe3+ and 710.54 eV
and 724.00 eV for Fe2+ with a shake-up satellite Fe 2p3/2 at
710.8 eV.31,32 Compared to the XPS spectra of Fe3O4@FeOOH,
the binding energies of Fe 2p1/2 and Fe 2p3/2 shied slightly to
the right. The peaks at binding energies of 783.30 eV and
779.61 eV for Co2+ and 781.08 eV and 786.57 eV for Co3+ were
This journal is © The Royal Society of Chemistry 2019
observed in the Co 2p region of the XPS spectrum (Fig. 2B),
which increased slightly compared with the typical binding
energies of Co 2p. This indicated that Fe became more nega-
tively charged and Co became more positively charged, exhib-
iting the successful interaction between iron and cobalt in the
catalysts.
RSC Adv., 2019, 9, 17664–17673 | 17667
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Fig. 3 MB degradation under different conditions: (a) Co-doped
Fe3O4 only, (b) PMS only, (c) FeOOH+ PMS, (d) Fe3O4@FeOOH+ PMS,
(e–g) 1%, 5%, and 10% Co-doped Fe3O4@FeOOH, respectively
(experimental conditions: 500 mL 15 mg L�1 MB, pH 7.0, catalyst
amount 0.2 g L�1, PMS dosage 0.2 g L�1).
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The catalysts exhibited a saturation magnetization value of
38.09 emu g�1 at 20 kOe with an evident hysteresis loop, which
further conrmed the presence of magnetite (Fig. 2D).33 This
implied that the mixture could be easily separated from the
treated water and dispersed rapidly into a solution for reuse due
to its low remanent magnetization value.34 The magnetic sepa-
rability of Co-doped Fe3O4@FeOOH was tested in water by
placing a magnet near the glass bottle. It was found that the
samples were completely attracted to the magnet within a very
short time and the solution became clear and transparent (inset
in Fig. 2D), conrming the convenient separation of the Co-
doped Fe3O4@FeOOH nanocomposites from liquids by using
an external magnetic eld. The BET pattern (Fig. 2E) shows that
the Co-doped Fe3O4@FeOOH nanoparticles belong to a type IV
isotherm with H2 type hysteresis loops and exhibit a saturated
adsorption platform, which is associated with the uniform
distribution of pore sizes. The Co-doped Fe3O4@FeOOH nano-
particles indicated a specic surface area of 111.93 m2 g�1, pore
Fig. 4 Effects of (A) PMS and (B) the catalyst dose onMB degradation (exp
0.05, 0.1, 0.2, and 0.4 g L; B: 0.2 g L�1, PMS dosage A: 0.2 g L; B: 0.05,

17668 | RSC Adv., 2019, 9, 17664–17673
volume of 0.12 cm3 g�1, and diameter of 4.36 nm, which were
benecial for facilitating the catalytic degradation of
pollutants.25

3.2 MB degradation and mineralization catalyzed by Co-
doped Fe3O4@FeOOH

As shown in Fig. 3, in the absence of PMS, about 8.7% reduction
of MB can be detected aer 30 min due to the adsorption effect
of Co-doped Fe3O4@FeOOH. PMS could remove 13.1% of MB
alone because of its quite high oxidation ability (E0 ¼ 1.82 V). It
is obvious that FeOOH and Fe3O4@FeOOH have insufficient
activation potentials for PMS in a similar natural water condi-
tion and these two iron oxides even slightly inhibited the PMS's
oxidative capacity as the removal efficiencies of MB by the two
iron oxides with PMS were 11.9% and 13.1%, respectively. The
doping of metallic cobalt ions can greatly improve the system
activity of PMS. When the doping molar ratio of cobalt changed
from 1% to 5% and 10%, the degradation rate of MB increased
from 73.9% to 97.8% and 99.2%, respectively, within 30 min
under the same condition. The TOC removal of MB was 64.7%,
which indicated relatively high mineralization efficiency.

MB degradation followed pseudo-rst-order kinetics. The
reaction constants (in min�1) were 0.0007 for Co-doped Fe3-
O4@FeOOH only, 0.0042 for PMS solution only, 0.0043 for PMS
solution coupled with FeOOH, and 0.0045 for Fe3O4@FeOOH
only as well as 0.0449, 0.1267, and 0.1620 for 1%, 5%, and 10%
of Co-doped Fe3O4@FeOOH, respectively.

3.3 Effects of operating parameters on MB degradation

3.3.1 Effects of PMS and catalyst dosage. In terms of
economic and degradation effects, the concentration of PMS is
always a necessary factor for this kind of experiment.35 As shown in
Fig. 4A, the removal efficiency of MB increases with the PMS
concentration. When the dosage of PMS changed from 0.05 g L�1

to 0.4 g L�1, the decoloration ofMB increased from 23.4% to 100%
in 30 min accompanied by an obvious increase in the degradation
rate. It is well-known that there are various rate limiting factors of
a reaction for different concentrations of substrates. At a low
concentration of PMS, the surface-active sites of catalysts could not
erimental conditions: 500mL 15mg L�1 MB, pH 7.0, catalyst amount A:
0.1, 0.2, and 0.4 g L�1).

This journal is © The Royal Society of Chemistry 2019
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Table 1 Water quality parameters of three different water samples

Parameters Units Lake water Tap-water
Ultrapure
water

Temperature �C 21.8 22.5 22
Dissolved oxygen (DO) mg L�1 10.14 8.00 8.47
Electric conductivity (EC) ms cm�1 266.49 374.10 2.02
PH — 8.98 8.30 7.00

Fig. 5 (A) MB degradation at different initial pH values and results of relative pseudo-first-order kinetics. (B) Effects of different water envi-
ronments on MB degradation (experimental conditions: 500mL 15mg L�1 MB, pH A: 3.0, 7.0, 8.0, and 10.0; B: 7.0, catalyst amount 0.2 g L�1, PMS
dosage 0.2 g L�1).
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be used effectively, while the usage of the active sites seemed to be
saturated at a high concentration of PMS. In this study, the initial
dosage of PMS was selected as 0.2 g L�1.

Generally speaking, the perfect dosage for activating PMS
should be associated with a higher concentration of the catalyst.
However, Fig. 4B shows that 0.2 g L�1 has the best catalytic
effect. It can be seen that the expansion of the specic surface
area can bring some advantages for small catalyst particles. If
more surface-active sites are provided for catalyzing PMS, the
efficiency of the whole system will be greatly improved, which is
a typical heterogeneous reaction process. However, as soon as
the active sites exceed the needed amount, opposite results will
be observed. Considering that the oxidation efficiency of MB by
PMS depends on the amount of the catalyst, we selected a rela-
tively moderate amount of 0.2 g L�1 in the subsequent reaction
to avoid either a too slow or too fast reaction.

3.3.2 Effects of initial pH and water quality. As shown in
Fig. 5A, the degradation of MB by the Co-doped Fe3O4@FeOOH/
PMS system is conducted in a wide initial pH range (3.0–10.0).
Higher degradation efficiency was obtained under alkaline
conditions. The pH of the reaction system can affect the
formation of a hydroxylatedmetal complex. It is easy to form the
metal–OH–HSO5 superoxide complex under alkaline condi-
tions. In this way, $HSO5 was simpler to be activated because
the metal–OH–HSO5 complex can weaken the S–O bond. In
addition, SO4

�c also oxidized OH� into $OH in an alkaline
environment. Since the pH range of water in a natural envi-
ronment is 5.5–7.4,21 the initial pH of the solution for the
subsequent reaction was selected as 7.

Water quality is one of the important factors for Co-doped
Fe3O4@FeOOH to activate PMS. Fig. 5B shows that the removal
efficiencies of MB in ultrapure water, lake water (Mingyuan Lake
of Sichuan University, Chengdu, China) and tap water (Minjiang
water supply plant, Chengdu, China) are nearly 100%, 91.8% and
83.9%, respectively. Table 1 shows that the electric conductivities
of lake water and tap water are 131.93 and 185.20 times higher
than that of ultrapure water, respectively. The decrease in the
degradation efficiency of MB in lake and tap water samples could
be attributed to the interference of inorganic ions.36
This journal is © The Royal Society of Chemistry 2019
3.4 Metal leaching and reusability of Co-doped
Fe3O4@FeOOH

To evaluate the stability and reusability of Co-doped Fe3-
O4@FeOOH nanocomposites, the MB removal efficiency and
the concentrations of leached Co and Fe ions were deter-
mined during successive catalytic experiments. The used
catalysts were collected efficiently by magnetic separation
and reused four times. The concentrations of leached Co and
Fe were detected as 0.113 mg L�1 and 0.032 mg L�1 (Fig. 7A),
respectively, in 30 min for the rst run, which were less than
the allowed concentrations in water.37 This indicated that Co-
doped Fe3O4@FeOOH has negligible inuence on the envi-
ronment and the activation of PMS by the catalyst is mainly
through the heterogeneous process. In Fig. 7B, we can
observe that the MB removal is about 94.3% in 30 min during
the third test run and the degradation of 95.8% MB needs
80 min in the fourth run. Nevertheless, the composite pre-
sented strong chemical stability under neutral conditions.
The excellent stability of the recycled catalyst was further
conrmed by XRD and XPS diffraction patterns (Fig. 6),
which showed no obvious changes in the characteristic peaks
compared with that of the fresh catalyst. In addition, the
utilization of solid catalysts for the degradation of MB in
water in other literature has been listed as a comparison
(Table 2). It can be seen from Table 2 that the performance of
Co-doped Fe3O4@FeOOH is comparable to those of other
materials and it also exhibits some other advantages.
Therefore, the synthesized catalyst might be one of the
promising and feasible materials for the oxidation removal of
organic pollutants.
RSC Adv., 2019, 9, 17664–17673 | 17669
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3.5 Possible active radicals

According to previously reported results, PMS can produce
multiple radicals such as SO4

�c, $OH, and SO5
�c. In order to

detect the generation of free radicals in the Co-doped Fe3-
O4@FeOOH + PMS reaction system, we conducted free radical
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Fig. 6 (A) XRD pattern, (B) Fe 2p XPS spectrum and (C) Fe 2p XPS
spectrum of fresh and used Co-doped Fe3O4@FeOOH.
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capture experiments. Isopropyl alcohol (IPA) and methanol
(MeOH) were selected as the main spin-trapping reagents.
Fig. 7C shows that the system can generate both SO4

�c and $OH.
The decoloration efficiency of MB decreased from 97.6% to
97.1% and 86% when the molar ratios of MeOH to PMS were
changed from 9.23 to 92.31 and 381.54, respectively. Moreover,
the degradation rate slowed down, which indicated that the
presence of MeOH has a slight inhibiting effect on the cata-
lyzing process. When themolar ratios of IPA to PMS were 201.54
and 381.54, the degradation efficiencies decreased by only
10.7% and 12.8%, respectively. It might be possible that MeOH
and IPA could not attach to the catalytic surface easily as they
are hydrophilic substances.42 Hence, the activation process of
PMS and the generation of free radicals could mainly occur on
the surface of the nanocomposite. In addition, the inhibiting
effect of MeOH was stronger than that of IPA, suggesting that
the generation amount of SO4

�c was larger than that of $OH.
Fig. 7 (A) Time courses of leached Fe and Co concentrations during
the degradation of MB. (B) Stability of Co-doped Fe3O4@FeOOH in the
multicycle degradation of MB in the presence of PMS. (C) Effect of
radical scavengers on MB degradation.
3.6 Possible mechanism of PMS activation by Co-doped
Fe3O4@FeOOH

The possible heterogeneous reaction mechanism of Co-doped
Fe3O4@FeOOH for activating PMS could be proposed based on
all the previous research and the above-mentioned experimental
results.32 When the catalyst was added into the untreated solution,
MB was rst adsorbed on the surface of the composite material.
Then, PMS was activated on the surface of Co-doped Fe3O4@-
FeOOH. Similar to the catalytic process of conventional transition
metal (TM) ions, the mixture can activate PMS to generate suffi-
cient radical species (SO4

�c, SO5
�c) as described by eqn (11)–(14).14

Furthermore, SO5
�c would conjunct with hydroxylated TM and

give one electron to TM3+ to produce SO4
�c and $OH, while TM3+

was converted to TM2+ (eqn (15) and (16)).43,44 In addition, eqn (17)
and (18) explain the quenching process of SO4

�c and the genera-
tion of $OH.32,45 Co2+ and Fe2+ both can be regenerated according
to eqn (11) and (13) and (19)–(21).46 Moreover, the two iron oxides
Fe3O4 and FeOOH exhibited low conductivity and bandwidth, and
the simultaneous existence Fe2+ and Fe3+ could facilitate electron
transfer between Co-doped Fe3O4@FeOOH and PMS.

Fe3+ + HSO5
� / Fe2+ + SO5

�c + H+ (11)

Fe2+ + HSO5
� / Fe3+ + SO4

�c + OH� (12)

Co2+ + HSO5
� / Co3+ + SO4

�c + OH� (13)

Co3+ + HSO5
� / Co2+ + SO5

�c + H+ (14)

TM3+ � H3O
+ + SO5

�c / TM3+ � $OHOSO3 + H2O (15)

TM3+ � $OHOSO3 + 2e� / TM2+ + SO4
�c + $OH (16)

SO4
�c + H2O / $OH + H+ + SO4

2� (17)

SO4
�c + OH� / $OH + SO4

2� (18)

Fe2+ + Co3+ / Fe3+ + Co2+ (19)

Fe3+ + e� / Fe2+ (20)
This journal is © The Royal Society of Chemistry 2019
Co3+ + e� / Co2+ (21)

MB + SO4
�c/$OH / intermediate / CO2 + H2O + SO4

2� (22)

As discussed before, the reaction rate of the system can
increase with the increased pH; this is because SO4

�c can react
with hydrone and hydroxide to produce $OHSO4

�c$OH, which
RSC Adv., 2019, 9, 17664–17673 | 17671
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Fig. 8 O 1s spectrum of Co-doped Fe3O4@FeOOH nanoparticles.
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has a higher oxidation–reduction potential (2.80 eV). The radi-
cals SO4

�c and $OH played crucial roles in the degradation of
MB based on the radical quenching experiment. Fig. 8 shows
that the proportion of hydroxyl oxygen in Co-doped Fe3O4@-
FeOOH is 57.3%, which is higher than 42% in Fe3O4@FeOOH.
The content of surface hydroxyl oxygen increased and the
catalysts doped with cobalt promoted the formation of
hydroxylated iron and cobalt. Then, hydroxylated transition
metals could establish a bond with PMS to generate a super-
oxide complex, which would benet the reactions. A macro-
molecular structure (TM3+–$OHOSO3) was further formed on
the surface of the catalyst.14,32,43–45 The electron transfer activity
between cobalt ions and iron ions provided a certain number of
electrons to PMS, and the O–O bond in PMS fractured and
generated SO4

�c and $OH. Finally, MB was degraded by SO4
�c

and $OH (eqn (22)).16
4. Conclusions

Environmentally friendly magnetic Co-doped Fe3O4@FeOOH
nanocomposites were synthesized via a hydrothermal synthesis
method, which showed a remarkable catalytic performance for
the activation of PMS on MB degradation under experimental
conditions. Under neutral conditions, 99.2% of MB (15 mg L�1)
was degraded in 30 min by 0.2 g L�1 Co-doped Fe3O4@FeOOH
with PMS and with relatively high mineralization efficiency
(64.7%). Besides, the catalyst exhibited great stability and
reusability in the reusability experiments. According to the
quenching tests, both SO4

�c and $OH were produced in the
reaction system, and the main radical species was SO4

�c. The
results of BET showed that the surface area of Co-doped Fe3-
O4@FeOOH was 119.93 m2 g�1. Fe3+/Fe2+ and Co3+/Co2+ were
conrmed to coexist in the composite by XPS. The formation of
Co/Fe–OH complexes at the surface of nanoparticles was
proposed to facilitate heterogeneous PMS activation.
17672 | RSC Adv., 2019, 9, 17664–17673
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1047–1060.

5 T. Zeng, X. Zhang, S. Wang, H. Niu and Y. Cai, Spatial
Connement of a Co3O4 Catalyst in Hollow Metal–Organic
Frameworks as a Nanoreactor for Improved Degradation of
Organic Pollutants, 2015.

6 G. P. Anipsitakis and D. D. Dionysiou, Environ. Sci. Technol.,
2004, 38, 3705–3712.

7 Y. Yao, H. Chen, C. Lian, F. Wei, D. Zhang, G. Wu, B. Chen
and S. Wang, J. Hazard. Mater., 2016, 314, 129–139.

8 J. Yan, M. Lei, L. Zhu, M. N. Anjum, J. Zou and H. Tang, J.
Hazard. Mater., 2011, 186, 1398–1404.

9 F. Ji, C. Li, X. Wei and J. Yu, Chem. Eng. J., 2013, 231, 434–440.
10 W. Oh, S. Lua, Z. Dong and T. Lim, J. Mater. Chem. A, 2014, 2,

15836–15845.
11 Z. Xu, J. Lu, Q. Liu, L. Duan, A. Xu, Q. Wang and Y. Li, RSC

Adv., 2015, 5, 76862–76874.
12 F. Qin, S. Jia, Y. Liu, X. Han, H. Ren, W. Zhang, J. Hou and

S. Wu, Mater. Lett., 2013, 101, 93–95.
13 P. Mazellier and M. Bolte, J. Photochem. Photobiol., A, 2000,

132, 129–135.
14 C. Tan, N. Gao, Y. Deng, J. Deng, S. Zhou, J. Li and X. Xin, J.

Hazard. Mater., 2014, 276, 452–460.
15 Y. Yao, Z. Yang, D. Zhang, W. Peng, H. Sun and S. Wang, Ind.

Eng. Chem. Res., 2012, 51, 6044–6051.
16 R. Xiao, Z. Luo, Z. Wei, S. Luo, R. Spinney, W. Yang and

D. D. Dionysiou, Curr. Opin. Chem. Eng., 2018, 19, 51–58.
17 W. Um, H. Chang, J. P. Icenhower, W. W. Lukens, R. J. Serne,

N. P. Qafoku, J. H. Westsik, E. C. Buck and S. C. Smith,
Environ. Sci. Technol., 2011, 45, 4904–4913.

18 B. Yuan, X. Li, K. Li andW. Chen, Colloids Surf., A, 2011, 379,
157–162.

19 Z. Ma, L. Ren, S. Xing, Y. Wu and Y. Gao, J. Phys. Chem. C,
2015, 119, 23068–23074.

20 A. D. Bokare and W. Choi, J. Hazard. Mater., 2014, 275, 121–
135.

21 H. Jin, X. Tian, Y. Nie, Z. Zhou, C. Yang, Y. Li and L. Lu,
Environ. Sci. Technol., 2017, 51, 12699–12706.

22 J. He, W. Ma, J. He, J. Zhao and J. C. Yu, Appl. Catal., B, 2002,
39, 211–220.

23 W. Oh, Z. Dong and T. Lim, Appl. Catal., B, 2016, 194, 169–
201.
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