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The regioselective synthesis of pyrano[3,2-elindole alkaloid fontanesine B by two different cyclizations is described.

The complete regioselectivity is controlled by the C4 Pictet—Spengler cyclization, in which an iminium ion acts as
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Fontanesines A (1), B (2), and C (3) were isolated from the stem
bark and leaf fractions of Conchocarpus fontanesianus by Queiroz
and co-workers in 2016 (Fig. 1)." These compounds have a char-
acteristic pyrano[3,2-e]indole moiety fused with quinazolinone. A
crucial challenge in the synthesis of fontanesines is the regiose-
lective formation of the pyrano[3,2-eJindole core. Although the
structures were unique and unprecedented, there are no reports
on their partial preparation or total synthesis.

The importance of a pyrano[3,2-e]indole framework in
medicinal chemistry had encouraged Macor,”> Pandit,®> May,*
and Conforti® to develop efficient methods for the regioselective
construction of this framework. The majority of these methods
relied on the thermal Claisen rearrangement,>* and Pt-
mediated cyclization.” To keep the pyran intact from earlier
stage of total synthesis is difficult due to its instability.®

In our continuing efforts in the synthesis of indole alka-
loids,” we developed a novel strategy for the synthesis of
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Fig. 1 Fontanesines A (1), B (2), and C (3).
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a transient directing (TDG) group. Furthermore, carbolines were constructed by a new Bischler—Napieralski-type
cyclization, in which an unprecedented trichloromethyl carbamate serves as a reactive group.

azepinoindoles by C4 Pictet-Spengler reaction of serotonins® or
5-hydroxytryptophans® and aldehydes. This approach proved
useful in the one-pot regioselective synthesis of pyrano[3,2-e]
indoles." We considered the above facts and envisioned that
the synthesis of pyrano[3,2-eJlindoles by C4 Pictet-Spengler
reaction would allow a rapid and regioselective formation of
fontanesines, keeping the pyran intact. Herein, we report the
results of our efforts to synthesize 2.

The retrosynthetic analysis of fontanesine B (2) is shown in
Scheme 1. The quinazolinone moiety in 2 might be forged by
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Scheme 1 Retrosynthetic analysis of fontanesine B (2).

This journal is © The Royal Society of Chemistry 2019


http://crossmark.crossref.org/dialog/?doi=10.1039/c9ra02321f&domain=pdf&date_stamp=2019-04-02
http://orcid.org/0000-0003-1729-1097
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c9ra02321f
https://rsc.66557.net/en/journals/journal/RA
https://rsc.66557.net/en/journals/journal/RA?issueid=RA009018

Open Access Article. Published on 03 April 2019. Downloaded on 7/17/2025 7:28:34 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper
C-4 Pictet-Spengler
HO H /allylic transposition
PG ;
Me Et3N/-PrOH (viv =111
W M F\ CHO ;()
u e reflux, 3h
5
4a (PG = Bn) one-pot!!
4b (PG = PMB)

4c¢ (PG = 2,4-DMB)

Me
Me
N

0]

ZT

)\ PG

N
H

8a (PG =Bn): 78%
8b (PG = PMB): 60%
8c (PG = 2,4-DMB): 46%

Scheme 2 Synthesis of substrates 8.

o

cl cl
Me
CI>I\O )<CI Me
EtaN toluene
then HBr, AcOH

N
H
8 9a (PG = Bn 5%
9b (PG = PMB): 6%
_ } 9c (PG = 2,4-DMB): 2%2
Me i
Me A PG / HBr
O | EtsN
\ )\/‘\ ! Me Br
LC| ' Me =
N-2,4-DMB
13 o
- : N O
cl i N
0 Cl 12
Me Me
X
Me ! N/PG Her | Me ! X N/PG
—
\ O)\CI A\ O//LBr
N N
H H
L 14 15
l EtsN EtN /
Me
Me X PG
fo) N -
- decomposition
A\ )\ E polymerization
(0]
N
H X
L 16

Scheme 3 Attempted synthesis of 9. ®12 was obtained in 14% yield.

a deprotection followed by condensation of anthranilic acid (11a)
with carboline 9. One of the key steps in the synthetic route
involved the carbonylative cyclization of pyrano[3,2-e]indole 8 to
afford carboline 9. The pyrano[3,2-e]indole 8 could be accessible
from aldehyde 5 and benzyl protected 5-hydroxytryptamine 4
using our developed C4 Pictet-Spengler/allylic transposition via
the iminium intermediate 6 and azepinoindole 7

Before synthetic studies, we could predict the difficulty of
removing the protecting group on the nitrogen atom at the late
stage. Therefore, we decided to prepare the several tryptamines
4 with different protecting groups. The synthesis was started
from the benzyl protected 5-hydroxytryptamine 4 (Scheme 2). It
was reacted with 3-methyl-2-butenal (5) in 2-propanol/Et;N
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Scheme 4 Improved synthesis of -carbolines 9 from 8 via interrupted
phosgene cyclization and Bischler—Napieralski-type cyclization.

under reflux to produce the desired pyrano[3,2-e]indole 8 in
a one-pot reaction. Normal Pictet-Spengler reaction occurs at
the C2 position of the indole ring under the acidic conditions.
All steps of this one-pot sequence take place under basic
conditions, which is presumably key to its success.

To test the feasibility of our approach, we resorted to the
carbonylative cyclization of 8. According to the previous report on
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Scheme 5 Removal of benzyl substituents on the nitrogen atoms in 9.
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the reaction using triphosgene,"** which is a bench-stable solid
and easy to handle," we investigated the conversion of 8 into 9

N P through intermediate 13 (ref. 15) (Scheme 3). Numerous attempts

N including screening of bases to achieve this have resulted in the

N N polymerization and halogenation' of 8 over the carbonylative
fontanesine B (2) cyclization.” Upon exposure of 8¢ to triphosgene in the presence

of Et;N followed by addition of HBr,"* the desired product 9¢ was
obtained in low yield along with unstable brominated product 12.
The acid lability of a pyrano[3,2-e]indole afforded troublesome,

Table 1 Comparison of *H and *C NMR data of synthetic compound 2 and natural fontanesine B

o] N
e
10 A\
KJV\ =\ *
" 13 Ny N
12 H

fontanesine B

"H NMR (DMSO-ds, 500 MHz, 6 in ppm)

Natural fontanesine B

Synthetic compound 2

1.40 (6H, s, CH;-25, 26)

3.33 (2H, t, J = 6.9 Hz, H-6)
4.43 (2H, t, J = 6.9 Hz, H-5)
5.77 (1H, d, J = 9.8 Hz, H-23)
6.77 (1H, d, J = 8.7 Hz, H-11)
6.88 (1H, d, J = 9.8 Hz, H-22)
7.25 (1H, d, J = 8.7 Hz, H-12)
7.47 (1H, ddd, J = 8.0, 7.1, 1.2 Hz, H-18)
7.67 (1H, dd, J = 8.3, 1.2 Hz, H-16)

7.81 (1H, ddd, J = 8.3, 7.1, 1.5 Hz, H-17)
8.16 (1H, dd, J = 8.0, 1.5 Hz, H-19)
11.72 (1H, s, H-1)

1.34 (6H, s, CH;-25, 26)

3.06 (2H, t, ] = 7.5 Hz, H-6)

4.38 (2H, t,J = 6.9 Hz, H-5)

5.81 (1H, d, J = 9.8 Hz, H-23)

6.53 (1H, d, J = 9.7 Hz, H-11)

6.93 (1H, s, H-22)

7.12 (1H, s, H-12)

7.43 (1H, td, J = 7.4, 1.2 Hz, H-18)
7.64 (1H, d, J = 8.1 Hz, H-16)

7.77 (1H, td, J = 6.5, 1.2 Hz, H-17)
8.12 (1H, d, J = 8.0 Hz, H-19)
11.71 (1H, s, H-1)

H NMR (DMSO-de, 126 MHz, é in ppm)

Natural fontanesine B

Synthetic compound 2

20.7 (C-6)
27.0 (C-25, 26)
40.6 (C-5)
75.0 (C-24)
112.6 (C-9)
112.7 (C-12)
115.6 (C-11)
116.5 (C-7)
119.2 (C-22)
120.6 (C-20)
120.9 (C-8)
125.9 (C-18)
126.4 (C-16)
126.5 (C-19)
127.9 (C-2)
130.1 (
134.3 (
134.4 (C-13)
145.2 (C-3)
146.2 (C-10)
147.4 (C-15)
160.5 (C-21)

C-23)
C-17)
C-
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21.3 (C-6)

27.5 (C-25, 26)
41.1 (C-5)
75.6 (C-24)
113.2 (C-9)
113.3 (C-12)
116.1 (C-11)
117.1 (C-7)
119.8 (C-22)
121.2 (C-20)
121.5 (C-8)
126.5 (C-18)
127.0 (C-16)
127.1 (C-19)
128.5 (C-2)
130.7 (
135.0 (
135.0 (C-13)
145.8 (C-3)
146.8 (C-10)
148.0 (C-15)
161.1 (C-21)

C-23)
C-17)
C-
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with polymerized materials being the major spot observed. As
this polymerization presumably arises from activated urea
intermediate 16, which was generated from less electrophilic acid
chloride 14 (ref. 14 and 16b) or more electrophilic intermediate
15 by addition/elimination process by HBr and Et;N,' it was clear
that the Et;N'** and HBr would require to be dismissed at the
cyclization step in our synthetic route.

Because the product yield was not sufficient (up to 6% yield),
further investigations were carried out. After intensive investiga-
tions, it was serendipity that we found that the treatment of 8 with
triphosgene in the presence of Et;N at room temperature afforded
a trichloromethyl carbamate intermediate 13b in 88% yield
(Scheme 4)."” Then, after aqueous work-up to remove Et;N in the
reaction media, 13b was heated in DMSO to afford 9b in 86% yield.
Furthermore, by employing a stepwise method, we obtained 9
from 8 in good yield through the carbamoyl ion 17 (ref. 18) using
a single column chromatography. To the best of our knowledge,
this is the first time that an unstable trichloromethyl carbamate
intermediate has been applied to the C-C bond formations." In
contrast to the mild Bischler-Napieralski-type cyclization devel-
oped by Saikawa and Nakata," and Clayden,* our protocol does
not require additives to promote the cyclization.

Numerous attempts were made in case of benzyl-substituted
lactam 9a; however, all of them led to rapid decomposition
(Scheme 5). On the other hand, treatment of 9b with p-tolue-
nesulfonic acid (p-TsOH)** afforded the deprotected lactam 10
in 17% yield. As expected, lactam 9¢ could also be deprotected
under the same conditions to afford 10 in 67% yield. In general,
2,4-DMB group is more easily removed than PMB group.>

With the synthetic access to 9, we were set to answer whether 9
could be deprotected keeping the alkene, pyran, and indole
intact. Finally, the condensation of 10 and anthranilic acid (11a)
in the presence of POCI; (ref. 22) generated the final product 2
(Scheme 6), whose structure was determined by spectroscopic
experiments. All the physical data of synthetic 2 were in good
agreement with those reported for the natural product (Table 1).*

In conclusion, we have successfully accomplished the total
synthesis of fontanesine B using C4 Pictet-Spengler/allylic trans-
position as the key step to construct the pyrano[3,2-e]indole core
using the transient directing group (TDG). In this cyclization, the
TDG played the dual important role of directing group and
reagent.” In addition, the unprecedented carbamate interme-
diate produced in the carbonylative cyclization could be converted
into pyrano[3,2-e]pyrido[3,4-bJindoles only by heating through the
Bischler-Napieralski-type cyclization. Further investigations
including application of the C2 and C4 cyclization strategy* to the
syntheses of other indole alkaloids is ongoing in our laboratory.
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