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Dysbiosis of gut microbiota has been linked to gestational diabetes mellitus (GDM), and grows as a resource

for GDM biomarkers. However, the contributions of gut microbiota to GDM remain incompletely

understood. Metabolites are key messengers in the interactions between gut microbiota and the host.

Metabolomics is emerging as an essential tool in exploring the contributions of gut microbiota to

diseases. In this study, we performed 1H-NMR based metabolomics on the feces of 62 pregnant women,

including 31 women with GDM, and 31 women as the non-diabetes (NDM) control. Using Principle

Component Analysis (PCA) and Orthogonal Projection to Latent Structures Discrimination Analysis

(OPLS-DA), we observed clear cluster separation of the fecal metabolome between women with GDM

and the NDM control. We further applied several feature selection methods to find five fecal metabolites

contributing to the cluster separation of the fecal metabolome. These five metabolites, namely dibutyl

decanedioate, N-acetylgalactosamine-4-sulphate, homocysteine, L-malic acid, and butanone, were

significantly correlated with the clinical indices of GDM. Metabolite enrichment and pathway analysis on

the five metabolites suggested that the fecal citrate cycle and sulfur metabolism were correlated with

GDM. The results of this study demonstrated that disorders in the fecal metabolome are associated with

GDM.
Introduction

Gestational diabetes mellitus (GDM) is a glucose intolerance
with onset or rst recognition during pregnancy.1 Diverse
adverse outcomes are associated with GDM, including higher
odds of macrosomia, respiratory distress, trauma, and cardiac
complications, and increased risk of type 2 diabetes (T2DM) for
the pregnant women and their offspring in the future.2,3

Although GDM shares similar symptoms with T2DM, onset only
during pregnancy is the exclusive feature of GDM.4 GDM has
attracted intensive studies due to its poor outcomes, however,
the pathogenesis of GDM remains incompletely understood.5

Gut microbiota has been recently correlated with GDM.6,7 GDM
is featured with dysbiosis in gut microbiota. The ratio of control-
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enriched bacteria to GDM enriched bacteria is negatively corre-
lated with hyperglycemia.6 Metabolome and microbiota has been
emerging as a source of potential biomarkers for GDM.8 A panel of
four lipids (triglyceride [51:1], triglyceride [48:1], phosphatidylcho-
line [32:1], and choline ether) was reported to improve the predictive
power of GDM by age and BMI alone from AUC (area under curve)
0.69 to AUC 0.74.9 N-Acetylaspartic acid and C16:1 in serum could
discriminate GDM from the non-diabetic control with a good
predictive power (AUC 0.75).10 Microbiota is also a biomarker
resource for GDM. Kuang Y. S. et al.11 reported that 20 MLGs
(metagenome linkage groups) from gut microbiota provide
a discriminatory power of AUC 0.91. Biomarkers from feces support
the development of non-invasive diagnostic approaches for GDM.12

While the associations betweenGDM and gutmicrobiota have been
conrmed, the interaction mechanisms between gut microbiota
and the host remain incompletely understood.13

Metabolites are key messengers in the interactions between gut
microbiota and the host.14,15 Gut microbiota produced metabolites
play essential roles inmodulating host physiology andpathology,16,17

including short chain fatty acids (SCFAs) and trimethylamine oxide
(TMAO).Metabolomics is emerging as a powerful tool in elucidating
the interactions between gut microbiota and the host.18

In the present study, we performed 1H-NMR based metab-
olomics on fecal metabolome of GDM to observe that hyper-
glycemia is a discriminating factor of GDM fecal metabolome.
RSC Adv., 2019, 9, 29973–29979 | 29973
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GDM associated fecal metabolites were explored, and the
related metabolic pathways were discussed.
Materials and methods
Study participants

A cohort of 62 pregnant women entered the Second Hospital of
Shanxi Medical University (Shanxi province, PR China) between
March and October of 2018 were enrolled in this study,
including 31 women with GDM, and 31 non-diabetes (NDM)
control (diagnosed as described below). Women with known
pre-existing impaired fasting glucose, cardiovascular hemato-
logical diseases, abnormal kidney or liver function, chronic or
severe acute infections were excluded. Fasting plasma was
collected, and a 3 hour oral glucose tolerance test (OGTT) was
performed during the 24th–28th week of gestation. GDM was
diagnosed with the criteria of the International Association of
Diabetes and Pregnancy Study Group (IADPSG), with at least
one plasma glucose level no less than the following thresh-
olds:19 fasting, 5.1 mmol L�1, OGTT-1 hour, 10.0 mmol L�1,
OGTT-2 hour, 8.5 mmol L�1. The study was conducted accord-
ing to the guidelines in the Declaration of Helsinki, and
approved by the Ethics Committee of the Second Hospital of
Shanxi Medical University.
Demographic data and sample collection

Demographic data of the enrolled pregnant women were ob-
tained by interview at the same day with OGTT, including age,
height, body weight, nationality, and blood pressure. Overnight
fasting stool samples were collected during the fourth trimester
of pregnancy and stored in a deep freezer at �80 �C.
1H-NMR based metabolic proling

Stool sample preparation for 1H-NMR spectral proling was
performed based on a previously reported procedure with slight
modications.20 Briey, 100 mg feces was resolved with 1 mL
D2O (containing 0.05% TSP (3-trimethylsilyl-[2,2,3,3-D4]-
propionate) as internal standard), homogenized in an ice-
water bath with IKA T10 Basic ULTRA-TURRAX disperser (T10
Basic, IKA, Germany), and then centrifuged at 4 �C, 15 000 rpm
for 15 min. Five hundred and y microliter of the supernatant
was transferred into a 5 mm NMR tube for analysis. 1H-NMR
spectrometry was proled by a Bruker 600 MHz AVANCE III
NMR spectrometer (Bruker BioSpin, Germany). The spectrum
was acquired using noesygppr1d pulse sequence with the
following parameters: spectral size 65 536 points, spectral width
12 345.7 Hz, pulse width 40.5 ms, relaxation delay 1.0 s, 64 scans.
MestReNova (v8.0.1, Mestrelab Research, Santiago de Com-
postela, Spain) was used for spectra processing. The phase and
baseline were corrected manually and the chemical shi of TSP
was calibrated at 0.00 ppm. The spectra region of d 0.16 to d 9.58
were segmented at 0.01 ppm width aer exclusion of the region
of residual water (d 4.60–5.15). The obtained NMR data was
normalized to the total sum of spectra before further analysis.
29974 | RSC Adv., 2019, 9, 29973–29979
Multivariate statistical analysis

MetaboAnalyst (version 4.0, http://www.metaboanalyst.ca) was
applied for multivariate statistical analysis of the metabolomic
data.21 An overview of the metabolomic data was obtained by
principal component analysis (PCA). A supervised method
named partial-least squares discrimination analysis (PLS-DA)
was applied to identify the important variables with discrimi-
native power, and to exclude outliers. Orthogonal projection to
latent structures discrimination analysis (OPLS-DA) was
employed to investigate the between-group differences by
incorporating known classication information. The best-tted
OPLS-DA model was selected by a cross-validation of all models
using a 200-cycle permutation test. The tting validity and
predictive ability of the selected OPLS-DA model were assessed
by the parameters of multiple correlation coefficient (R2) and
the cross-validated R2 (Q2). Metabolite was identied by
searching the HMDB database (http://www.hmdb.ca) with the
chemical shi and the coupling constant of the NMR features.
Metabolic pathway enrichment was performed by the
embedded module of MetaboAnalyst 4.0.
Results
Data pre-processing and quality control of the untargeted
metabolome

A data integrity check was performed before subsequent anal-
ysis, with no missing value detected. The metabolomics data
were then subjected to a normalization procedure including
normalization by sum, log transformation, and Pareto scaling.
A normal distribution of the metabolomics data was observed
aer the normalization (Fig. S1†). Quality control (QC) samples
were used to monitor the robustness of sample preparation and
the reproducibility of instrument analysis. QC sample was
prepared by pooling equal aliquots of each fecal sample, and
was analyzed aer every ten test samples. Quality control of the
metabolomic data was performed by PCA on the test samples
and the QC samples. All of the QC samples were tightly clus-
tered in the sample space of PCA (Fig. S2†), suggesting a good
reproducibility of the metabolomic experiments.
Clear cluster separation in the fecal metabolome between
GDM and the NDM control

To initially evaluate the natural separation of the metabolomic
data and to select the principle features responsible for the
separation, PCA was performed on the fecal metabolome of all
the enrolled pregnant women (Fig. 1a). Two principle compo-
nents were selected, which explained 39.2% of the overall vari-
ance (24.7% and 14.5% for PC1 and PC2, respectively). The fecal
metabolome of GDM clustered and showed a separation trend
with those of the NDM control.

To better discriminate the fecal metabolome of GDM and the
NDM control, a supervised OPLS-DA incorporating known classi-
cation information was performed (Fig. 1b). The best-tted OPLS-
DA model was selected by a cross-validation of all models using
a 1000-cycle permutation test (Fig. S3†). The goodness of t (R2)
and prediction ability (Q2) of the selected model were 0.703 (P <
This journal is © The Royal Society of Chemistry 2019
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Fig. 1 Principle component analysis (PCA) and orthogonal projection to latent structures discrimination analysis (OPLS-DA) on the fecal
metabolome between women with gestational diabetes mellitus (GDM) and the non-diabetes mellitus (NDM) control. (a) Scores plot of PCA
based on the first two principle components (PCs), which explain 39.2% of the variance (24.7% and 14.5% for PC1 and PC2, respectively). (b)
Scores plot of OPLS-DA based on the first predictive component (T scores [1]) and the first orthogonal component (orthogonal T scores [1]),
which explain 32.9% of the variance.

Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

3 
Se

pt
em

be
r 

20
19

. D
ow

nl
oa

de
d 

on
 1

2/
1/

20
24

 4
:3

7:
34

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
0.001) and 0.412 (P < 0.001), respectively. A clear separation of
GDM and the NDM control was observed in the selected OPLS-DA
model (Fig. 1b), suggesting that changes occurred in themetabolic
proles of GDM comparing to the NDM control.
Identication of differential fecal metabolites between GDM
and the NDM control

The between-group differential metabolites were selected from the
NMR features which simultaneously met all of the following
criteria: signicant changed relative abundances with adjusted P <
0.05 in a student's t-test (Fig. 2a), between group fold change of the
relative abundance > 2 (Fig. 2b), adjusted P < 0.05 in signicance
analysis of microarrays (and metabolites) (Fig. 2c), Variable
Importance for the Projection (VIP) values greater than 1 in the
selected PLS-DA model (Fig. 2d). A total of 11 differential NMR
features were selected, among which 5 metabolites were structur-
ally identied (Table 1), including dibutyl decanedioate, N-
acetylgalactosamine-4-sulphate, homocysteine, L-malic acid, and
butanone. The relative abundances of the differential metabolites
(Fig. 3) demonstrated that homocysteine and butanone were
elevated, and the other three metabolites (dibutyl decanedioate, L-
malic acid, and N-acetylgalactosamine-4-sulphate) were decreased
in the feces of GDM.
The differential fecal metabolites were correlated with the
clinical indices of GDM

To investigate the relationship between the fecal metabolome
and GDM associated clinical variables, spearman rank correla-
tion was performed (Fig. 4a and Table S5†). Among the GDM
related clinical indices, fasting glucose level was positively
This journal is © The Royal Society of Chemistry 2019
correlated with butanone and homocysteine (P < 0.01), and
negatively correlated with L-malic acid, dibutyl decanedioate,
and N-acetylgalactosamine-4-sulphate (P < 0.01). DeltaBMI (the
BMI increase from before pregnancy to the third trimester of
pregnancy) was positively correlated with L-malic acid (P < 0.01).
While no metabolite was correlated with blood pressure, total
plasma triglyceride, and plasma triglyceride (P > 0.05). Among
the ve differential metabolites between GDM group and the
NDM control group, butanone was positively correlated with
homocysteine (P < 0.01), and L-malic acid was positively corre-
lated with dibutyl decanedioate (P < 0.01). Members of the
positive-correlated metabolite-pairs (butanone vs. homo-
cysteine and L-malic acid vs. dibutyl decanedioate) were nega-
tively correlated with L-malic acid, dibutyl decanedioate and N-
acetylgalactosamine-4-sulphate, respectively. These results
suggested that gut metabolites may contribute to the changes in
GDM related clinical indices.
Fecal citrate cycle and sulfur metabolism were correlated with
GDM

Because the GDM associated differential fecal metabolites
showed signicant correlations among each other, we
wondered if there are shared metabolic pathways existed
among them. For further biological interpretation, metabo-
lite enrichment and pathway analysis were performed on the
ve differential metabolites by MetaboAnalyst web portal
using the integrated pathway tool. Citrate cycle (P ¼ 0.032)
and sulfur metabolism (P ¼ 0.029) were signicantly
enriched (Fig. 4b). Sulfur metabolism is essential in the
maintain of cell redox homeostasis.22 Citrate cycle is the
RSC Adv., 2019, 9, 29973–29979 | 29975
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Fig. 2 Differential metabolites in the fecal metabolome betweenwomenwith gestational diabetesmellitus (GDM) and the non-diabetesmellitus
(NDM) control. (a) T-Test on the whole 713 compounds extracted from the 1H-NMR spectrometry on the feces of the enrolled pregnant women.
A total of 110 compounds with P-value < 0.01 were selected (markedwith pink, see details in Table S2†). (b) Fold change analysis on the whole 713
compounds. A total of 35 compounds with fold change >2 were selected (marked with pink, see details in Table S3†). (c) Significant analysis of
metabolites (SAM) on the whole 713 compounds. A total of 54 compounds with adjusted-P value < 0.05 were selected (marked with green, see
details in Table S4†). (d) Variables importance in the projection (VIP) analysis of the structurally identified metabolites. Only metabolites with VIP
score > 1 were exhibited (see details in Table 1).

RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

3 
Se

pt
em

be
r 

20
19

. D
ow

nl
oa

de
d 

on
 1

2/
1/

20
24

 4
:3

7:
34

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
central metabolic hub of the cell,23 and is suppressed in
diabetes mellitus.24 Because no correlation network among
the ve differential metabolites were observed (data not
shown), we speculated that these metabolites may
Table 1 Fecal metabolites with differential abundances between GDM a

Name Chemical shi

Dibutyl decanedioate 2.206 s, 2.363 d, 4.062 s, 4.113 s
N-Acetylgalactosamine-4-sulphate 4.06 s, 5.26 s
Homocysteine 2.15 m, 2.66 m
L-Malic acid 2.35 dd, 4.30 dd
Butanone 1.06 t, 2.14 s, 2.46 q

a s: single-peak, d: doublet-peak t: triplet-peak, q: quartet-peak; m: multip
rate, p(corr)[1]: correlation coefficient calculated with principle componen
with principle component 1 of the selected OPLSDA model.

29976 | RSC Adv., 2019, 9, 29973–29979
independently act on the host. The results of this study,
together with those of previous reports,25,26 suggested that
energy metabolism and redox homeostasis were disturbed in
the fecal metabolome of GDM.
nd the NDM controla

VIP p[1] p(corr)[1] p-value FDR

1.6756 �2.6395 �0.5885 1.94 � 10�5 1.73 � 10�3

1.9259 �3.3358 �0.5873 1.34 � 10�4 5.95 � 10�3

1.9739 3.4692 0.5821 1.99 � 10�4 7.36 � 10�3

1.9745 �3.1200 �0.6590 1.10 � 10�6 2.61 � 10�4

2.1865 4.0019 0.5938 2.78 � 10�4 7.36 � 10�3

let-peak. VIP: variable importance in the projection. FDR: false discovery
t 1 of the selected OPLSDA model. p[1]: covariance coefficient calculated

This journal is © The Royal Society of Chemistry 2019
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Fig. 3 Relative abundance of the differential fecal metabolites between women with GDM and the NDM control. (a) homocysteine; (b) buta-
none; (c) dibutyl decanedioate; (d) L-malic acid; (e) N-acetylgalactosamine-4-sulphate. The relative abundance of each metabolite was
calculated with the relative peak area (each peak area divided by the total peak area of a sample). The between-group statistic significance was
calculated with Student's t-test. ***, P < 0.001, ****, P < 0.0001.
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Discussion

While alternations in the composition of gut microbiome are
recognized as potential biomarkers of GDM,27 little is known
how gut metabolome affect GDM. As fecal metabolome has
been proved to be a functional readout of the gut microbiome,28
Fig. 4 Spearman correlation and pathway analysis of the differential fec
fecal metabolites and the clinical indices of GDM. A number was endow
the number on the top of figure. *, P < 0.05, **, P < 0.01. (b) Metabolite
between women with GDM and the NDM control using the MetaboAnaly
P-Values lower than 0.05 were labelled.

This journal is © The Royal Society of Chemistry 2019
we performed 1H-NMR based fecal metabolomics to nd GDM
associated fecal metabolites and their related metabolic path-
ways. The results of this study suggested that gut metabolome
may contribute to GDM through citrate cycle and sulfur
metabolism associated metabolites.
al metabolites. (a) Spearman rank correlation between the differential
ed to each metabolite or clinical parameter, which is corresponding to
enrichment and pathway analysis of the differential fecal metabolites
st web portal. Only pathways with impact scores higher than 0.05 and

RSC Adv., 2019, 9, 29973–29979 | 29977
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Metabolomics has been recognized as a powerful approach
in the study of gestational diabetes.18,29 GDM associated meta-
bolic disorders have been reported in maternal blood,30

maternal urine,31,32 cord blood33 and fetal serum.34 In addition
to the previous reports, this study provides evidences to support
metabolic disorder in feces of women with GDM. Changes in
metabolic pathways during pregnancy were revealed by
previous metabolomics studies. Enhancement in citrate cycle
was reported previously in maternal urine of fetal malforma-
tions, suggesting increased fetal energy requirement.35 Sulfur
metabolism in the serum of pregnant women was associated
with serum glucose at OGTT-1 h in a cohort of northern Euro-
pean mothers,36 which is similar to the observation of this
study.

Homocysteine is an essential marker of cardiovascular risk,
while women with GDM or a history of GDM have a signicantly
elevated serum level of homocysteine.37,38 Excess homocysteine
production during pregnancy in animal experiments results in
the impairment of reproductive and developmental processes.39

However, the sources of homocysteine have not been compre-
hensively elucidated. Gut microbiome is the sources of several
key metabolites with essential functions on host physiology
including short chain fatty acids,40 TMAO,41 etc. In the present
study, we observed that fecal homocysteine of women with
GDM was signicantly elevated. And the elevated homocysteine
is associated with fasting glucose and three other fecal metab-
olites including N-acetylgalactosamine-4-sulphate, dibutyl dec-
anedioate, and L-malic acid (Fig. 4a). These results suggested
that fecal homocysteine may contribute to GDM.

L-Malic acid is an intermediate of the citric acid cycle that is
essential in energy metabolism.42 L-Malic acid could directly
inactivate the enzyme activity of alpha-glucosidase.43 Alpha
glucosidase is involved in the nal step of the carbohydrate
digestion, which is directly related to the levels of plasma
glucose.43 The abundance of L-malic acid was signicantly
reduced in liver of the diabetic rats44 and in peripheral nerves of
type I diabetes.45 The fecal abundance of L-malic acid was
signicantly reduced in GDM women in this study, suggesting
an opposite effect of fecal metabolites on hyperglycemia.

Butanone, also known as methyl ethyl ketone, is a colorless
liquid that has a sweet or sharp and fragrant acetone-like
odour.46 Exposure to butanone results in cognitive rehabilita-
tion and brain injury.47 Dibutyl decanedioate as a fatty acid
ester, is used as a avoring agent with no safety concern.48 To
our knowledge, the variations in the levels of butanone and
dibutyl decanedioate in the fecal metabolome of GDM were
rstly reported in the present study. Their exact contributions to
GDM need further explorations.

In summary, a clear separation was observed in OPLS-DA of
the fecal metabolome between women with GDM and the NDM
control. Five fecal metabolites with differential abundance were
identied, among which two metabolites (homocysteine and
butanone) were elevated and the other three (L-malic acid,
dibutyl decanedioate, and N-acetylgalactosamine-4-sulphate)
were decreased in women with GDM. The ve differential
fecal metabolites and their related metabolic pathways (citrate
cycle and sulfur metabolism) were signicantly correlated with
29978 | RSC Adv., 2019, 9, 29973–29979
the clinical indices of GDM. The results of this study suggested
that fecal metabolome is associated with GDM.
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