RSC Advances

PAPER

Cite this: RSC Adv., 2019, 9, 26014

Received 25th July 2019 Accepted 14th August 2019

DOI: 10.1039/c9ra06313g

rsc.li/rsc-advances

Introduction

5-(Perylen-3-ylethynyl)-deoxy-uridine dUY11 (Fig. 1), prepared initially as a fluorescent nucleoside,¹ had unexpectedly shown remarkably broad spectrum antiviral properties.² Nucleoside derivative dUY11 and its arabino analog aUY11 effectively suppressed reproduction of a number of enveloped viruses in cell cultures, thus constituting a new class of antivirals with a nonnucleoside mechanism of action.^{2,3} The presumable target for these compounds is the lipid membrane bilayer of the virion envelope. Compounds dUY11 and aUY11 are rigid amphipathic fusion inhibitors (RAFIs)^{2c} that target the viral envelope either by a shape-determined biophysical mechanism^{2c,3,4} or by photosensitization.⁵ Both shape-determined and photophysical properties of the conjugated aryl part of the molecule are probably crucial for the antiviral properties, and the carbohydrate part seems to be less important. Very recently,⁶ we prepared 5-(perylen-3-ylethynyl)uracil-1-acetic acid (cm1UY11,

a Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, Moscow 117997, Russia. E-mail: v-korshun@yandex.ru

Ramified derivatives of 5-(perylen-3-ylethynyl) uracil-1-acetic acid and their antiviral properties†

Ksenia A. Sapozhnikova,^a Nikita A. Slesarch[uk,](http://orcid.org/0000-0002-2091-7022) Dab Alexey A. Orlo[v,](http://orcid.org/0000-0002-1644-8737) D^{bcd} Evgeny V. Khvatov,^{ac} Eugene V. Radchenk[o,](http://orcid.org/0000-0001-8792-8386) D^b Alexey A. Chistov, D^a Alexey V. Ustinov[,](http://orcid.org/0000-0002-9893-4498) D^{aef} Vladimir A. Palyulin, D^b [Liu](http://orcid.org/0000-0001-9436-6561)bov I. Kozlovskaya, D^{cd} Dmitry I. Osolodkin[,](http://orcid.org/0000-0002-0462-2945) **D**^{*bcd} Vladimir A. Korshun D^{*af} and Vladimir A. Brylev D^{ae}

The propargylamide of N3-Pom-protected 5-(perylen-3-ylethynyl)uracil acetic acid, a universal precursor, was used in a CuAAC click reaction for the synthesis of several derivatives, including three ramified molecules with high activities against tick-borne encephalitis virus (TBEV). Pentaerythritol-based polyazides were used for the assembly of molecules containing 2 \cdots 4 antiviral 5-(perylen-3-ylethynyl) uracil scaffolds, the first examples of polyvalent perylene antivirals. Cluster compounds showed enhanced absorbance, however, their fluorescence was reduced due to self-quenching. Due to the solubility issues, Pom group removal succeeded only for compounds with one peryleneethynyluracil unit. Four compounds, including one ramified cluster 9f, showed remarkable $1\cdots 3$ nM EC₅₀ values against TBEV in cell culture. PAPER

(a) Cheek for updates

Curatives control of the **Calical Science of 5-(perylen-3-ylethynyl)**

Curatives of 5-(perylen-3-ylethynyl)

Curatives and their antiviral properties

Series and Anti-Acceleric acid and their

Fig. 1) with a carboxymethyl group replacing the pentose moiety. The acid showed a pronounced antiviral activity against tick-borne encephalitis virus (TBEV),⁶ herpes simplex virus type 1 (HSV-1),⁷ and African swine fewer virus (ASFV).⁸ Moreover, its 3-Pom-modified precursor cm1pUY11 (Fig. 1) and amides were also active against TBEV⁶ and HSV-1.7

Thus, the 5-(perylen-3-ylethynyl)uracil scaffold seems to be responsible for the antiviral activity of perylene RAFIs. Lipophilic perylene residue is expected to reside in the lipid bilayer upon binding between a RAFI molecule and an enveloped virion. Therefore, one can expect cooperative enhancement of lipid membrane anchoring for compounds containing $2 \cdot \cdot \cdot 4$ perylene residues, or other effects of clustering perylenes.

The concept of clusterized/multivalent (or dendrimeric) antivirals has been developed for decades,⁹ both for specific and nonspecific compounds and functional groups. Recent promising examples include polyanions, 10 polycations, 11 as well as dendrimers carrying amino acids,¹² peptides,¹³ phenols,¹⁴ terpenes,¹⁵ mono-,¹⁶ oligosaccharides,¹⁷ and neuraminidase inhibitors.¹⁸ The approach, however, has been never applied to RAFIs.

Fig. 1 Structures of broad spectrum antiviral peryleneethynyluracil compounds.

b Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia

c FSBSI "Chumakov FSC R&D IBP RAS", Poselenie Moskovsky, Moscow 108819, Russia d Sechenov First Moscow State Medical University, Moscow 119991, Russia. E-mail: dmitry_o@asar.chem.msu.ru

e Biotech Innovations Ltd, Leninskie Gory 1 bd 75, Moscow 119992, Russia

f Department of Biology and Biotechnology, National Research University Higher School of Economics, Vavilova 7, Moscow 117312, Russia

[†] Electronic supplementary information (ESI) available: ¹H, ¹³C NMR and HRMS spectra. See DOI: 10.1039/c9ra06313g

To study the possible effects of combining several perylene cores in a single molecule on the antiviral activity, we synthesized small clusters of 5-(perylen-3-ylethynyl)-1-(carboxymethyl) uracil, quantified their fluorescence properties, and measured the efficiency of TBEV reproduction inhibition by these clusters in PEK cell culture.

Results and discussion

Synthesis of compounds

Recently, we used the azide–alkyne click reaction for the synthesis of **dUY11** derivatives with enhanced activity.¹⁹ Here we report the application of Huisgen–Meldal–Sharpless reaction $(Cu(1)$ -catalyzed alkyne-azide cycloaddition, CuAAC)²⁰ for the synthesis of 5-(perylen-3-ylethynyl)-1-(carboxymethyl)uracil derivatives. First, we prepared a set of branched azides 2–5 (Scheme 1). The starting tetraol 1 was mesylated with a controlled excess of mesyl chloride (MsCl) in DCM in the presence of triethylamine as a base. Tuning the mesyl chloride/hydroxyl ratio leads to the desired distribution of products in the reaction. Earlier, we prepared azides 4 and 5 using 1 : 3 molar ratio of 1 to mesyl chloride²¹ and used them for the assembly of complex oligonucleotide conjugates.21,22 Here we report the synthesis of azides 2 and 3 as main products. Mesylation with 1 : 1.2 molar ratio (1 : MsCl), and subsequent nucleophilic substitution with sodium azide affords compounds 2 and 3 in 32% and 27% yield, respectively, together with some amount of triazide 4.

We used pivaloyloxymethyl (Pom) protection for N3 position of the nucleobase for solubility reasons. 3-Pom-5-(perylen-3 ylethynyl)uracil acetic acid 6 was prepared from 5-iodouracil in several steps.⁶ It was coupled with propargylamine to yield alkyne precursor 7, which was conjugated with benzyl azide, azidoethanol, and pentaerythritol-based azides 2–5 (Scheme 2) via CuAAC to afford compounds 9.

The alkaline removal of pivaloyloxymethyl (Pom) protection from compounds 7 and 9a–c yielded the corresponding amides 8, 10a–c (Scheme 2). However, the usual Pom group deprotection protocol with sodium methoxide or ammonia in methanol²³ was inappropriate because both the starting compounds and the desired products were insoluble in alcohol. Therefore, we modified the deprotection protocol by choosing NaOH as the base, and DMSO/MeOH/H2O mixture as the reaction medium. As a result, full conversion of the starting material occurred in 30 min (TLC control).

While the conversions of compounds 9a-c into 10a-c by TLC were excellent, their isolated yields in deprotection steps (Scheme 2) turned out to be poor because of the losses during

Scheme 1 Synthesis of azides. Conditions: (a) methanesulfonyl chloride, NEt₃, DCM; (b) NaN₃, DMSO, rt, 12 h, 32% (2), 27% (3), 8% (4).

Scheme 2 Synthesis of the model and target compounds. Conditions: (a) propargylamine, PyBOP, DIPEA, DMF, 0 °C, 55%; (b) $CuSO₄·5H₂O$, TBTA, aq. ascorbic acid, DMSO, rt, 12 h, azide (benzylazide, azidoethanol, or 2–5), 75% (9a); 67% (9b); 81% (9c), 70% (9d), 54% (9e), 38% (9f); (c) NaOH, DMSO, MeOH, rt, 30 min, 35% (10a), 40% (10b), 30% (10c).

the purification using column chromatography. The products showed low solubility and chromatographic isolations were carried out in the overloading mode. Thus, a number of fractions containing the products were overlapping with some minor impurities, and they were excluded to obtain high quality samples for antiviral activity studies.

We failed to prepare and isolate Pom-deprotected compounds from 9d–f because of the incomplete deprotection, and low solubility of the desired products.

Spectral studies

Compounds $9d$ -f contain 2 \cdots 4 chromophoric units linked with flexible spacers. To obtain some insight into the structure of the compounds in a solution and to reveal a possible influence of spectral properties on antiviral activity, $2d$ we compared their spectra to each other, and to those of monomeric compounds 9c and 10c. UV-Vis spectra (Fig. 2) showed no signicant difference between Pom-protected compound 9c and the deprotected derivative 10c; the shape of the spectrum, and the positions of maxima were always identical.

The increase of the number of chromophoric units led to the corresponding increase of the molar attenuation coefficient in true solution (20% DMSO in 96% ethanol as a solvent). Upon the reduction of DMSO concentration to 2% and further to 0.2%, the bands in absorbance spectra of tetramer 9f, and then of trimer 9e became broader and less structured (Fig. 2). The effect, confirming the aggregation of chromophoric residues, was observed earlier for other perylene compounds.^{19,24}

Fluorescence spectra of compounds 9c–f and 10c were recorded at 0.1 μ M concentrations in 96% EtOH (Fig. 3). Due to

Fig. 2 Absorbance spectra of compounds $9c-f$, $10c$ at 5 μ M concentrations: (A) 0.2% DMSO in 96% EtOH, (B) 2% DMSO in 96% EtOH, (C) 20% DMSO in 96% EtOH.

self-quenching, fluorescence intensity decreases with the increase in the number of fluorophores comprising the 5-(perylen-3-ylethynyl)uracil groups. There were no drastic changes in fluorescence spectra for compounds 9c-f and 10c, except for relative enhancement of 550 nm band, and proximal long wavelength emission for polychromophore molecules 9d– f, suggesting weak excimer fluorescence from perylene residues located close to each other.

Antiviral properties

All prepared compounds, containing one (7–9b, 10a–c) or several (9d–f) perylene residues, were tested for cytotoxicity and for ability to inhibit TBEV (strain Absettarov) reproduction in PEK cell culture as measured by plaque reduction assay (Table 1). All experimental conditions were the same as in our previous studies.^{2d,6,19,25}

All the compounds showed little to no cytotoxicity on PEK cells and selectivity indices ($SI = CC_{50}/EC_{50}$) up to 50 000. The alkyne precursor 7 appeared to be the most potent compound in the series, showing nanomolar EC_{50} . Its unprotected analogue 8 and acid precursor 6 showed slightly lower activity, thus revealing low influence of small substituents in the uracil moiety, similarly to one of the previous studies,^{25a} but contrary to another.⁶ Although cluster compounds 9d-f inhibited TBEV reproduction in one or two digit nanomolar concentrations, their single-perylene analogues were more potent. Remarkably,

Fig. 3 Fluorescence spectra of $9c-f$, $10c$ (0.1 μ M, 96% EtOH, λ_{ex} 420 nm).

Pom deprotection of branched compound 9c, affording 10c, led to a considerable activity decrease.

Molecular modeling

While the abbreviation RAFI stands for Rigid Amphipathic Fusion Inhibitor, the compounds synthesized here contain a large number of rotatable bonds. Thus, their antiviral activity and membrane interactions may be largely defined by their conformational space. To obtain some insight into this conformational space, we performed a simple conformational analysis for molecular models of the compounds, seeking the global minima of the compound energies using the Confort method²⁶ implemented in SYBYL-X 2.1.²⁷ The optimized structures are shown in Fig. 4, along with the molecular surfaces colored by the hydrophobic potential.

As the most important part of the RAFI molecules is the perylene moiety, $2d,25a$ its exposure and ability to interact with the

Table 1 TBEV (strain Absettarov) reproduction inhibition efficiency (EC_{50}) and cytotoxicity (CC₅₀, PEK cells) of the compounds $6-10$

#	EC_{50} , μ M	CC_{50} , μ M	
		24 h	7 d
6	0.00121 ± 0.00025^a	>50	>50
7	$0.00097 + 0.00015$	>50	>50
8	$0.002 + 0.001$	>50	50
9a	$0.046 + 0.017$	>50	>50
9b	$0.0010 + 0.0003$	>50	>50
9c	0.008 ± 0.001	$>50^b$	18
9d	$0.024 + 0.007$	$>50^b$	50
9е	0.015 ± 0.001	$>50^b$	50
9f	0.0033 ± 0.0011	>50	>50
10a	0.0081 ± 0.0017	$> 50^b$	$>50^b$
10 _b	0.066 ± 0.013	>50	>50
10c	0.10 ± 0.05	>50	$37 + 13$

 a Data for compound 6 are from ref. 6. b Morphological changes of cell membranes were observed.

viral membrane should play a crucial role in the potency of the compounds. It can be seen that compounds 6–8, as well as aUY11, do not show substantial flexibility, and the perylene moiety of these compounds is completely exposed. Molecules 9 and 10, bearing longer and more flexible moieties, show less uniform antiviral activity, which is more strongly affected by possible conformational behavior. For example, the influence of Pom is opposite in the pairs 9a–10a and 9b–10b; in the former, the benzyl moiety may interact with perylene, whereas in the latter the hydroxyethyl group should prefer a more hydrophilic environment.

Using coloring by the hydrophobic potential, one can see the amphipathic nature of perylenylethynyluracil compounds. Perylenylethynyluracil units are probably responsible for lipid bilayer anchoring and for the general antiviral effect. The polar part of the molecules seems to have a modulating (within two orders of magnitude)⁶ effect on the inhibition of a viral replication. Remarkably, in the most active compounds, the polar part of the molecule has a small hydrophobic unit, Pom or

 0.0 -0.0 $10a$ 10_b -0.02 $00⁵$ 0.05 9d 0.0 -0.07 -0.05 9f 10_c

Fig. 4 Structures of compounds optimized using SYBYL-X 2.1 software; molecular surfaces are colored by the hydrophobic potential (left scale).

benzyl, but not both together. Although neither the target, nor the mechanism of antiviral action of RAFIs was directly proven to date, this simple observation can be used in a future design of antivirals.

Experimental

General methods

Reagents and solvents were from commercial suppliers and used as received, except DMF, DMSO, CH_2Cl_2 , $CHCl_3$, EtOH and methanol were used freshly distilled from CaH₂. Azides 4, 5 ²¹, tetrakis(5-hydroxy-2-oxapentyl)methane²¹ and 3-Pom-5- (perylen-3-ylethynyl)uracil-1-acetic acid 66 were prepared as described. 500 MHz 1 H and 125.7 MHz 13 C NMR spectra were recorded on Bruker AMX-400 or Bruker Avance 500 spectrometers and referenced to DMSO- $d_{6}\left(2.50\text{ ppm} \right.$ for ^{1}H and 39.5 ppm for 13 C) or CDCl₃ (7.26 ppm for 1 H and 77.16 ppm for 13 C). 1 H NMR coupling constants are reported in hertz (Hz) and refer to apparent multiplicities. Electrospray ionization high resolution mass spectra (ESI HRMS) of low molecular weight compounds were recorded using a Thermo Scientific Orbitrap Exactive mass spectrometer (positive or negative ion mode). UV spectra were recorded on a Varian Cary 100 spectrophotometer. Fluorescence spectra were recorded using a PerkinElmer LS 55 fluorescence spectrometer. Analytical thin layer chromatography was performed on Kieselgel 60 F_{254} precoated aluminum plates (Merck). Silica gel column chromatography was performed using Merck Kieselgel 60 0.040–0.063 mm. Paper

View decreases that be seen that are positive on 20 August 2019. Because the methods of a second of a methods in the methods are not are comparison to the second of a methods of a second on 11/24/2024 and the common

Cell culture and viruses

Porcine embryo kidney (PEK) cell line was maintained at 37 °C in medium 199 (FSBSI "Chumakov FSC R&D IBP RAS", Russia) supplemented with 5% fetal bovine serum (Gibco). Tick-borne encephalitis virus strain Absettarov (GenBank access no. KU885457) was from the laboratory collection of FSBSI "Chumakov FSC R&D IBP RAS".

Synthetic procedures

6,6-Bis(5-hydroxy-2-oxapentyl)-4,8-dioxa-11-hydroxyundec-1 yl azide (2). Mesyl chloride (7.06 g, 60 mmol) was added dropwise to a mixture of tetrakis(5-hydroxy-2-oxapentyl)methane (17.26 g, 50 mmol) and triethylamine (11.1 mL, 80 mmol) in dry DCM (300 mL). The reaction was monitored by TLC (10% EtOH in CHCl₃; starting alcohol: R_f 0.33). After the consumption of all starting material, the reaction mixture was washed with distilled water (2×100 mL), brine (3×50 mL) and dried over $Na₂SO₄$. Evaporation of the solvent in vacuum gave yellowish oily liquid. It was dissolved in dry DMSO (60 mL), and sodium azide $(10 g; 154 mmol)$ was added under magnetic stirring. After 12 h, water (120 mL) was added and the mixture of products was extracted from the aqueous layer with EtOAc $(4 \times 100 \text{ mL})$; organic fractions were combined, washed with distilled water (5 \times 100 mL), brine (3 \times 100 mL) and dried over Na₂SO₄. After evaporation of the solvent in vacuum, the residue was chromatographed on silica gel (gradient elution with 20 \rightarrow 45% of 96% ethanol in CHCl₃). Compound 2 c (5.24 g, 32% yield) was obtained as a colorless viscous liquid. R_f 0.34 (5% EtOH in CHCl₃). ¹H NMR (500 MHz; CDCl₃) δ 3.71 (t, 6H, J = 5.5 Hz), 3.55 $(t, 6H, J = 5.56 Hz)$, 3.47 (br s, 3H), 3.44 (t, 2H, $J = 5.97 Hz$), 3.38 (s, 6H), 3.36–3.32 (m, 4H), 1.84–1.74 (m, 8H). 13C NMR (125 MHz; CDCl₃) δ 70.9, 70.5, 70.4, 68.1, 61.5, 48.5, 44.8, 31.8, 29.0. HRMS (ESI, *m*/z): calcd for C₁₇H₃₆N₃O₇ ([M + H]⁺): 394.2548, found: 394.2557. Earlier eluting diazide 3 (4.7 g; 27%) and triazide 4 (1.43 g; 8%) were obtained as colorless viscous liquids. Their analytical data matched with ones reported earlier.²¹

[3-(Pivaloyloxymethyl)-5-(perylen-3-ylethynyl)uracil-1-yl]-Npropargylacetamide (7). To an ice-cooled magnetically stirred solution of acid 6 (255 mg; 0.46 mmol) in dry DMF (10 mL) PyBOP (273 mg; 0.52 mmol) and DIPEA (158 μ L; 0.9 mmol) were consequently added under argon atmosphere. After 1 min, propargylamine (38 mL; 0.6 mmol) was added, the reaction mixture stirred for next 10 min and quenched with water (20 mL). The product was extracted using EtOAc (4 \times 30 mL). The organic layer was washed with water $(3 \times 10 \text{ mL})$, brine (2×20 mL) and dried over Na₂SO₄. Evaporation of the solvent gave orange-brownish solid which was purified by column chromatography on silica gel (EtOH $1 \rightarrow 7\%$ gradient in CH_2Cl_2). Compound 7 was isolated as orange solid (151 mg; 55% yield). R_f 0.34 (5% EtOH in CHCl₃). UV-Vis (20% DMSO in 96% EtOH) $\lambda_{\rm max}$, nm $(\varepsilon,\rm M^{-1} \, cm^{-1})$: 441 (38 600), 470 (48 000), $\lambda_{\text{min}}, \text{nm} \left(\varepsilon, \text{M}^{-1} \, \text{cm}^{-1} \right)$: 452 (26 800); fluorescence (96% EtOH, λ_{em} 530 nm, excitation λ_{max} , nm): 334, 440, 467; (96% EtOH, λ_{ex} 420 nm, emission λ_{max} , nm): 476, 509. $^{1} \text{H}$ NMR (500 MHz; DMSO- d_6) δ 8.78 (t, 1H, $J = 5.35$ Hz), 8.43 (s, 1H), 8.38 (d, 1H, J $= 7.55$ Hz), 8.36–8.27 (m, 3H), 8.25 (d, 1H, $J = 8.23$ Hz), 7.82– 7.77 (m, 2H), 7.68–7.62 (m, 2H), 7.53 (t, 2H, $J = 7.68$ Hz), 5.86 (s, 2H), 4.53 (s, 2H), 3.99–3.94 (m, 2H), 3.2–3.18 (m, 1H), 1.14 (s, 9H). ¹³C NMR (125 MHz; DMSO- d_6) δ 176.6, 166.0, 160.5, 149.7, 149.3, 134.1, 133.7, 131.3, 131.0, 130.5, 130.1, 129.8, 128.6, 128.3, 127.8, 127.7, 127.6, 127.0, 126.9, 125.6, 121.6, 121.4, 121.2, 120.2, 119.1, 96.8, 90.9, 87.8, 80.6, 73.5, 65.1, 50.8, 38.3, 28.1, 26.7. HRMS (ESI, m/z): calcd for $C_{37}H_{29}N_3O_5Na$ $([M + Na]^+]$: 618.1999, found: 618.2000. BSC Articles as a colories viewe access district. A c. 3 (38 SEO). In the published online is licensed under the published on 2019. Downloaded on 2019. The common common common common common common common common common co

Click reaction between alkyne 7 and mono-azides, a general procedure

Azide (0.30 mmol) and propargyl amide 7 (0.26 mmol) were dissolved in DMSO (10 mL) under vigorous magnetic stirring. The solution was flushed with argon for degassing. 0.1 M solution of CuSO₄ \cdot 5H₂O and TBTA ligand (1 : 1) in 55% DMSO was added (260 µL). Then ascorbic acid (100 mg mL⁻¹ in H₂O; 91 μ L) was quickly loaded and the flask was tightly closed. After 12 h TLC showed full consumption of the starting alkyne 7. Reaction mixture was quenched with brine (50 mL) and lumpy solid precipitate was isolated by centrifugation. The crude product was washed with distilled water (2×10 mL). The residue was applied on the silica gel using evaporation of the acetone solution with small portion of the sorbent. The obtained powder was carefully spilled on the column filled with silica gel in $CH₂Cl₂$. The following compounds were isolated.

[3-(Pivaloyloxymethyl)-5-(perylen-3-ylethynyl)uracil-1-yl]-N-(1 benzyl-1,2,3-triazol-4-yl)acetamide (9a). [3-(Pivaloyloxymethyl)-5-

(perylen-3-ylethynyl)uracil-1-yl]-N-(1-benzyl-1,2,3-triazol-4-yl)acetamide (9a) was prepared using benzyl azide. Gradient elution with EtOH (1 \rightarrow 5%) in CH₂Cl₂ and evaporation gave pure compound as orange solid, yield 137 mg (75%). R_f 0.32 (5% EtOH in CH₂Cl₂); UV-Vis (20% DMSO in 96% EtOH) λ_{max} , nm $(\varepsilon, {\rm M}^{-1} \, {\rm cm}^{-1})$: 441 (38 600), 470 (48 000), $\lambda_{\rm min}$, nm $(\varepsilon, {\rm M}^{-1} \, {\rm cm}^{-1})$: 452 (26 800). Fluorescence (96% EtOH, λ_{em} 530 nm, excitation λ_{max} , nm): 334, 440, 467; (96% EtOH, λ_{ex} 420 nm, emission λ_{max} , nm): 476, 509. ¹H NMR (500 MHz, DMSO- d_6) δ 8.79–8.73 (m, 1H), 8.42–8.38 (m, 2H), 8.38–8.24 (m, 4H), 7.99 (s, 1H), 7.83–7.78 (m, 2H), 7.7–7.63 (m, 2H), 7.54 (t, 2H, $J = 7.62$ Hz), 7.39–7.28 (m, 6H), 5.88 (s, 2H), 5.58 (s, 2H), 4.54 (s, 2H), 3.3–3.27 (m, 2H), 1.14 (s, 9H). ¹³C NMR (125 MHz, DMSO- d_6) δ 176.6, 166.1, 160.5, 149.7, 149.4, 144.5, 136.0, 134.2, 133.7, 131.3, 131.0, 130.5, 130.0, 129.8, 128.7, 128.7, 128.3, 128.1, 128.0, 127.9, 127.7, 127.6, 127.0, 126.9, 125.6, 123.1, 121.6, 121.4, 121.3, 120.3, 119.1, 96.8, 90.9, 87.9, 65.1, 52.8, 51.0, 38.3, 34.4, 26.7. HRMS (ESI, m/z): calcd for $C_{44}H_{36}N_6O_5Na$ ([M + Na]⁺): 751.2639, found: 751.2629.

[3-(Pivaloyloxymethyl)-5-(perylen-3-ylethynyl)uracil-1-yl]-N- [1-(2-hydroxyethyl)-1,2,3-triazol-4-yl]acetamide (9b). [3-(Pivaloyloxymethyl)-5-(perylen-3-ylethynyl)uracil-1-yl]-N-[1-(2-hydroxyethyl)-1,2,3-triazol-4-yl]acetamide (9b) was prepared using 2-azidoethanol. Gradient elution with MeOH $(1 \rightarrow 6\%)$ in $CHCl₃$ and evaporation gave pure compound as orange solid, yield 120 mg (67%). Rf 0.6 (10% MeOH in CHCl₃); UV-Vis (20% DMSO in 96% EtOH) $\lambda_{\rm max}$, nm $(\varepsilon,$ M $^{-1}$ cm $^{-1})$: 441 (38 600), 470 (48 000), $\lambda_{\text{min}}, \text{ nm}$ ($\varepsilon, \text{ M}^{-1} \text{ cm}^{-1}$): 452 (26 800). Fluorescence (96% EtOH, $\lambda_{\rm em}$ 530 nm, excitation $\lambda_{\rm max}$, nm): 334, 440, 468; (96% EtOH, $\lambda_{\rm ex}$ 420 nm, emission $\lambda_{\rm max}$, nm): 476, 509. $^1{\rm H}$ NMR $(500 \text{ MHz}, \text{ DMSO-}d_6)$ δ 8.85–8.8 (m, 1H), 8.47–8.43 (m, 2H), 8.42–8.33 (m, 3H), 8.27 (t, $1H, J = 8.23$ Hz), 7.93 (s, $1H$), 7.86– 7.8 (m, 2H), 7.72-7.66 (m, 2H), 7.56 (t, 2H, $J = 7.82$ Hz), 5.86 (s, 2H), 4.54 (s, 2H), 4.41-4.36 (m, 4H), 3.78 (t, 2H, $J = 4.8$ Hz), 1.14 (s, 9H). ¹³C NMR (125 MHz, DMSO- d_6) δ 176.6, 166.1, 160.5, 149.7, 149.5, 143.9, 134.2, 133.7, 131.3, 131.1, 130.5, 130.1, 129.8, 128.7, 128.4, 127.9, 127.8, 127.6, 127.0, 127.0, 125.6, 123.4, 121.7, 121.5, 121.3, 120.3, 119.2, 96.7, 90.9, 87.9, 65.1, 59.9, 52.2, 50.9, 38.3, 34.4, 26.7; HRMS (ESI, m/z): calcd for C₃₉H₃₄N₆O₆Na ([M + Na]⁺): 705.2432, found: 705.2422.

[3-(Pivaloyloxymethyl)-5-(perylen-3-ylethynyl)uracil-1-yl]-N- (1-{1,1,1-[tris(5-hydroxy-2-oxopentyl)]-3-oxahex-6-yl}-1,2,3-triazol-4-yl)acetamide (9c). [3-(Pivaloyloxymethyl)-5-(perylen-3 ylethynyl)uracil-1-yl]-N-(1-{1,1,1-[tris(5-hydroxy-2-oxopentyl)]- 3-oxahex-6-yl}-1,2,3-triazol-4-yl)acetamide (9c) was prepared using azide 2. Gradient elution with EtOH $(1 \rightarrow 50\%)$ in $CH₂Cl₂$ and evaporation gave pure compound as dark brown solid, yield 210 mg (81%). R_f 0.27 (8% EtOH in CH₂Cl₂); UV-Vis (20% DMSO in 96% EtOH) λ_{max} , nm (ε , M⁻¹ cm⁻¹): 441 $(38\ 600),\ 470\ (48\ 000),\ \lambda_{\mathrm{min}},\ \mathrm{nm}\ (\varepsilon,\ \mathrm{M}^{-1}\ \mathrm{cm}^{-1});\ 452\ (26\ 800).$ Fluorescence (96% EtOH, λ_{em} 530 nm, excitation λ_{max} , nm): 334, 440, 468; (96% EtOH, λ_{ex} 420 nm, emission λ_{max} , nm): 476, 509. ¹H NMR (400 MHz; DMSO- d_6) δ 8.78 (t, 1H, J = 5.48 Hz), 8.48–8.26 (m, 6H), 7.94 (s, 1H), 7.86–7.8 (m, 2H), 7.73–7.65 (m, 2H), 7.57 (t, 2H, $J = 7.87$ Hz), 5.87 (s, 2H), 4.54 (s, 2H), 4.42– 4.35 (m, 4H), 4.32 (t, 3H, $J = 5.09$ Hz), 3.48–3.41 (m, 6H), 3.39 $(t, 6H, J = 6.36 Hz)$, 3.34 $(t, 2H, J = 6.04 Hz)$, 3.3–3.25 $(m, 8H)$, 2.07–1.99 (m, 2H), 1.62 (quint, 6H, $J = 6.36$ Hz), 1.14 (s, 9H).

¹³C NMR (100 MHz, DMSO- d_6) δ 176.5, 166.0, 160.4, 149.7, 149.3, 144.0, 134.1, 133.7, 131.3, 131.0, 130.5, 130.0, 129.8, 128.6, 128.3, 127.8, 127.8, 127.6, 127.0, 126.9, 125.6, 122.9, 121.6, 121.4, 121.3, 120.3, 119.1, 96.7, 90.8, 87.9, 69.3, 69.1, 67.9, 67.3, 65.0, 57.9, 50.9, 46.6, 44.9, 38.3, 34.4, 32.6, 29.9, 26.6. HRMS (ESI, *m*/z): calcd for C₅₄H₆₄N₆O₁₂Na ([M + Na]⁺): 1011.4474, found: 1011.4458.

Click reaction between alkyne 7 and polyazides 3–5, general procedure

Azide (0.025 mmol) and propargyl amide 7 with 5% excess for each azido group (0.53, 0.79 and 1.05 mmol respectively for cases 9d, 9e, 9f) were dissolved in DMSO (3 mL) under vigorous magnetic stirring. The solution was flushed with argon for degassing and 0.1 M solution of $CuSO₄·5H₂O$ and TBTA ligand $(1:1)$ in 55% DMSO were added $(80 \mu L)$. Then ascorbic acid (100 mg mL⁻¹ in H₂O; 30 μ L) was quickly loaded and the flask was tightly closed. After 12 h the reaction mixture was quenched with brine (6 mL) and the solid precipitated was isolated using centrifugation. The brine was decanted and the crude product was washed with distilled water (2×3 mL). The residue was applied on the silica gel by evaporation of the acetone solution with small portion of the sorbent. The obtained powder was carefully spilled on the column filled with silica gel in CH_2Cl_2 . The following compounds were obtained.

1,1-[Bis(5-hydroxy-2-oxapentyl)]-1,1-{bis[5-(4-{N-[(3-(pivaloyloxymethyl)-5-(perylen-3-ylethynyl)uracil-1-yl)acetyl]amino}-1,2,3-triazol-1-yl)-2-oxapent-1-yl]}methane (9d). 1,1-[Bis(5-hydroxy-2-oxapentyl)]-1,1-{bis[5-(4-{N-[(3-(pivaloyloxymethyl)-5-(perylen-3-ylethynyl) uracil-1-yl)acetyl]amino}-1,2,3-triazol-1-yl)-2-oxapent-1-yl]}methane (9d) was prepared using azide 3. Gradient elution with EtOH (1 \rightarrow 30% in CH₂Cl₂ and evaporation gave pure compound as orange solid, yield 28 mg (70%). R_f 0.34 (8% EtOH in CH₂Cl₂); UV-Vis (20% DMSO in 96% EtOH) λ_{\max} , nm $(\varepsilon, M^{-1} \text{ cm}^{-1})$: 442 (86 000), 470 (96 100), $\lambda_{\rm min}$, nm ($\varepsilon,$ M $^{-1}$ cm $^{-1}$): 454 (66 800). Fluorescence (96% EtOH, $\lambda_{\rm em}$ 530 nm, excitation $\lambda_{\rm max}$, nm): 336, 441, 469; (96% EtOH, $\lambda_{\rm ex}$ 420 nm, emission $\lambda_{\rm max}$, nm): 477, 510. ¹H NMR (400 MHz, DMSO- d_6) δ 8.78 (t, 2H, $J = 5.48$ Hz), 8.43–8.22 (m, 12H), 7.93 (s, 2H), 7.83–7.77 (m, 4H), 7.7–7.62 (m, 4H), 7.58–7.5 (m, 4H), 5.85 (s, 4H), 4.54 (s, 4H), 4.41–4.31 (m, 10H), 3.48–3.3 (m, 12H), 3.3–3.25 (m, 8H), 2.07–1.98 (m, 4H), 1.66–1.58 (m, 4H), 1.12 (s, 18H). 13C NMR (100 MHz, DMSO-d₆) δ 176.6, 166.1, 160.5, 149.7, 149.3, 144.1, 134.2, 133.7, 131.3, 131.0, 130.5, 130.1, 129.8, 128.7, 128.3, 127.9, 127.8, 127.6, 127.0, 126.9, 125.6, 122.9, 121.6, 121.4, 121.3, 120.3, 119.1, 96.8, 90.9, 87.8, 69.2, 69.0, 68.0, 67.4, 65.1, 57.9, 51.0, 46.7, 45.0, 38.3, 34.4, 32.6, 29.9, 26.6. HRMS (ESI, m/z): calcd for C₉₁H₉₃N₁₂O₁₆ ([M + $[H]^2$: 1609.6827, found: 1609.6813.

1-(5-Hydroxy-2-oxapentyl)-1,1,1-{tris[5-(4-{N-[(3-(pivaloyloxymethyl)-5-(perylen-3-ylethynyl)uracil-1-yl)acetyl]amino}triazol-1-yl)-2-oxapent-1-yl]}methane (9e). 1-(5-Hydroxy-2-oxapentyl)- 1,1,1-{tris[5-(4-{N-[(3-(pivaloyloxymethyl)-5-(perylen-3-ylethynyl) uracil-1-yl)acetyl]amino}triazol-1-yl)-2-oxapent-1-yl]}methane (9e) was prepared using azide 4. Gradient elution with EtOH (1 \rightarrow 20%) in CH₂Cl₂ and evaporation gave pure compound as orange solid, yield 30 mg (54%). R_f 0.39 (8% EtOH in CH₂Cl₂); UV-Vis (20% DMSO in 96% EtOH) λ_{max} , nm (ε , M⁻¹ cm⁻¹): 443

(114 700), 471 (124 700), λ_{\min} , nm (ε , M⁻¹ cm⁻¹): 455 (91 300). Fluorescence (96% EtOH, λ_{em} 530 nm, excitation λ_{max} , nm): 335, 440, 468; (96% EtOH, λ_{ex} 420 nm, emission λ_{max} , nm): 477, 511. ¹H NMR (400 MHz, DMSO- d_6) δ 8.77 (t, 3H, J = 5.48 Hz), 8.43-8.22 (m, 18H), 7.93 (s, 3H), 7.83–7.77 (m, 6H), 7.68–7.62 (m, 6H), 7.57– 7.5 (m, 6H), 5.85 (s, 6H), 4.53 (s, 6H), 4.4–4.34 (m, 12H), 4.32 (t, $1H, J = 5.17$ Hz), 3.43–3.34 (m, 10H), 3.3–3.26 (m, 8H), 2.06–1.97 $(m, 6H)$, 1.65–1.57 $(m, 2H)$, 1.12 $(s, 27H)$. ¹³C NMR (100 MHz, DMSO-d6) d 176.5, 166.1, 160.4, 149.7, 149.3, 144.1, 134.1, 133.7, 131.3, 131.0, 130.5, 130.0, 129.7, 129.5, 128.6, 128.3, 127.8, 127.7, 127.6, 127.0, 126.9, 125.5, 122.9, 121.6, 121.3, 121.2, 120.2, 119.1, 96.8, 90.9, 87.8, 69.1, 68.0, 67.4, 65.0, 57.9, 50.9, 46.6, 44.9, 38.3, 34.4, 32.6, 29.9, 26.6. HRMS (ESI, m/z): calcd for $C_{128}H_{120}N_{18}O_{20}Na$ ([M + Na]⁺): 2251.8818, found: 2251.8766.

Tetrakis[5-(4-{N-[(3-(pivaloyloxymethyl)-5-(perylen-3-ylethynyl) uracil-1-yl)acetyl]amino}triazol-1-yl)-2-oxapent-1-yl]methane (9f). Tetrakis[5-(4-{N-[(3-(pivaloyloxymethyl)-5-(perylen-3-ylethynyl) uracil-1-yl)acetyl]amino}triazol-1-yl)-2-oxapent-1-yl]methane (9f) was prepared using azide 5. Gradient elution with EtOH (1 \rightarrow 25%) in CH₂Cl₂ and evaporation gave pure compound as orange solid, yield 19 mg (38%). R_f 0.44 (8% EtOH in CH₂Cl₂); UV-Vis (20% DMSO in 96% EtOH) λ_{\max} , nm $(\varepsilon, M^{-1} \, \text{cm}^{-1})$: 443 $(131\; 500),$ $471\,(138\; 300),$ $\lambda_{\rm min},$ $\rm nm$ $(\varepsilon,$ $\rm M^{-1}\,cm^{-1});$ $455\,(107\; 200).$ Fluorescence (96% EtOH, λ_{em} 530 nm, excitation λ_{max} , nm): 419, 440, 464; (96% EtOH, λ_{ex} 420 nm, emission λ_{max} , nm): 452, 477, 509. ¹H NMR (400 MHz, DMSO- d_6) δ 8.79–8.75 (m, 4H), 8.41–8.21 (m, 24H), 7.93 (s, 4H), 7.81–7.76 (m, 8H), 7.66–7.6 (m, 8H), 7.55–7.48 (m, 8H), 5.84 (s, 8H), 4.53 (s, 8H), 4.4–4.33 (m, 16H), 3.38–3.32 (m, 8H), 3.28 (s, 8H), 2.06–1.97 (m, 8H), 1.11 (s, 36H). ¹³C NMR (100 MHz, DMSO- d_6) δ 176.5, 166.0, 160.4, 149.7, 149.2, 144.1, 134.1, 133.7, 131.2, 131.0, 130.4, 130.0, 129.7, 128.6, 128.3, 127.8, 127.7, 127.5, 126.9, 126.9, 125.5, 122.9, 121.5, 121.3, 121.2, 120.2, 119.1, 96.8, 90.9, 87.8, 68.9, 67.3, 65.0, 50.9, 46.6, 38.2, 34.4, 29.8, 28.9, 26.6. HRMS (ESI, *m*/z): calcd for C₁₆₅H₁₄₈N₂₄O₂₄Na ([M + Na]⁺): 2872.0991, found: 2872.0181. Paper

²²C ANH (100 MHz, DMS0-4) 6 175.5, 1650, 160, 161, 11270), 171 (12790), 271 (12790), and not $M = 10^{-3}$

194, 141, 1114, 1114, 1114, 1114, 1114, 1114, 1114, 1114, 1114, 1114, 1114, 1124, 201, 1144, 201, 1144, 201

Pom group removal, a general procedure

Pom-protected compound (66 µmol) was dissolved in the mixture containing DMSO (1.2 mL) and methanol $(600 \mu L)$. To this solution 10 M NaOH (60 μ L) was added under vigorous stirring. After 30 min TLC showed full consumption of the starting material. The reaction mixture was poured into 10% citric acid (6 mL). The precipitate was centrifuged thoroughly and washed with water $(4 \times 3 \text{ mL})$. The residue was applied on the silica gel using evaporation of the acetone solution with small portion of the sorbent. The obtained powder was carefully spilled on the column filled with silica gel in CHCl₃. Elution with gradient of EtOH in CHCl₃ from 5 to 30% and evaporation gave pure compound as orange solid. The following compounds were isolated.

[5-(Perylen-3-ylethynyl)uracil-1-yl]-N-propargylacetamide (8). Yield 13 mg (41%). R_f 0.50 (5% MeOH in CHCl₃); UV-Vis (20%) DMSO in 96% EtOH) $\lambda_{\rm max}$, nm $(\varepsilon,$ M $^{-1}$ cm $^{-1}$): 440 (38 800), 468 (47 520), $\lambda_{\text{min}}, \text{ nm}$ ($\varepsilon, \text{ M}^{-1} \text{ cm}^{-1}$): 450 (28 200). Fluorescence (96% EtOH, λ_{em} 530 nm, excitation λ_{max} , nm): 440, 466; (96%

EtOH, $\lambda_{\rm ex}$ 420 nm, emission $\lambda_{\rm max}$, nm): 450, 475, 508. $^1{\rm H}$ NMR (500 MHz, DMSO- d_6) δ 11.83 (br s, 1H), 8.82-8.78 (m, 1H), 8.43 $(d, 1H, J = 7.32 \text{ Hz})$, 8.4–8.3 (m, 3H), 8.27 (d, 1H, $J = 8.24 \text{ Hz}$), 7.84–7.79 (m, 2H), 7.71–7.63 (m, 2H), 7.58–7.52 (m, 2H), 7.47 (s, 2H), 3.97–3.91 (m, 2H), 3.18 (t, 1H, $J = 2.44$ Hz). ¹³C NMR (100 MHz, DMSO- d_6) δ 166.4, 162.1, 150.0, 149.9, 134.2, 133.7, 131.1, 131.0, 130.4, 130.1, 129.8, 128.6, 128.3, 127.8, 127.7, 127.6, 127.1, 127.0, 125.7, 121.6, 121.4, 121.3, 120.3, 119.5, 97.4, 90.6, 88.6, 80.7, 73.5, 49.8, 28.1. HRMS (ESI, m/z): calcd for $\rm C_{31}H_{20}N_3O_3$ ([M + H]⁺): 482.1499, found: 482.1489.

[5-(Perylen-3-ylethynyl)uracil-1-yl]-N-(1-benzyl-1,2,3-triazol-4 yl)acetamide (10a). Yield 21 mg (35%). R_f 0.36 (10% EtOH in CHCl₃) UV-Vis (20% DMSO in 96% EtOH) λ_{max} , nm $(\varepsilon, \quad M^{-1} \quad cm^{-1})$: 440 (38 800), 468 (47 520), λ_{\min} , nm $(\varepsilon,$ M $^{-1}$ cm $^{-1})$: 450 (28 200). Fluorescence (96% EtOH, $\lambda_{\rm em}$ 530 nm, excitation λ_{max} , nm): 440, 466; (96% EtOH, λ_{ex} 420 nm, emission λ_{\max} , nm): 475, 508. ^1H NMR (400 MHz, DMSO- d_6) δ 11.78 (br s, 1H), 8.73 (t, 1H, $J = 5.48$ Hz), 8.45 (d, 1H, $J = 7.47$ Hz), 8.43–8.33 (m, 3H), 8.31–8.26 (m, 2H), 8.0 (s, 1H), 7.87–7.81 $(m, 2H), 7.73-7.65$ $(m, 2H), 7.57$ $(t, 2H, J = 7.79$ Hz), $7.41-7.28$ $(m, 5H)$, 5.58 (s, 2H), 4.45 (s, 2H), 4.37 (d, 2H, $J = 5.56$ Hz). ¹³C NMR (100 MHz, DMSO- d_6) δ 166.4, 162.1, 150.0, 149.8, 144.5, 136.0, 134.2, 133.7, 131.1, 131.0, 130.4, 130.1, 129.8, 128.7, 128.6, 128.3, 128.1, 127.9, 127.8 (two overlapped signals), 127.6, 127.0, 127.0, 125.7, 123.1, 121.6, 121.4, 121.3, 120.3, 119.5, 97.3, 90.5, 88.6, 52.7, 49.9, 34.3. HRMS (ESI, m/z): calcd for $\rm{C_{38}H_{27}N_6O_3}$ ([M + H]⁺): 615.2139, found: 615.2135. BSC Advances Were Welch on 20 August 2019. Downloaded on 2019. Downloaded on 2019. Downloaded on 2019. The method of the same of 2019. The method of the same of 2019. Downloaded on 2019. The method of the same of 2019. Th

[5-(Perylen-3-ylethynyl)uracil-1-yl]-N-[1-(2-hydroxyethyl)- 1,2,3-triazol-4-yl]acetamide (10b). Yield 15 mg (40%). R_f 0.44 (25% EtOH in CHCl₃) UV-Vis (20% DMSO in 96% EtOH) λ_{max} , nm ($\varepsilon,$ M $^{-1}$ cm $^{-1}$): 441 (53 600), 470 (66 000), $\lambda_{\min},$ nm $(\varepsilon,$ M $^{-1}$ cm $^{-1})$: 452 (37 600). Fluorescence (96% EtOH, $\lambda_{\rm em}$ 530 nm, excitation λ_{max} , nm): 440, 466; (96% EtOH, λ_{ex} 420 nm, emission λ_{\max} , nm): 475, 508. ^1H NMR (400 MHz, DMSO- d_6) δ 11.79 (br s, 1H), 8.75 (t, 1H, $J = 5.64$ Hz), 8.45 (d, 1H, $J = 7.47$ Hz), 8.43–8.33 (m, 3H), 8.33–8.25 (m, 2H), 7.91 (s, 1H), 7.87–7.8 $(m, 2H), 7.74$ -7.64 $(m, 2H), 7.57$ $(t, 2H, J = 7.47$ Hz), 5.01 $(t, 1H, J)$ $=$ 5.25 Hz), 4.47 (s, 2H), 4.42–4.34 (m, 4H), 3.78 (q, 2H, $J = 5.35$ Hz). ¹³C NMR (100 MHz, DMSO- d_6) δ 166.4, 162.1, 150.0, 149.9, 144.0, 134.2, 133.7, 131.1, 131.0, 130.4, 130.1, 129.8, 128.6, 128.3, 127.8, 127.8, 127.6, 127.0, 127.0, 125.7, 123.3, 121.6, 121.4, 121.3, 120.3, 119.5, 97.3, 90.5, 88.6, 59.8, 52.1, 49.9, 34.3. HRMS (ESI, *m*/z): calcd for C₃₃H₂₅N₆O₄ ([M + H]⁺): 569.1932, found: 569.1926.

[5-(Perylen-3-ylethynyl)uracil-1-yl]-N-(1-{1,1,1-[tris(5-hydroxy-2-oxapentyl)]-3-oxahex-6-yl}-1,2,3-triazol-4-yl)acetamide (10c). Yield 18 mg (30%). Rf 0.56 (25% MeOH in CHCl₃) UV-Vis (20% DMSO in 96% EtOH) λ_{\max} , nm $(\varepsilon,$ M $^{-1}$ cm $^{-1})$: 440 (38 800), 468 (47 520), $\lambda_{\text{min}}, \text{ nm}$ ($\varepsilon, \text{ M}^{-1} \text{ cm}^{-1}$): 450 (28 200). Fluorescence (96% EtOH, λ_{em} 530 nm, excitation λ_{max} , nm): 440, 467; (96% EtOH, $\lambda_{\rm ex}$ 420 nm, emission $\lambda_{\rm max}$, nm): 476, 508. $^1{\rm H}$ NMR (400 MHz, DMSO- d_6) δ 11.78 (br s, 1H), 8.73 (t, 1H, $J = 5.48$ Hz), 8.45 $(d, 1H, J = 7.47 \text{ Hz})$, 8.43–8.33 (m, 3H), 8.32–8.26 (m, 2H), 7.94 $(s, 1H), 7.87 - 7.81$ (m, 2H), 7.72-7.65 (m, 2H), 7.57 (t, 2H, J = 7.63 Hz), 4.46 (s, 2H), 4.41-4.35 (m, 4H), 4.32 (t, 3H, $J = 5.17$ Hz), 3.48–3.41 (m, 6H), 3.38 (t, 6H, $J = 6.36$ Hz), 3.36–3.31 (m, 2H), 3.3–3.24 (m, 8H), 2.07–1.98 (m, 2H), 1.62 (quint, 6H, $J = 6.36$

RSC Advances **Paper**

Hz). ¹³C NMR (100 MHz, DMSO- d_6) δ 166.4, 162.1, 150.0, 149.8, 144.1, 134.2, 133.7, 131.1, 131.0, 130.4, 130.1, 129.8, 128.6, 128.3, 127.8, 127.6, 127.0, 126.9, 125.7, 122.9, 121.6, 121.4, 121.3, 120.3, 119.5, 97.3, 90.6, 88.6, 69.3, 69.1, 67.9, 67.3, 57.9, 49.9, 46.6, 44.9, 34.3, 32.6, 29.9. HRMS (ESI, m/z): calcd for $C_{48}H_{55}N_6O_{10} ([M + H]^2)$: 875.3974, found: 875.3973.

Cell toxicity assay

A cytotoxicity test in porcine embryo kidney (PEK) cells was performed as described previously.^{2a,6,19,25} In brief, PEK cells were seeded and incubated for 72 h at 37 \degree C. Stock solutions of the compounds with the concentration of 5 mM were prepared in 100% DMSO (Sigma). Two-fold dilutions of studied compounds were prepared in medium 199 on Earle solution to obtain final concentrations starting from 50 μ M. Equal volumes of compound dilutions were added in four replicates to the cells. Cell control was treated with the same sequential concentrations of DMSO as in compounds dilutions in four replicates. After incubation at 37 °C on days 1 or 7 CC_{50} values were calculated according to the Kerber method.²⁸

Antiviral activity assays

Plaque reduction test was performed as previously described^{2a,6,19,25} on tick-borne encephalitis virus strain Absettarov. Stock solutions of the compounds with concentration of 5 mM were prepared in 100% DMSO (Sigma). Compounds were added to PEK cells simultaneously with virus and incubated at 37 $^{\circ}$ C for 1 h with gentle shaking every 15–20 min. Then, each well was overlaid with 1 mL of 1.26% methylcellulose (Sigma) containing 2% FBS (Gibco). After incubation at 37 °C in $CO₂$ incubator for 6 days cells were fixed with 96% ethanol. Plaques were stained with 0.4% gentian violet. EC_{50} values were calculated according to Reed-and-Muench method.²⁹

Statistical analysis

Data are expressed as means \pm standard deviations. The statistical significance was analyzed using Student's t test for at least three independent experiments.

Molecular modelling

The molecules were drawn in InstantJChem³⁰ and transferred to SYBYL-X 2.1 (ref. 27) in MOL format. MMFF94 charges³¹ were assigned to the atoms and the Powell 32 optimization (10 000 steps, gradient termination, threshold 0.05 kcal $(mol^{-1} \times \AA)$ was performed in MMFF94s force field.^{31b} Then Confort²⁶ global minimization was performed, sampling 2000 conformations (program maximum) and optimizing them with termination by negative change. Precision parameter was set to 0.001. Electrostatics was considered. The number of acyclic rotors concurrently sampled was set to 200, rotors in cycles were not sampled due to the aromaticity of all the studied cycles. Compound 9f contains more atoms than can be treated by Confort and thus was not optimized using this method. Fast Connolly surfaces³³ for the optimized structures were calculated by MOLCAD in SYBYL-X 2.1 and colored according to hydrophobic potential.

Conclusions

In summary, we used pentaerythritol-based azides for the preparation of clusters containing up to four residues of 5- (perylen-3-ylethynyl)uracil, an antiviral scaffold. UV-Vis, fluorescence, and anti-TBEV properties of compounds were studied. For the first time, the antiviral activity of RAFI clusters was demonstrated. Four compounds, including tetramer 9f, showed one-digit nanomolar activity against TBEV, being among the most potent anti-TBEV molecules to date. Some structural features of the most active compounds can be used in further design of antivirals.

Conflicts of interest

There are no conflicts of interest to declare.

Acknowledgements

The research was supported by Russian Science Foundation (project no. 15-15-00053; synthesis of compounds, spectral studies, and, in part, antiviral studies). The virus for this work was kindly provided by Prof. G. G. Karganova. BSL-3 facilities, virus and cell collection maintenance, molecular modeling, and antiviral activity assessment were supported by the State research funding for FSBSI "Chumakov FSC R&D IBP RAS".

References

1 (a) V. A. Korshun, E. V. Manasova, K. V. Balakin, A. D. Malakhov, A. V. Perepelov, T. A. Sokolova and Y. A. Berlin, Nucleosides Nucleotides, 1998, 17, 1809–1812; (b) M. V. Skorobogatyi, A. D. Malakhov, A. A. Pchelintseva, A. A. Turban, S. L. Bondarev and V. A. Korshun, ChemBioChem, 2006, 7, 810–816.

- 2 (a) V. L. Andronova, M. V. Skorobogatyi, E. V. Manasova, Y. A. Berlin, V. A. Korshun and G. A. Galegov, Russ. J. Bioorg. Chem., 2003, 29, 262–266; (b) M. V. Skorobogatyi, A. V. Ustinov, I. A. Stepanova, A. A. Pchelintseva, A. L. Petrunina, V. L. Andronova, G. A. Galegov, A. D. Malakhov and V. A. Korshun, Org. Biomol. Chem., 2006, 4, 1091–1096; (c) M. R. St. Vincent, C. C. Colpitts, A. V. Ustinov, M. Muqadas, M. A. Joyce, N. A. Barsby, R. F. Epand, R. M. Epand, S. A. Khramyshev, O. A. Valueva, V. A. Korshun, D. L. J. Tyrrell and L. M. Schang, Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 17339–17344; (d) A. A. Orlov, A. A. Chistov, L. I. Kozlovskaya, A. V. Ustinov, V. A. Korshun, G. G. Karganova and D. I. Osolodkin, Med. Chem. Commun., 2016, 7, 495–499.
- 3 C. C. Colpitts, A. V. Ustinov, R. F. Epand, R. M. Epand, V. A. Korshun and L. M. Schang, J. Virol., 2013, 87, 3640– 3654.
- 4 L. M. Schang, Future Virol., 2014, 9, 283–299.
- 5 (a) F. Vigant, A. Hollmann, J. Lee, N. C. Santos, M. E. Jung and B. Lee, J. Virol., 2014, 88, 1849–1854; (b) F. Vigant, N. C. Santos and B. Lee, Nat. Rev. Microbiol., 2015, 13, 426– 437.
- 6 A. A. Chistov, A. A. Orlov, P. P. Streshnev, N. A. Slesarchuk, I. O. Aparin, B. Rathi, V. A. Brylev, S. V. Kutyakov, I. V. Mikhura, A. V. Ustinov, G. Westman, V. A. Palyulin, N. Jain, D. I. Osolodkin, L. I. Kozlovskaya V. A. Korshun, Eur. J. Med. Chem., 2019, 171, 93–103.
- 7 S. Speerstra, A. A. Chistov, G. V. Proskurin, A. A. Aralov, E. A. Ulashchik, P. P. Streshnev, V. V. Shmanai, V. A. Korshun and L. M. Schang, Antiviral Res., 2018, 149, 164–173.
- 8 A. Hakobyan, I. Galindo, A. Nañez, A. Arabyan, Z. Karalyan, A. A. Chistov, P. P. Streshnev, V. A. Korshun, C. Alonso and H. Zakaryan, J. Gen. Virol., 2018, 99, 148–156.
- 9 (a) A. Gazumyan, B. Mitsner and G. A. Ellestad, Curr. Pharm. Des., 2000, 6, 525–546; (b) U. Boas and P. M. H. Heegaard, Chem. Soc. Rev., 2004, 33, 43–63; (c) A. R. Borges and C.-L. Schengrund, Curr. Drug Targets: Infect. Disord., 2005, 5, 247–254; (d) T. D. McCarthy, P. Karellas, S. A. Henderson, M. Giannis, D. F. O'Keefe, G. Heery, J. R. A. Paull, B. R. Matthews and G. Holan, Mol. Pharm., 2005, 2, 312-318; (e) D. Sepúlveda-Crespo, R. Ceña-Díez, J. L. Jiménez and M. A. Muñoz-Fernández, Med. Res. Rev., 2017, 37, 149–179; (f) Y. Kim, E. J. Park and D. H. Na, Arch. Pharmacal Res., 2018, 41, 571–582. Paper Werelet the interaction of the common access Article is likely. Attack Article. Some state and the state Kinder Concelled Common and the state $\frac{1}{2}$ Concelled Commons Attack Big to the Access Article is likely t
	- 10 (a) Y. Gong, B. Matthews, D. Cheung, T. Tam, I. Gadawski, D. Leung, G. Holan, J. Raff and S. Sacks, Antiviral Res., 2002, 55, 319–329; (b) D. Tyssen, S. A. Henderson, A. Johnson, J. Sterjovski, K. Moore, J. La, M. Zanin, S. Sonza, P. Karellas, M. P. Giannis, G. Krippner, S. Wesselingh, T. McCarthy, P. R. Gorry, P. A. Ramsland, R. Cone, J. R. A. Paull, G. R. Lewis and G. Tachedjian, PLoS One, 2010, 5, e12309; (c) J. Sánchez-Rodríguez, L. Díaz, M. Galán, M. Maly, R. Gómez, F. J. de la Mata, J. L. Jiménez and M. A. Muñoz-Fernández, J. Biomed. Nanotechnol., 2015, 11, 1783-1798; (d) D. Sepúlveda-Crespo, J. L. Jiménez, R. Gómez, F. J. De La Mata, P. L. Majano, M. A. Muñoz-Fernández and P. Gastaminza, Nanomedicine, 2017, 13, 49-58; (e) C. Guerrero-Beltrán, R. Ceña-Diez, D. Sepúlveda-Crespo, J. De la Mata, R. Gómez, M. Leal, M. A. Muñoz-Fernández and J. L. Jiménez, Nanoscale, 2017, 9, 17263-17273; (f) S. Moreno, D. Sepúlveda-Crespo, F. J. de la Mata, R. Gómez and M. A. Muñoz-Fernández, Antiviral Res., 2017, 146, 54– 64; (g) C. Guerrero-Beltran, I. Rodriguez-Izquierdo, M. J. Serramia, I. Araya-Durán, V. Márquez-Miranda, R. Gomez, F. J. de la Mata, M. Leal, F. González-Nilo and M. A. Muñoz-Fernández, Bioconjugate Chem., 2018, 29, 1584–1594; (h) M. R. Kandi, J. Mohammadnejad, M. S. Ardestani, R. Zabihollahi, S. Soleymani, M. R. Aghasadeghi and K. Baesi, Mol. Biol. Rep., 2019, 46, 143–149.
	- 11 S. Asaftei and E. De Clercq, J. Med. Chem., 2010, 53, 3480-3488.
- 12 (a) B. Martínez-Gualda, L. Sun, E. Rivero-Buceta, A. Flores, E. Quesada, J. Balzarini, S. Noppen, S. Liekens, D. Schols, J. Neyts, P. Leyssen, C. Mirabelli, M. J. Camarasa and A. San-Félix, Antiviral Res., 2017, 139, 32-40; (b) B. Martínez-Gualda, L. Sun, O. Martí-Marí, C. Mirabelli, L. Delang, J. Neyts, D. Schols, M. J. Camarasa and A. San-Félix, Antiviral Res., 2019, 168, 210-214.
- 13 (a) A. Luganini, A. Giuliani, G. Pirri, L. Pizzuto, S. Landolfo and G. Gribaudo, Antiviral Res., 2010, 85, 532–540; (b) A. Luganini, S. F. Nicoletto, L. Pizzuto, G. Pirri, A. Giuliani, S. Landolfo and G. Gribaudo, Antimicrob. Agents Chemother., 2011, 55, 3231–3239; (c) K. Hatano, T. Matsubara, Y. Muramatsu, M. Ezure, T. Koyama, K. Matsuoka, R. Kuriyama, H. Kori and T. Sato, J. Med. Chem., 2014, 57, 8332–8339.
- 14 A. Flores, M. J. Camarasa, M. J. Pérez-Pérez, A. San-Félix, J. Balzarini and E. Quesada, Org. Biomol. Chem., 2014, 12, 5278–5294.
- 15 (a) S. L. Xiao, L. L. Si, Z. Y. Tian, P. X. Jiao, Z. B. Fan, K. Meng, X. S. Zhou, H. Wang, R. Y. Xu, X. Han, G. Fu, Y. M. Zhang, L. H. Zhang and D. M. Zhou, Biomaterials, 2016, 78, 74–85; (b) Z. Y. Tian, L. L. Si, K. Meng, X. S. Zhou, Y. M. Zhang, D. M. Zhou and S. L. Xiao, Eur. J. Med. Chem., 2017, 134, 133–139; (c) Y. Yang, H.-J. He, H. Chang, Y. Yu, M.-B. Yang, Y. He, Z.-C. Fan, S. S. Iyer and P. Yu, Eur. J. Med. Chem., 2018, 143, 1723–1731.
- 16 (a) F. Lasala, E. Arce, J. R. Otero, J. Rojo and R. Delgado, Antimicrob. Agents Chemother., 2003, 47, 3970–3972; (b) G. Tabarani, J. J. Reina, C. Ebel, C. Vivès, H. Lortat-Jacob, J. Rojo and F. Fieschi, FEBS Lett., 2006, 580, 2402–2408; (c) R. Clayton, J. Hardman, C. C. LaBranche and K. D. McReynolds, Bioconjugate Chem., 2011, 22, 2186– 2197; (d) J. Luczkowiak, A. Muñoz, M. Sánchez-Navarro, R. Ribeiro-Viana, A. Ginieis, B. M. Illescas, N. Martín, R. Delgado and J. Rojo, Biomacromolecules, 2013, 14, 431– 437; (e) A. Muñoz, D. Sigwalt, B. M. Illescas, J. Luczkowiak, L. Rodríguez-Pérez, I. Nierengarten, M. Holler, J.-S. Remy, K. Buffet, S. P. Vincent, J. Rojo, R. Delgado, J.-F. Nierengarten and N. Martín, Nat. Chem., 2016, 8, 50-57; (f) S. Brument, C. Cheneau, Y. Brissonnet, D. Deniaud, F. Halary and S. G. Gouin, Org. Biomol. Chem., 2017, 15, 7660–7671; (g) B. M. Illescas, J. Rojo, R. Delgado and N. Martín, J. Am. Chem. Soc., 2017, 139, 6018-6025; (h) A. Muñoz, B. M. Illescas, J. Luczkowiak, F. Lasala, R. Ribeiro-Viana, J. Rojo, R. Delgado and N. Martín, J. *Mater. Chem. B*, 2017, 5, 6566–6571; (i) L. Rodríguez-Pérez, J. Ramos-Soriano, A. Pérez-Sánchez, B. M. Illescas, A. Muñoz, J. Luczkowiak, F. Lasala, J. Rojo, R. Delgado and N. Martín, J. Am. Chem. Soc., 2018, 140, 9891-9898.
- 17 (a) S. Sattin, A. Daghetti, M. Thépaut, A. Berzi, M. Sánchez-Navarro, G. Tabarani, J. Rojo, F. Fieschi, M. Clerici and A. Bernardi, ACS Chem. Biol., 2010, 5, 301–312; (b) J. Luczkowiak, S. Sattin, I. Sutkevičiūte, J. J. Reina, M. Sánchez-Navarro, M. Thépaut, L. Martínez-Prats, A. Daghetti, F. Fieschi, R. Delgado, A. Bernardi and J. Rojo, Bioconjugate Chem., 2011, 22, 1354–1365; (c) A. Berzi, J. J. Reina, R. Ottria, I. Sutkeviciute, P. Antonazzo,

M. Sanchez-Navarro, E. Chabrol, M. Biasin, D. Trabattoni, I. Cetin, J. Rojo, F. Fieschi, A. Bernardi and M. Clerici, AIDS, 2012, 26, 127–137; (d) N. Varga, I. Sutkeviciute, R. Ribeiro-Viana, A. Berzi, R. Ramdasi, A. Daghetti, G. Vettoretti, A. Amara, M. Clerici, J. Rojo, F. Fieschi and A. Bernardi, Biomaterials, 2014, 35, 4175–4184; (e) S. Tang, W. B. Puryear, B. M. Seifried, X. H. Dong, J. A. Runstadler, K. Ribbeck and B. D. Olsen, ACS Macro Lett., 2016, 5, 413– 418; (f) S. J. Kwon, D. H. Na, J. H. Kwak, M. Douaisi, F. Zhang, E. J. Park, J. H. Park, H. Youn, C. S. Song, R. S. Kane, J. S. Dordick, K. B. Lee and R. J. Linhardt, Nat. Nanotechnol., 2017, 12, 48–54; (g) M. Nagao, T. Matsubara, Y. Hoshino, T. Sato and Y. Miura, Bioconjugate Chem., 2019, 30, 1192–1198; (h) W. Lu, W. Du, V. J. Somovilla, G. Yu, D. Haksar, E. de Vries, G.-J. Boons, R. P. de Vries, C. A. M. de Haan and R. J. Pieters, J. Med. Chem., 2019, 62, 6398–6404. **BSC Advances** Wereletters, 1980. Antimoxy, E. Wierschneidters, 1981. The Expediation Common Licensed on 20 August 2019. A Secretion 2019. A secretion 2019. A secretion 2019. A secretion 2019. The Common Licensed under a

- 18 (a) Z.-L. Yang, X.-F. Zeng, H.-P. Liu, Q. Yu, X. Meng, Z.-L. Yan, Z.-C. Fan, H.-X. Xiao, S. S. Iyer, Y. Yang and P. Yu, Tetrahedron Lett., 2016, 57, 2579–2582; (b) T.-F. Zhao, H.-J. Qin, Y. Yu, M.-B. Yang, H. Chang, N. Guo, Y. He, Y. Yang and P. Yu, J. Carbohydr. Chem., 2017, 36, 235–246; (c) Z.-L. Yan, A.-Y. Liu, X.-X. Wei, Z. Zhang, L. Qin, Q. Yu, P. Yu, K. Lu and Y. Yang, Carbohydr. Res., 2019, 477, 32–38.
- 19 G. V. Proskurin, A. A. Orlov, V. A. Brylev, L. I. Kozlovskaya, A. A. Chistov, G. G. Karganova, V. A. Palyulin, D. I. Osolodkin, V. A. Korshun and A. V. Aralov, Eur. J. Med. Chem., 2018, 155, 77–83.
- 20 (a) C. W. Tornøe, C. Christensen and M. Meldal, J. Org. Chem., 2002, 67, 3057–3064; (b) V. V. Rostovtsev, L. G. Green, V. V. Fokin and K. B. Sharpless, Angew. Chem., Int. Ed., 2002, 41, 2596–2599.
- 21 A. I. Ponomarenko, V. A. Brylev, K. A. Sapozhnikova, A. V. Ustinov, I. A. Prokhorenko, T. S. Zatsepin and V. A. Korshun, Tetrahedron, 2016, 72, 2386–2391.
- 22 V. M. Farzan, E. A. Ulashchik, Y. V. Martynenko-Makaev, M. V. Kvach, I. O. Aparin, V. A. Brylev, T. A. Prikazchikova, S. Y. Maklakova, A. G. Majouga, A. V. Ustinov, G. A. Shipulin, V. V. Shmanai, V. A. Korshun and T. S. Zatsepin, Bioconjugate Chem., 2017, 28, 2599–2607.
- 23 (a) M. Rasmussen and N. J. Leonard, J. Am. Chem. Soc., 1967, 89, 5439–5445; (b) D. Dhanak and C. B. Reese, J. Chem. Soc., Perkin Trans. 1, 1986, 2181–2186.
- 24 X. Dong, X. Guo, G. Liu, A. Fan, Z. Wang and Y. Zhao, Chem. Commun., 2017, 53, 3822–3825.
- 25 (a) A. V. Aralov, G. V. Proskurin, A. A. Orlov, L. I. Kozlovskaya, A. A. Chistov, S. V. Kutyakov, G. G. Karganova, V. A. Palyulin, D. I. Osolodkin and V. A. Korshun, Eur. J. Med. Chem., 2017, 138, 293–299; (b) L. I. Kozlovskaya, A. D. Golinets, A. A. Eletskaya, A. A. Orlov, V. A. Palyulin, S. N. Kochetkov, L. A. Alexandrova and D. I. Osolodkin, ChemistrySelect, 2018, 3, 2321–2325.
- 26 Confort, Certara, L.P., St. Louis, MO, USA, 2013.
- 27 Sybyl-X Molecular Modeling Software Packages, Version 2.1, Certara, L.P., St. Louis, MO, USA, 2013.
- 28 WHO, Polio laboratory manual, WHO, Geneva, 4th edn, 2004, WHO/IVB/04/10.
- 29 L. J. Reed and H. Muench, Am. J. Hyg., 1938, 27, 493–497.
- 30 Instant JChem 17.3.27.0, ChemAxon, 2017, http:// www.chemaxon.com.
- 31 (a) T. A. Halgren, J. Comput. Chem., 1996, 17, 490–519; (b) T. A. Halgren, J. Comput. Chem., 1999, 20, 720–729.
- 32 M. J. D. Powell, Mathematical Programming, 1977, 12, 241– 254.
- 33 (a) M. L. Connolly, Science, 1983, 221, 709–713; (b) M. L. Connolly, J. Appl. Crystallogr., 1983, 16, 548–558.

This journal is © The Royal Society of Chemistry 2019 **RSC Adv., 2019, 9, 26014–26023 | 26023**